
A DESIGN PATTERN FOR AUTOMATIC GENERATION OF WEB
SERVICES FROM DOMAIN ONTOLOGIES

Robert Dourandish1, Nina Zumel1 and Michael Manno2

1Quimba Software, San Mateo, CA, USA

2Air Force Research Labs, Rome, NY, USA

Keywords: Distributed Systems, Automatic Systems, Ontology, Web Services, Service-Oriented Architecture,
Emergency Response, Syndromic Bio-Surveillance.

Abstract: Web Services and Service-Oriented Architecture have become ubiquitous and are increasingly embedded in
every aspect of systems architecture. At the same time, advances in workflow tools now enable us to
compose complex new applications by dynamically orchestrating existing web services in new and
previously unanticipated execution sequences. The combination of the two is slowly transforming software
engineering to a service-centric discipline, with the focus shifting from creating expansive systems to
building small, specialized services that can be sequenced, on demand, to support previously unanticipated
missions. Implementing and deploying specialized services in this way presents significant challenges in
design and programming, as well as long-term maintenance. A fundamental challenge is to maintain the
underlying program code long after it has been released and, potentially, incorporated in numerous other
processes. This paper presents a methodology and a design pattern to automatically generate web services
based on domain ontology. Our approach promises to significantly reduce the programming and
maintenance burden of creating and deploying web services, particularly in mission-critical, collaborative,
and distributed operations such as emergency response, supply-chain, or healthcare.

1 INTRODUCTION

For the past several years we have been researching
massively scaled, multi-organizational, automated
information sharing infrastructures, with a focus on
emergency response (Dourandish et al., 2006).
Emergency response is a uniquely challenging
example of a complex, distributed, and networked
eco-system because of the extremely broad range of
systems, technologies and resources of network
participants.

Specifically, we are focused on bio-surveillance
as a persistent information exchange during
everyday, emergency, or disaster healthcare support:
that is, whenever emergency help is summoned, or
when a patient seeks emergency or non-emergency
care from a health care provider. This type of
surveillance is known as syndromic surveillance:
surveillance using health-related data to signal that
there is sufficient probability of a disease outbreak
to warrant further public health response. Though
historically syndromic surveillance has been utilized

to target investigation of potential epidemics, its
utility for detecting outbreaks associated with
bioterrorism is also increasingly being explored by
public health officials (Buehler and Hopkins, 2004).

2 DOMAIN CHALLENGES

As a discipline, Emergency Response has a number
of unique properties that make software
development for the domain a challenging task.
Chief amongst these attributes is the fact that
emergency response is a collaborative operation that
often includes multiple organizations and disciplines
(Bruinsma and Hoog, 2006) such as a fire
department, an ambulance company, and one or
more hospitals. In addition, larger response
operations often require a coalition of responders
from multiple jurisdictions. As a result, each
response operation could be subject to multiple legal
regulations, local policies, or court-mandated
considerations (Bui et al., 2006). Furthermore, each

341
Dourandish R., Zumel N. and Manno M. (2007).
A DESIGN PATTERN FOR AUTOMATIC GENERATION OF WEB SERVICES FROM DOMAIN ONTOLOGIES.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 341-348
DOI: 10.5220/0001265703410348
Copyright c© SciTePress

participating response organizations, indeed each
responder, could have different operational
protocols, resources, or capabilities. It is clear that
enumerating all possible combination of responder,
legal or policy umbrellas, and operating protocols is
not feasible.

This domain therefore presents significant
programming and automation challenges. The
complexity is due to the heterogeneity of the overall
eco-system, and to the number of participants in a
typical emergency response network, who may be
called upon to handle a wide variety of possible
events. Such scenarios can range from common
events such as vehicle accidents, heart attacks,
gunshot wounds, or childbirth, to more catastrophic
events such as hazardous material release,
hurricanes, or earthquakes.

