
WEB SERVICES COMMUNITIES
Concepts & Operations

Zakaria Maamarβ, Mohammed Lahkimα, Djamal Benslimaneγ, Philippe Thiranδ

and Subramanian Sattanathanδ

βZayed University, Dubai, United Arab Emirates
αKing Saud University, Riyadh, Kingdom of Saudi Arabia

γClaude Bernard Lyon 1 University, Lyon, France

δUniversity of Namur, Namur, Belgium

Keywords: Community, Contract-Net Protocol, Web Service.

Abstract: This paper discusses the concepts and operations related tothe specification and management of a community
of Web services, respectively. Web services offering the same functionality are gathered into one community,
independently of their origins. The community is led by a master component, which is responsible among
others for attracting new Web services to the community, retaining existing Web services in the community,
and identifying the Web services in the community that will participate in composite Web services. The
identification of these Web services is based on the contract-net protocol.

1 INTRODUCTION

For the W3C, a Web service ”is a software application
identified by a URI, whose interfaces and binding are
capable of being defined, described, and discovered
by XML artifacts and supports direct interactions
with other software applications using XML-based
messages via Internet-based applications”. Nowa-
days, competition is not limited to goods, services,
or software products, but includes systems that of-
fer the current and accurate information. Web ser-
vices are also not excluded from this competition.
Providers develop several Web services that could of-
fer similar functionalities like hotel booking and car
rental. To ease and improve the process of Web
services discovery in an open environment like the
Internet, it is suggested to gather similar Web ser-
vices1 into groups known as communities (Benatallah
et al., 2003; Medjahed and Bouguettaya, 2005). Al-
though Web services are intensively investigated, the
following community-related issues have not been ad-
dressed yet: how to initiate, set up, and specify a com-
munity of Web services, is the functionality of a Web
service the only factor that drives the establishment
of a community, and how to specify and manage the

1Similar Web services and Web services with a similar
functionality are interchangeably used.

Web services that reside in a community?
It is understood that a community of Web services

has a dynamic content: new Web services join, others
leave, some become temporarily unavailable, etc. All
these events need to be closely monitored, otherwise
conflicts arise. For example, if a Web service was
no longer a member of a community, its peers could
assume that the Web service is still in the community.
Moreover, Web services do not always expose a coop-
erative attitude when they join a community. Firstly,
they can compete on computing resources, which may
affect their performance scheduling. Secondly, they
can announce misleading non-functional details to en-
hance their participation opportunities in composite
Web services. Thirdly, they can become malicious
when they try to alter other peers’ data or behaviors.

In this paper, we do not aim at devising new strate-
gies to select Web services of composite Web ser-
vices. We mainly aim at presenting the concepts and
operations that are required to specify and manage a
community of Web services. Concepts and operations
related to a community of Web services are discussed
in Section 2. The prototype that simulates community
management is presented in Section 3. Conclusions
are drawn in Section 4.

323
Maamar Z., Lahkim M., Benslimane D., Thiran P. and Sattanathan S. (2007).
WEB SERVICES COMMUNITIES - Concepts & Operations.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 323-327
DOI: 10.5220/0001260103230327
Copyright c© SciTePress



2 COMMUNITIES OF WEB
SERVICES

2.1 Background

In Longman Dictionary, community is ”a group of
people living together and/or united by shared inter-
ests, religion, nationality, etc”. When it comes to
Web services, Benatallah et al. define community as
a collection of Web services with a common func-
tionality, although these Web services have distinct
non-functional properties like different providers and
different QoS parameters (Benatallah et al., 2003).
Medjahed and Bouguettaya use community to cater
for an ontological organization of Web services that
share the same domain of interest (Medjahed and
Bouguettaya, 2005). Our definition considers a com-
munity as a means to provide a common descrip-
tion of a desired functionality (e.g.,FlightBooking)
without explicitly referring to any specific Web ser-
vice (e.g.,EKFlightBooking).

