
GRID INFRASTRUCTURE ARCHITECTURE
A Modular Approach from CoreGRID

Augusto Ciuffoletti
CNAF, Istituto Nazionale di Fisica Nucleare, Via B. Pichat, Bologna, Italy

Antonio Congiusta
DEIS, University of Calabria, Via P. Bucci, Rende, Italy

Gracjan Jankowski, Michal Jankowski, Norbert Meyer
Supercomputing Department, PSNC, ul. Noskowskiego, Poznan, Poland

Ondrej Krajicek
Institute of Computer Science,Masaryk University Brno, Botanick, Brno, Czech Republic

Keywords: Grid Computing, Grid Information Service, Workflow Management, Checkpointing, Network Monitoring.

Abstract: The European Union CoreGRID project aims at encouraging collaboration among european research institutes.
One target of such project is the design of an innovative Grid Infrastructure architecture, specifically addressing
two challenging aspects of such entity: scalability and security. This paper outlines the results of such activity,
ideally extending the content of the official deliverable document (CoreGRID, 2006).

1 INTRODUCTION

According to (Foster et al., 2002), a Grid is a complex
architecture consisting of a collection of resources,
which are made available at user level through a num-
ber of services. Such definition opens the way to a
number offunctional components, whose definition
is of paramount importance for the design of a Grid:
their semantics anticipate the capability of a Grid to
make an efficient use of the resources it contains, to
offer differentiated levels of quality of service, and,
in essence, to meet user needs. Given the complex-
ity and importance of such infrastructure, its design
should address modularity as a primary feature: ser-
vices provided by the Grid infrastructure should be
precisely defined as for their interface and semantics,
and form an integrated architecture which is a frame-
work for their implementation. Modularity makes vi-
able the independent evolution of each component,
and allows the customization of the overall infrastruc-
ture.

In order to guarantee interoperability among com-
ponents,standardinterfaces are not sufficient. In fact,
the capabilities of a certain functional component
should be well understood, and agreed in the commu-
nity that develops other interoperating services: typ-
ical requirements address resource access, workflow
management, and security. Such semantics should be

compatible with the expected needs of the user, be it
a human or a Grid-aware application.

In addition, past experiences (Laure et al., 2006)
prove that there is a tradeoff between portability and
reuse of legacy tools: when functionalities that were
not designed for integration are included into an ex-
isting project, the whole project tends to inherit all
portability problems of the legacy parts. Aplugin ori-
entedapproach does not solve the problem, but tends
to complicate the design, and may even restrict porta-
bility.

Taking into account such problems, we indicate a
wrapper orientedapproach: legacy tools are not di-
rectly included in the design, but accessible through
interfaces that comply with portability requirements
of the hosting environment. The agent that imple-
ments such functionality (the “wrapper”) is in charge
of publishing portability issues that characterize the
specific resource.

One key issue in the design of a Grid environment
is the technology used to support the Grid Informa-
tion System (GIS). It is more and more evident that a
unique technology (for instance, a relational database)
cannot satisfy all needs, and may exhibit real scala-
bility limits in case of take off of the Grid technol-
ogy (BerkeleyDB, ). Here we propose a differentiated
strategy for such vital component, splitting its func-

46
Ciuffoletti A., Congiusta A., Jankowski G., Jankowski M., Meyer N. and Krajicek O. (2007).
GRID INFRASTRUCTURE ARCHITECTURE - A Modular Approach from CoreGRID.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 46-54
DOI: 10.5220/0001273100460054
Copyright c© SciTePress



tionality into a directory service, and a streaming sup-
port. The monitoring infrastructure provides input to
the GIS: we describe such infrastructure decomposed
into resource and middleware monitoring, workflow
monitoring and network monitoring.

Another key aspect of a Grid infrastructure is job
submission. According to the GGF guidelines in (Ra-
jic et al., 2004), we consider a unique component
that performs batch submissions, scheduling and local
queuing, workload monitoring and control. However,
such component needs support for checkpointing and
accounting, two activities that appear to require ca-
pabilities that need to be addressed specifically. We
introduce two components that implement such func-
tionalities.