The key research question is how to implement
the domain knowledge in such a way that
implementations can easily be localized and be
contextually responsive (as much as possible) to the
broad nature and scope of emergency calls. While
these questions are universal to most domains, they
take on an added level of complexity for emergency
response:
• The domain is protocol driven. While these

protocols, such as how to treat a potential heart
attack patient, are reasonably standard, they can
differ slightly from location to location. These
variations are typically due to medical direction,
proximity to a major hospital, or legal issues.
Nonetheless, these local protocols are important
and any programming in this domain must
facilitate possibly many minor variations, even
within a small geographic area.

• The domain is governed by a large number of
local to global regulations dealing with a wide
range of policy issues such as privacy, legal
casework, and accepted local customs or
practices.

• Multi-jurisdictional collaboration during
emergency situations is often abruptly initiated,
staffed on an as-available, ad-hoc basis, and
without any guarantees that the joint coalition
response personnel have previously trained
together. In the case of international response,
the responder coalition may not share the same
protocols or the situational and operational
context in order to quickly adapt their own.

• The domain lacks a standard lexicon that is
shared by all participants.

The above attributes highlight the complexity of
programming for this domain. To address these
challenges our research focuses on knowledge-based
strategies, as opposed to requirements-based
engineering. Specifically we focus on methods of
encapsulating and utilizing expert knowledge as the
foundation of software specification and
implementation. To accomplish this objective, we
have further subdivided the domain into a set of
response protocols and a series of core operations to
support those protocols. We were able to take
advantage of this distinction to implement the
system as two components: (1) a foundational
platform, implementing core services, and (2) a
series of domain-level services that run on the
platform, e.g. the response protocols. The former
included basic messaging and transactional1 support
while the latter implemented expert knowledge.

3 FOUNDATIONAL PLATFORM

The foundational platform is based on a variation of
the portal architecture pattern coupled with a logical
specialized P2P network overlaid on a Service-
Oriented Architecture (SOA). This architectural
approach effectively creates distributed
collaborative P2P portals with specialized
applications, e.g. emergency response. Because data
exchange is a native component of the portal pattern,
the architecture can also enhance distributed data
mining in support of secondary applications such as
bio-surveillance. The Service-Oriented approach
also means that portals are able to contribute data to
other applications on as needed or ad-hoc basis.

Finally, the key issue in emergency response,
particularly multi-jurisdiction response to large
incidents, is Command and Control (Veelen et al.,
2006). We use a hierarchical network topology that
allows participants to assume roles of a "parent
node", or a "child node" within a given context. This
approach implements local Command and Control
(C2) of resources assigned to each node while
enabling creation of dynamic C2 as warranted, such
as in response to large-scale emergencies. Figure 1
shows the technology stack of the foundational
platform. The stack generically provides a platform
for messaging, data transfer, data privacy and
security, and computing (e.g. cluster) services.

A Service Oriented Architecture (SOA) was the

1 A detailed discussion of the transaction processing core of the platform is beyond

the scope of this paper. However, it should be noted that the transaction code conforms
to a typical transaction design pattern.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

342

only logical choice to create a common operational
environment that did not require a priori technical or
policy agreement between all participants.
Furthermore, the SOA was the only approach that
would allow all responders to use their existing
infrastructures, particularly the wide-area
connectivity afforded via the Internet. Using IP-
based networks inside the firewall, also a common
practice, allowed us to implement the services
without the need to distinguish where they were
running (e.g. inside or outside an organization’s
network) and secure the communication using
standard strategies such as VPN.

Figure 1: Foundational Platform Technology Stack.

Employing a Service-Oriented Architecture also
solves the challenge of duplicating the infrastructure
underpinnings, particularly with respect to ad-hoc
coalitions that are formed in response to specific
incidents. To become a part of a responder network
all an organization needs to do is to operate the stack
shown in Figure 1.

4 DOMAIN LEVEL SERVICES

Once system-level and deployment issues are
addressed through the Foundational Platform, what
remains is the domain-specific programming of
services that will be delivered over this network.

In our approach, a basic model of the domain is
implemented using ontologies, and various
strategies are used to create the context for an event
that occurs within the domain, and to determine the
appropriate way of handling that event. While this
approach has proven successful (Stojanovic et al.,
2004) our approach does not implement a single
ontology. Instead we chose to model the world using
numerous small models, each represented by a

different ontology. In doing so, we sought to extract
and express Subject Matter Expert (SME)
knowledge, in very specific and concisely-defined
areas, and use the resulting ontology in lieu of
engineering requirements for Web Service code.

