Bayardo, R., Agrawal, R., and Gunopulos, D. (2000).
Constraint-based rule mining in large, dense data-
bases. Data Mining and Knowledge Discovery,
4(2/3):217–240.
Boulicaut, J. and Jeudy, B. (2005). Constraint-based data
mining. In The Data Mining and Knowledge Discov-
ery Handbook, pages 399–416. Springer.
Boulicaut, J. F. (2005). Condensed representations for data
mining. In Encyclopedia of Data Warehousing and
Mining, pages 207–211. Idea Group Reference.
Boulicaut, J. F. and Masson, C. (2005). Data mining query
languages. In The Data Mining and Knowledge Dis-
covery Handbook, pages 715–727. Springer.
Catania, B., Maddalena, A., Mazza, M., Bertino, E., and
Rizzi, S. (2004). A framework for data mining pat-
tern management. In Proceedings of the 8th European
Conference on Principles and Practice of Knowledge
Discovery in Databases, LNCS 3202, pages 87–98.
Freitas, A. A. (1999). On rule interestingness measures.
Knowledge-Based Systems, 12(5-6):309–315.
Garofalakis, M. N., Rastogi, R., and Shim, K. (2002). Min-
ing sequential patterns with regular expression con-
straints. IEEE Transactions on Knowledge and Data
Engineering, 14(3):530–552.
Goethals, B., Muhonen, J., and Toivonen, H. (2005). Min-
ing non-derivable association rules. In Proceedings of
the fifth SIAM International Conference on Data Min-
ing, Newport Beach, California, USA, April 21-23.
Grossman, R. L., Bailey, S., Ramu, A., Malhi, B., Hall-
strom, P., Pulleyn, I., and Qin, X. (1999). The man-
agement and mining of multiple predictive models us-
ing the predictive model markup language (PMML).
In Information and Software Technology, volume 41,
pages 589–595.
Li, G. and Hamilton, H. (2004). Basic association rules.
In Proceedings of the fourth SIAM International Con-
ference on Data Mining, Lake Buena Vista, Florida,
USA, April 22-24. SIAM.
Li, Y., Liu, Z. T., Chen, L., Cheng, W., and Xie, C. H.
(2004). Extracting minimal non-redundant associa-
tion rules from QCIL. In International Conference on
Computer and Information Technology, pages 986–
991. IEEE Computer Society.
Louie, E. and Lin, T. Y. (2000). Finding association rules
using fast bit computation: Machine-oriented model-
ing. In Proceedings of the 12th International Sympo-
sium on Methodologies for Intelligent Systems, LNCS
1932, pages 486–494. Springer.
Masson, C., Robardet, C., and Boulicaut, J. F. (2004). Opti-
mizing subset queries: a step towards sql-based induc-
tive databases for itemsets. In Proceedings of the 2004
ACM symposium on Applied computing (SAC’04),
pages 535–539. ACM Press.
Morzy, T. and Zakrzewicz, M. (1998). Group bitmap in-
dex: A structure for association rules retrieval. In Pro-
ceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, pages 284–
288. AAAI Press.
Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., and
Lakhal, L. (2005). Generating a condensed represen-
tation for association rules. Journal of Intelligent In-
formation Systems, 24(1):29–60.
Pucheral, P., Gardarin, G., and Wu, L. (1998). Bitmap based
algorithms for mining association rules. In Actes des
Journées Bases de Données Avancées (BDA’98).
Tuzhilin, A. and Liu, B. (2002). Querying multiple sets
of discovered rules. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 52–60. ACM.
Wang, J. and Han, J. (2004). BIDE: Efficient mining of
frequent closed sequences. In Proceedings of the 20th
International Conference on Data Engineering, ICDE
2004, 30 March - 2 April 2004, Boston, MA, USA,
pages 79–90.
Wang, J., Han, J., Lu, Y., and Tzvetkov, P. (2005). TFP: An
efficient algorithm for mining top-k frequent closed
itemsets. IEEE Transactions on Knowledge and Data
Engineering, 17(5):652–664.
Zaki, M. J. (2000). Generating non-redundant association
rules. In
Proceedings of the sixth ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, August 20-23, 2000, Boston, MA, USA,
pages 34–43.
Zaki, M. J. (2001). SPADE: An efficient algorithm
for mining frequent sequences. Machine Learning,
42(1/2):31–60.
Zaki, M. J. (2004). Mining non-redundant association rules.
Data Mining and Knowledge Discovery, 9(3):223–
248.
Zaki, M. J. and Hsiao, C. (2005). Efficient algorithms
for mining closed itemsets and their lattice structure.
IEEE Transactions on Knowledge and Data Engineer-
ing, 17(4):462–478.
Zaki, M. J., Parimi, N., De, N., Gao, F., Phoophakdee, B.,
Urban, J., Chaoji, V., Hasan, M. A., and Salem, S.
(2005). Towards generic pattern mining. In Proceed-
ings of the Third International Conference on Formal
Concept Analysis, pages 1–20.
EFFICIENT MANAGEMENT OF NON REDUNDANT RULES IN LARGE PATTERN BASES: A BITMAP
APPROACH
215