The resulting Grid infrastructure should address
both the need of e-science applications, mostly ori-
ented to storage and computation intensive applica-
tions with moderate scalability, and emerging indus-
trial applications, where the demand is variegated and
includes the management of a large number of small
jobs: in this perspective, flexibility is mandatory to
allow customization.

Since we want to follow a clean design strat-
egy, we address interoperation and integration is-
sues since the early steps, using the GIS as a back-
bone. As a consequence, the adoption of a program-
ming style and tools that support polymorphism is
mandatory: the ”wrapper oriented” approach indi-
cated above helps on this way.

In Section 2 we indentify the functional compo-
nents, and in section 3 we consider a GIS which pro-
vides an integration backbone. In figure 1 we depict a
schematic view of our proposal.

2 FUNCTIONAL COMPONENTS
OF A FRAMEWORK
ARCHITECTURE

The focus of a Grid infrastructure is on resource man-
agement: the goal is to compose the operation of
basic services into higher level tasks. To this pur-
pose, the Grid infrastructure accepts and processes
task descriptions that articulate a stepwise composi-
tion of computing activities. The use of appropriate
basic services, whose availability is constantly moni-
tored by aResource Monitoringcomponent, is sched-
uled after unfolding the dependencies between atomic
computational tasks. Resource scheduling extends
not only in the name space, to determine which re-
source is to be used, but also in time, describing when
a certain resource will be busy on a certain task.

The operation of assembling resources in order to
perform a complex task is associated to theWorkflow
Analyzercomponent, whose role is to accept the oper-
ational description of a complex task, to manage, and
to monitor its unfolding. The unfolding of a work-
flow must be sufficiently flexible, in order to cope
with unanticipated events that may affect resources,
either improving or degrading their performance. The
appropriate way to cope with such events is the logis-
tic re-organization of workflow execution, which usu-
ally entails the displacement of stateful computations,
by re-instantiating services whose state corresponds
to an intermediate computational step.

Two basic functionalities are offered: the registra-
tion of a snapshot of an intermediate state of a ser-
vice, and the re-instantiation of the same service with
the given intermediate state. All resources in a work-
flow participate to such reorganization, and the re-
sulting workflow execution must be consistent with
the expected semantics. TheCheckpoint Manager
component is in charge of supporting the logistic re-
organization of a workflow, preserving the relevant
state information of a component services in prepa-
ration for the reconfiguration of the supporting low
level services. Specific checkpointing indications are
inserted in the operational description provided to the
Workflow Analyzer.

Since resources are similar to goods, their sharing
must be controlled accordingly, taking into account
property and commercial value. In that sense, the
Grid infrastructure provides identities to Grid users,
and defines service semantics according to the iden-
tity of the user, thus enforcing individual property.
Using the same tools, the usage of a certain service
is quantified, and a commercial value associated with
it. TheUser and Account Managementcomponent is
appointed with such aspects.

The whole Grid infrastructure hinges upon the
Grid Information System(GIS), which supports the
integration between the parts of this distributed en-
tity. From an abstract point of view, the content of the
Grid Information System represents the state of the
Grid, and is therefore dynamic. However, while some
data remains constant for long periods of time, other
are updated frequently, for instance when such infor-
mation represents the residual (or preemptable) share
of a resource.

The activity of a component is pervasive, and
many distinct agents contribute to its implementa-
tion: for instance, each site can provide a Work-
flow Analyzer agent in charge of accepting user re-
quests. Such approach fits naturally with security re-
quirements, which are based on mutual identification
among agents.

GRID INFRASTRUCTURE ARCHITECTURE - A Modular Approach from CoreGRID

47



Functional components Descriptors GISStreams

− Job descr.

− Workflow descr.
− Session descr.

U
se

r In
te

rfa
ce

− Environment descr.

− Session descr.

− Session descr.

− Session descr.

− Resource descr.

− User descr.

− Job descr.

− Session descr.
− Workflow descr.

− Ckpt provider descr.
− Ckpt image descr.

− Job descr.

− Ckpt provider descr.
− Ckpt image desc.

− Job descr.

G
rid

 In
fo

rm
a

tio
n

 S
e

rvice

Analyzer
Workflow

Checkpoint
Manager

User/Account
Management

Resource
Monitoring

Figure 1: Integration between the functional components of our framework. Eachcomponent.is a distributed entity that
contributes to resource management exchangingdescriptorswith other components. Persistent information flows are encap-
sulated intostreams, represented bysessiondescriptors).