5 DESIGN PATTERN

After researching various approaches to tightly
integrate ontologies with software engineering, we
created a logical design pattern as depicted in figure
2. The key attribute of this pattern is using XML as
the bridge between expert-designed ontologies and
engineer-implemented systems. This pattern is
designed for the domain layer (Fowler et al., 2003)
of the system and assumes an ontology editor tool
that is used by the Subject Matter Expert (SME) to
specify the Ontology. In our research we used
Protégé, an open source ontology editor and
knowledge acquisition system developed by
Stanford University.

The pattern illustrated in Figure 2 reflects a core
operational doctrine that domain experts should be
in full control of a service’s behavior. There are two
implications resulting from this choice. First,
various domain operations must be described in
small enough steps that are both manageable in
terms of ontology description and meaningful in
terms of operational deployment. Second, it is
possible to create a broad foundation that can
support SME-described ontologies. The emergency
response domain exhibits both these attributes:
Fundamentally, the domain is protocol-driven and
individual protocols are combined to compose more
complex protocols in response to particular
scenarios or authorized practice level of responders.
Within this domain, there is also a set of core
messaging and communications practices,
commonly referred to as the “10 codes” that largely
systemize the communication paradigm and provide
some level of lexical consistency amongst
responders2. In our research, we implemented the
“10 codes” using the foundational platform
previously described. Higher level response
operations are defined and executed in accordance
with the design pattern as follows.

2 This is an extremely broad statement. There are significant inconsistencies in use

of 10 codes from jurisdiction to jurisdiction.

A DESIGN PATTERN FOR AUTOMATIC GENERATION OF WEB SERVICES FROM DOMAIN ONTOLOGIES

343

Figure 2: Design Pattern.

The first step, (1), is for an expert to use an
ontology editor to define an ontology. This ontology
will eventually be transformed to an executable Web
Service, invoked by humans or machines, (7, 8)
through a normal Web Service interface, for
example via SOAP messages. The ontology editor
we used, Protégé, is capable of generating RDF-
based XML, which we further processed to achieve
a simpler syntax, (3). The domain ontology will
include the explicit components of workflow, (2),
for example protocol steps. The implicit workflow
elements, such as acknowledging command and
control messages, are implemented as part of the
foundational platform.

The XML representing domain knowledge and
protocol workflow steps are processed by our core
software, (4), which augments the XML with
references to implicit workflow steps, and
incorporates database or other references to include
explicit instances of domain components, such as
individuals, equipment, or locations. In computer
science terms, the core software packages the XML
into a series of appropriate objects (classes,
methods, etc.) organized using a transaction object.
The result of this step is a Web Service, (6), that is
executable over the solution platform. Invoking the
service will, in effect, execute the SME-defined
domain ontology.

6 AN EXAMPLE

The design pattern is exemplified through the
following “call for help” scenario. This example
demonstrates a call to a central location (911 in the
United States) that is typically contacted when help
is needed. The response protocol is used here to
illustrate the underlying principles of our research.

6.1 The Domain Ontology

Figure 3 above shows the 911 Call ontology. The
definition includes classes, such as Event and
subclasses, such as Medical Event, as well as other
relevant components for an emergency medical
response, such as personnel, the required level of
training, and what class of responders (e.g. Fire or
Ambulance or both) may respond to this type of
event.

6.2 The XML

As stated previously, the next step in our
methodology is to process the ontology into XML.
While the Protégé ontology development
environment is capable of producing XML
description of the ontology, we found it easier to
process it for clarity – the version that is discussed
here.