2.2 Architecture

Fig. 1 is the architecture we designed to manage com-
munities of Web services. The components in this ar-
chitecture include providers of Web services, UDDI
registries, and communities of Web services. A com-
munity is dynamic by nature. It is established and dis-
mantled according to specific scenarios and protocols,
which we discuss in Section 2.3. Two communities of
Web services are shown in Fig. 1, which could for ex-
ample offerAirfareQuotation andHotelBooking
functionalities, respectively.

Master 
1
-WS


Slave-WS 
1i
Slave-WS 
11


Community 
1
 of Web services


UDDI

registries


Providers of 
Web services

Advertisments


Interactions

Consultations


Interactions


Community 
2
 of

Web services


Figure 1: Architecture of Web services communities.

The architecture in Fig. 1 has some features which
we stress hereafter: (i) the traditional way of defin-
ing, announcing, and invoking Web services is still
the same although these Web services are now el-
ements of communities, (ii) the functionalities that
UDDI registries usually offer to providers and end-
users of Web services are still the same, and (iii) the

selection of Web services from communities is trans-
parent to users and occur independently of the way
these Web services are gathered into communities. A
master component always leads a community. The
master component could itself be implemented as a
Web service for compatibility requirements with other
Web services in the community. These Web ser-
vices are now denoted as slaves and have in common
the functionality that labels the community in which
they run. The relationship between master and slave
Web-services is regulated using the contract-net pro-
tocol (Smith, 1980) (Section 2.3).

One of the responsibilities of the master Web-
service is to attract Web services to sign up in the
community it heads using rewards (Section 2.3). As
a result, the master Web-service interacts with the
UDDI registries on a regular basis, so it gets to know
the latest changes in the content of these UDDI reg-
istries such as advertisements of new Web services.
Additional responsibilities of the master Web-service
are (i) to nominate the Web service that will partici-
pate as component in a composite Web service, and
(ii) to run the contract-net protocol before nominating
this Web service.

In a community, the master Web-service is desig-
nated in two different ways. The first way is to have
a dedicated Web service that will play the master role
during the whole time being of a community. This
Web service is independently developed (e.g., by ap-
plication designer) from other Web services that are
advertised in the UDDI registries. The Web service
leading a community never participates in any compo-
sition. Therefore, this Web service is only loaded with
community-management means. The second way is
to identify a Web service out of the Web services
that already populate a community. This identifica-
tion could happen on a voluntary basis or after run-
ning election between the Web services. Because of
the temporary no-participation restriction, the nomi-
nated Web service needs to be compensated by other
peers. The call for elections among the Web services
of a community regularly happens so, the burden on
the same Web services leading a community is ei-
ther minimized or avoided. Because Web services in
the second way of designating a master Web-service
need to be enhanced with extra functionalities that
are specifically dedicated to community management
(besides the functionalities these Web services offer),
we develop an independent Web service to play the
master role.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

324



2.3 Operation

The operation of a community revolves around com-
munity development, Web services attraction and re-
tention, and contract-net deployment.

Community development. A community of
Web services is primarily established to gather the
Web services that have the same functionality. This
is a designer-driven activity that occurs in two
steps. The first step is to define the functionality,
e.g.,FlightBooking, of the community by binding
to a specific ontology. This binding is crucial since
providers use different terminologies to describe the
functionality of their respective Web services. For
example,FlightBooking andFlightReservation
are about the same functionality.

The second step in the establishment of a com-
munity is to deploy the master Web-service that leads
the community and takes over the responsibilities we
listed in Section 2.2. One of these responsibilities is
to invite Web services to sign up in its community by
using rewards. It will be shown later that the surviv-
ability of a community depends, to a certain extent,
on the status of the existing Web services in this com-
munity. Another responsibility of the master Web-
service is to check the credentials of a Web service
before this latter gets admitted in the community. The
credentials could be related to QoS, protection mech-
anisms, etc. Credential checking can boost the secu-
rity level within a community as well as enhance the
trustworthiness level of a master Web-service towards
the slave Web-services of its community. We recall
that a master Web-service nominates the component
Web services for participation in compositions.