(1) <quimbaService name="911 Call">
(2) <metadata name="Event">
(3) <attribute name="EventID" />
 <attribute name="EventDateTime" />
 <attribute name="EventLocation" />
 <attribute name="ResponderType" />
 <attribute name="ResponseMode" />
(4) <datamap index="0" value= "this.EventID" />
(3a) <datamap index="1" value="Emergency" />
 <datamap index="2" value="this.EventLocation" />
 <datamap index="3" value="this.EventDateTime" />
</metadata>
(5) <metadata name="MedicalEvent" typeof="Event">
<attribute name="CaseID" />
<attribute name="PersonnelType" />
 <attribute name="CaregiverType" />
 <attribute name="EquimentType" />
 <attribute name="EndCode" >
 <default type="C2" code="Qxx" />
 </attribute>
 <datamap index="1" value="MedicalEvent" />
</metadata>
(6) <metadata name = "CareGiver">
(7) <attribute name="isPerson" />
(8) <attribute name="hasCertification" />

 <attribute name="hasAuthorizedPracticeArea" />
 <attribute name="hasSkills" />
 <attribute name="hasTraining" />
</metadata>

WEBIST 2007 - International Conference on Web Information Systems and Technologies

344

<metadata name="Responder">
 <attribute name="hasName" />
 <attribute name="hasEquipment" />
 <attribute name="hasResponseType" />
 <attribute name="hasResponseMode" />
</metadata>
(9a) <metadata name="EMT" typeof="CareGiver">
 <attribute name="hasCertification" value="EMT-
B" />
</metadata>

(9b) <metadata name="Paramedic" typeof="EMT">
 <attribute name="hasCertification" value="EMT-P" />
 <attribute name="hasTraining" value="EMT-B" />
</metadata>

(10) <metadata name = "FireCompany"
typeof="Responder">
 <attribute name="hasFirefighter" />
 <attribute name="hasCaregiver" typeof="CareGiver" />
 <attribute name="hasResponseArea" />
</metadata>
<metadata name = "AmbulanceCompany"
typeof="Responder">
 <attribute name="hasCaregiver" typeof="CareGiver" />
 <attribute name="ResponseType" value="Medical" />

</metadata>
(11) <metadata name ="CarAccidentWithInjury"
typeof="MedicalEvent">
 <ResponderType value="FireCompany" />
 <ResponderType value="AmbulanceCompany" />
 <PersonnelType value="Paramedic" />
 <ResponseMode value="Code3" />
(11a) <datamap index="1"
value="CarAccidentWithInjury" />
 <datamap index="4"
value="set(this.ResponderType)" />
 <datemap index="5"
value="set(this.PersonnelType)" />
 <datamap index="6"
value="set(this.EquipmentType)" />
</metadata>
(12) <protocol name="dispatch">
(13) <step num="1" id="s1" name="Get Information"
prompt="What is your Emergency" options="Event"/>
(15) <step num="2" id="s2" name="Dispatch

Responder"
(15a)Type="C2"
(15b) Code="Q09"
(15c) input="this.datamap" />
</protocol>
</quimbaService> <!-- //911 dispatch -->

Figure 3: Example Ontology Developed in Protégé.

A DESIGN PATTERN FOR AUTOMATIC GENERATION OF WEB SERVICES FROM DOMAIN ONTOLOGIES

345

The XML is enclosed in a tag, quimbaService (1)
that names the Web Service, e.g. 911_Call, as it will
be accessed. By convention any space in the service
name will be replaced with an underscore.

Next is a series of metadata (2) tags that
represent the classes defined by the ontology, as
well as their hierarchy and attributes (3). As per
Object Oriented Design standards, child classes
inherit their parents’ attributes. Parent attributes are
overridden if they also appear in the child’s
definition, as shown in (3a) and (11a). Each class
may have multiple parents. A subclass relationship
is signaled using the typeof directive, as shown
between Event (2), Medical Event (5), and Car
Accident with Injury (11). Some metadata elements
such as Care Giver (6) include higher-level
knowledge representation concepts such as a person
(7). It is important to note that the ontology is viable
and operable without such high level definitions.
However, since a responder can become a caregiver
and a patient as the event progresses, reasoning
about generic terms is useful. The implication here
of course is that the Subject Matter Expert designing
the ontology may need a bit of training or,
alternatively, may be teamed up with a knowledge
engineer. As with any domain, emergency response
includes several taxonomical concepts, such as the
hierarchy and certification levels for the Emergency
Medical Technicians (EMTs). The fact that a
certification is a requirement for an individual to be
considered a caregiver is expressed by a has
attribute (8), and the different skill levels are
expressed by combining hasCertificate and
hasTraining attributes in the metadata, as shown in
(9a) and (9b). The execution has two dimensions –
data and process, or steps. The data generated from
instantiating the ontology (i.e. applying it to a
particular 911 call) is collected using the datamap
tag (4). This tag mirrors the data filed in the
underlying transaction object that is implemented as
part of the foundational platform -- the data that is
contained in the transaction are, in effect, the
parameters that are passed from process to process
in order to affect the execution of the Web Service.
The second execution component, the process steps,
are enumerated using the step tag (13) which, as
shown, may include actual prompts that are
presented to the user or calls to the components of
the underlying platform (15). In this specific case,
the ontology designer is calling the underlying
Command and Control (“C2”) element (15a) of the
platform, invoking the dispatch protocol (15b), and
causing the instantiated data to be passed to it (15c).

When the service is executed, the underlying
platform will broadcast the dispatch request (“Q09”)
to all responders by creating a transaction and
passing it to a service that represents each
responder. Each responder service will evaluate the
data and determine whether or not it can respond to
this request (“transaction”) and report back
accordingly. The net result is that a responder is
dispatched as the result of the 911 call.

6.3 Executing the Ontology

To execute the ontology as represented by the final
XML, we currently deploy the XML to a web
service that implements a “service runner”. This
service runner is an interpreter and executes the
directives, much the same way a PHP interpreter
would execute PHP syntax. Each directive, such as
metadata, has a specific handler that is domain
independent. This interpreter does not understand
the emergency response domain, any more than the
PHP interpreter understands a particular application.
It simply collects, routes, and otherwise manages
data and message traffic amongst participating
nodes. These activities change the state of the
network – thereby producing actions. Because the
service-runner itself is a web service and since the
XML drives the entire execution process, the entire
system is accessible to any program that complies to
Service Oriented Architecture.

7 LESSONS LEARNED AND
FUTURE DIRECTION

An early phase of our research utilized ontologies as
requirements engineering instrument. In that mode,
the ontology was developed by a subject matter
expert, validated through the Protégé knowledge
base query mechanism, and supplied to a
programming team to generate the equivalent web
service. While this process initially worked well, we
quickly discovered that the two – the core Web
Services and the domain ontology – rapidly
diverged.

Fundamentally, the reason behind the divergence
was the fact that the two efforts, the ontology
development and the system engineering, were two
separate tasks with no physical relationship3.
Although a relatively small effort, the initial phase

3 We use the word “physical” to call attention to the fact that there was a logical

relationship between the two.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

346

of our research proved that if ontologies are to
significantly and seriously contribute to production-
grade, system-scale engineering effort, they must
become an integral part of the system, in the same
way as data models are. In the case of a data model,
a physical component, i.e. the database, binds the
data model with the system that uses it. There is no
such equivalence in knowledge engineering.

Our research has proven that it is possible to
generate Web Services directly from domain
ontologies designed by Subject Matter Experts.
While still in its infancy, this research has the
potential to significantly impact distributed
computing, at least in some domains, where
collaborating Service-Oriented components can be
generated based on domain ontologies. If proven
scalable, the work may lead to ushering of a new
paradigm in software development with a significant
shift to knowledge engineering as the foundation of
software design, with the potential of replacing
requirements engineering.

While we were extremely successful in
demonstrating automatic generation of web services
based on domain ontologies, the research also
revealed a number of challenges.

In our opinion the foundational challenge is the
lack of standard knowledge engineering
methodologies. We believe knowledge engineering,
as a discipline, needs a level of practicable
systemization similar to Object Oriented Design.
Lack of such accepted methodologies will not only
lead to repeat of the “islands of technology”
phenomenon that the community experienced with
databases and operating systems, but also will create
interoperability and utility issues. A key dictum of
any knowledge engineering methodology should in
our opinion be componentization and reuse – two
objectives the software engineering community is
now actively pursuing. Finally, knowledge
engineering, in our opinion, requires tools that can
be used by Subject Matter Experts with little or no
knowledge of programming.