Dismantling a community of Web service is also
a designer-driven activity that happens upon request
from the master Web-service. This latter oversees all
the events in a community such as arrival of new Web
services, departure of some Web services, identifi-
cation of Web services to be part of composite Web
services, sanctions on Web services due to misbehav-
ior, etc. If the master Web-service notices that first,
the number of Web services in the community is less
than a certain threshold and second, the number of
participation requests in composite Web services that
arrive from users over a certain period of time is less
than another threshold, the community could be dis-
mantled. Both thresholds are set by the designer. The
Web services that will be ejected from a community
are invited to join other communities subject to as-
sessing the functionality similarity with other existing
communities’ functionalities. Table 1 summarizes the
role of both thresholds. For example, when the num-
ber of Web services in a community is ”high” but the

number of participation of these Web services in com-
position is ”low”, this means that the community has a
poor configuration. To remedy to that configuration,
some Web services with a low level of participation
are ejected from the community and other Web ser-
vices are invited to join the community.

Web services attraction and retention. Attract-
ing new Web services to a community and retaining
the existing Web services in a community fall under
the responsibilities of the master Web-service. We
discussed how a community could vanish if the num-
ber of Web services in this community drops below a
certain threshold (Table 1). On one hand, attracting
Web services drives the master Web-service to regu-
larly consult the UDDI registries looking for new Web
services. These latter could recently have been posted
on an UDDI registry or have seen their description
changed. Changes in a Web service’s description raise
challenges at the community level since a Web ser-
vice may no longer be appropriate for a community.
As a result, the Web service is invited to leave the
community. When a candidate Web service is iden-
tified in an UDDI registry according to its function-
ality, the master Web-service engages in interactions
with its provider (Fig. 1). The purpose of interactions
is to ask the provider to register its Web service with
the community of this master Web-service. Some ar-
guments that are used during interactions include the
high rate of participation of the existing Web services
in composite Web services, the short response-time in
handling user requests, etc.

On another hand, retaining Web services in a com-
munity for a long period of time is a good indicator of
the following elements: (i) although the Web services
in a community are in competition, they expose a co-
operative attitude, and (ii) a Web service is to a certain
extent satisfied with its participation rate in compos-
ite Web services. Web services attraction and reten-
tion shed the light on a third scenario, which concerns
Web services being asked to leave a community. A
master Web-service could issue such a request upon
assessment of the following criteria: (i) the Web ser-
vice has a new functionality, which does not perfectly
match the functionality of the community, and (ii) the
Web service is unreliable. In different occasions, the
Web service failed to participate in composite Web
services due to recurrent operation problems.

Contract-net deployment. In a community, in-
teractions between the master Web-service and the
slave Web-services are framed in accordance with the
contract-net protocol (Smith, 1980). The main pur-
pose of these interactions is to identify the slave Web-
service that will take part in a composite Web service.
The Contract-Net protocol (CN) is built upon the idea

WEB SERVICES COMMUNITIES - Concepts & Operations

325



Table 1: Community management.

Number of Web services in Comment Recommended Action
A community Compositions
Small High Efficient configuration Retain Web services and invite new ones
High Small Poor configuration Eject Web services with low participation

and invite new ones
Small Small Very poor configuration Dismantle community
High High Desired configuration Maintain same strategy

of contracting and subcontracting jobs between two
types of agents known as initiator and participant. At
any time an agent can be initiator, participant, or both.
The sequence of steps in the contract-net protocol
is as follows: (i) initiator sends a call for proposals
out to participants in relation to a certain job to carry
out; (ii) each participant reviews the call for proposals
and bids if interested (i.e., feasible job), (iii) initiator
chooses the best bid and awards a contract to that par-
ticipant, and finally (iv) initiator rejects other bids.