Our research also revealed a number of
challenges that are unique to using knowledge as the
foundational driver for software: because services
are generated automatically, the ontology will have a
multiplying effect in either the utility or dysfunction
of the resulting code. As such, tools that simulate
ontologies and help “debug” the ontology are
extremely important (Easterbrook, 1991).
Furthermore, because Services are not collocated,
the distributed aspect of the system becomes a key
issue in operations that orchestrate existing web

services for a new purpose. As such, versioning,
audit, validation, and identity management take an
entirely new and complex role. Finally, because
different experts can have different views of the
world, an ontology conflict resolution mechanism
must be incorporated in the underlying platform.
Because we use numerous small ontolgies to model
the world, we also need to research conflict
resolution strategies. While the automation adds a
new level of complexity, this however is not a new
concept in computing (Easterbrook, 1991); (Klein,
1991); (Sycara, 1993); (Fang et al., 1993). The key
research challenge here is the real-time, mission-
critical aspect of conflict resolution.
Our immediate future direction is two-fold:

Our first goal is to study scalability issues in
both deployment and maintainability. There are, for
example, active questions in dealing with the
“weakest link” in an environment where the
operation being executed is orchestrating web
services that are not collocated. The key question
here is whether or not a mechanism can be created
to negotiate and maintain a level of service between
collaborating web services. If so, what does that
mechanism look like in practical terms? Can it be
automatically negotiated or do we need humans in
the loop, at least in parts of the process?

Secondly, we plan to study the next generation
of our service-runner that may generate Java classes
that are directly executable. To be a feasible
operational solution, the research would have to
address a number of additional challenges, ranging
from Java Virtual Machine (JVM) compatibility to
dealing with updates of statically linked code.

ACKNOWLEDGEMENTS

This work was supported in part by a Small
Business Innovation Research award from the US
Air Force, under contract number FA8750-05-C-
0085. The views and opinions presented in this
paper represent the views of the authors and do not,
necessarily, represent the views of the DoD.

REFERENCES

Dourandish, R., Zumel, N., Manno, M., “Automated
Military-Civilian Information Sharing”, Military
Communications Conference (MILCOM), 2nd IEEE
Workshop on Situation Management (SIMA),
Washington, D.C., 2006.

A DESIGN PATTERN FOR AUTOMATIC GENERATION OF WEB SERVICES FROM DOMAIN ONTOLOGIES

347

J. Buehler, W., Hopkins, R.S., Overhage, J.M, Sosin,
D.M., and Tong, V. “Framework for Evaluating
Public Health Surveillance Systems for Early
Detection of Outbreaks,” MMWR, 53(RR5):1, 2004.

Bruinsma, G., de Hoog, R., “Exploring Protocols for
Multidisciplinary Disaster Response Using Adaptive
Workflow Simulations”, Information System for
Crisis Response and Management, ISCRAM, Newark,
NJ, 2006.

Bui, Tung, Sankaran, S., “Foundations fro Designing
Global Emergency Response Systems”, Information
System for Crisis Response and Management,
ISCRAM, Newark, NJ, 2006.

Van Veelen, J.B., et. al, “Effective and Efficient
Coordination Strategies for Agile Crisis Response
Organizations”, Information System for Crisis
Response and Management, ISCRAM, Newark, NJ,
2006.

Easterbrook, S., “Handling Conflict Between Domain
Descriptions With Computer-Supported Negotiation”,
Knowledge Acquisition: An International Journal,
3:255-289, 1991.

Klein, M., Supporting Conflict Resolution in Cooperative
Design Systems, IEEE Transactions on Systems, Man
and Cybernetics, 21(6), 1991.

Sycara, K.P., Machine learning for intelligent support of
conflict resolution, Decision Support Systems,
10(2):121-136, 1993.

Fang, L., Hipel, K.W., and Kilgour, D.M., Interactive
Decision Making: The Graph Model for Conflict
Resolution, Wiley, 1993.

Fowler, M., et. al, “Patterns of Enterprise Application
Architecture”, Addison-Wesley, Boston, MA, 2003.

Stojanovic, L., et. al, “The role of ontologies in automatic
computing systems”, IBM Systems Journal, Vol 43,
No 3:598-616, 2004.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

348