Mapping the contract-net protocol onto the oper-
ation of a community of Web services occurs as fol-
lows. When a user (through some assistance) selects
a community because it has the functionality that sat-
isfies her needs, the master Web-service of this com-
munity is automatically contacted. The objective is to
identify a specific Web service from the community,
which will be in charge of implementing this func-
tionality. The master Web-service sends a call for
bids out to all the slave Web-services about the im-
plementation of the functionality (CNStep1). The call
for bids always comes along with the non-functional
criteria that the user sets for selecting Web services
like response time and execution cost. Prior to getting
back to the master Web-service, the Web services as-
sess their status (Maamar et al., 2006) and check their
capacities of meeting these criteria (CNStep2). Only
the Web services that are interested in bidding con-
tact the master Web-service. This latter screens all the
bids before choosing the best one (CNStep3, e.g., Web
service’s execution cost and reliability meeting the
user’s requirements). The winning Web service is
then notified so, it can get ready for execution when
requested (CNStep3). The rest of the Web services
that expressed interest but were not selected, are also
notified (CNStep4).

3 PROTOTYPE DEVELOPMENT

We developed a prototype to illustrate the contract-net
protocol in a Web services community. The proto-
type uses XML for request and response specification

between users and Web services and between mas-
ter Web-services and slave Web-services, JDK 1.4 for
operation performance, and Eclipse 3.1 as an inte-
grated development environment. Currently, the pro-
totype tracks in a community the interactions between
a master Web-service and the slave Web-services with
emphasis on the slave Web-service that will take part
in a composition scenario. For illustration, we consid-
eredWeatherForecast functionality and a commu-
nity of four slave Web-service plus the master Web-
service. Each slave Web-service can only participate
in two compositions at a time.

Initially, Master-WeatherForecast-WS leads
WeatherForecast community. When it receives
a user request, Master-WeatherForecast-WS
broadcasts it to the members of the com-
munity. Upon receiving the request, each
Slave-WeatherForecast-WS assesses its cur-
rent commitments in terms of time slots prior to
showing any interest in the new user-request to
Master-WeatherForecast-WS (Fig. 2). For in-
stance, Slave-WeatherForecast-WS1 ignores the
user request because of its double, ongoing com-
mitments onMay 14, 2006 at 5:03:35 pm. This
does not apply toSlave-WeatherForecast-WS2,3,4;
they have no commitments so, they are willing to
take over the user request.

(a) Weather-1


 


Figure 2: Commitments ofSlave-WeatherForecast-WS1.

Once Slave-WeatherForecast-WSs’ availabil-
ities are known, Master-WeatherForecast-WS
uses for example the first-response strategy
to select a specific slave Web-service. Thus,
Slave-WeatherForecast-WS2 receives an accept
message andSlave-WeatherForecast-WS3,4 re-
ceive a not-accepted message. Once the messages
are received, eachSlave-WeatherForecast-WS
updates its records.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

326



4 CONCLUSION

In this paper, we presented our project on Web ser-
vices communities. A community gathers Web ser-
vices with similar functionalities. We addressed
several aspects including establishing/dismantling a
new/existing community, attracting new Web services
to an existing community, retaining existing Web ser-
vices in a community, and regulating the interactions
inside a community using the contract-net protocol.

REFERENCES

Benatallah, B., Sheng, Q. Z., and Dumas, M. (2003). The
Self-Serv Environment for Web Services Composi-
tion. IEEE Internet Computing, 7(1).

Maamar, Z., Benslimane, D., and Narendra, N. C. (2006).
What Can Context do for Web Services?Communi-
cations of the ACM, 49(12).

Medjahed, B. and Bouguettaya, A. (March 2005). A Dy-
namic Foundational Architecture for Semantic Web
Services.Distributed and Parallel Databases, 17(2).

Smith, R. (1980). The contract Net Protocol: High Level
Communication and Control in Distributed Problem
Solver. IEEE Transactions on Computers, 29.

WEB SERVICES COMMUNITIES - Concepts & Operations

327