Here we give a summary of the functionalities
each component offers, and we outline their internal
structures: we use as a reference the work of the part-
ners of the CoreGRID Institute on Grid Information,
Resource and Workflow Monitoring.

2.1 Workflow Analyzer

The Workflow Analyzer cares about workflows man-
agement under several aspects such as mapping,
scheduling, and orchestration of workflow tasks
against the available, dynamic Grid resources. To
such purpose, it has close interaction with the Grid
Information System in order to discover and allocate
appropriate resources. But, at the same time, it is also
a source of information coming from the monitoring
of the workflows being executed: most of such infor-
mation is reused by the Workflow Analyzer itself for
adjusting the ongoing executions.

A Grid workflow can be specified at different lev-
els of abstraction: in (Deelman et al., 2003)abstract
workflowsandconcrete workflowsare distinguished,
the difference being whether resources are specified
through logical files and logical component names or
through specific executables and fully qualified re-
sources or services. According to this approach the
workflow definition is decoupled from the underlying
Grid configuration.

For this reason, the mapping phase (also referred
to as matchmaking) is particularly important for se-
lecting the most suitable resources that better satisfy
the constraints and requirements specified in the ab-
stract workflow, also with regard to quality of service
and workload. The mapping process produces a con-
crete workflow that is suitable to be executed by a
workflow engine, providing for scheduling and exe-
cution management capabilities. It is worth observ-
ing that, in case of dynamic scheduling, it is possible

WEBIST 2007 - International Conference on Web Information Systems and Technologies

48



to re-invoke the mapping process at runtime, in order
to modify the concrete workflow instance as a result
of relevant events modifying the status of candidate
resources.

However, it is important to instrument job descrip-
tions before actual execution, in order to ensure that
the workflow execution is suitably checkpointed: suc-
cinct requirements about workflow recoverability are
in the Workflow description provided by the user.

When the workflow enters the running state, the
Workflow Analyzer monitors its advancement, and
takes appropriate actions in response to relevant
events. During the workflow execution, monitoring is
essentially related to the observation of the workflow
status. In particular, information about the execution
of each single job included in the overall workflow is
reported by the monitoring system. Typical informa-
tion is constituted by services execution status, fail-
ures, progress, performance metrics, etc.

In case of failure, the workflow execution service
itself tries to recover the execution, for example by re-
assigning the work to a different host in case of host
failure. To implement fault tolerance on a more re-
fined extent, it is necessary whenever possible to trig-
ger checkpoint recording, and drive the restart of one
or more jobs from the last available checkpoint. The
decision whether to checkpoint or restart a workflow
is made on the basis of information from Resource
monitoring.

2.2 Checkpointing

The Checkpointing component is built around the
idea of Grid Checkpointing Architecture (Jankowski
et al., 2006; Jankowski et al., 2005), a novel concept
that defines Grid embedded agents and associated de-
sign patters that allows the integration of a variety of
existing and future low-level checkpointing packages.

The emphasis has been put to make the GCA able
to be integrated with other components and especially
with the upper layer management services, for in-
stance the Grid Broker or the Workflow Analizer. The
main idea of the GCA boils down to provide a number
of Checkpoint Translation Services (CTS) which are
treated as drivers to the individual low-level check-
pointing packages. The CTSes provide a uniform
front-end to the upper layers of the GCA, and are cus-
tomized to the underlying low-level checkpointers.

When the CTS is deployed on a Computing Re-
source, the GCA has to be informed about its exis-
tence. To fulfill this requirement each CTS is regis-
tered at component named Grid Checkpointing Ser-
vice (GCS), and the GCS further exports the infor-
mation about the available CTSes and related proper-

ties to the GIS, so that the GIS becomes the mech-
anism that connects the GCA with the external Grid
environment. Additionally, from the point of view of
the Workflow Analyzer, the GCS is the gateway to
which a checkpoint request has to be sent. When the
GCS receives the request of taking the checkpoint of
a given job, it forwards the request to the appropriate
CTS. The GCS is able to find the adequate CTS using
the information that the execute-job-wrapper registers
when a checkpointable job is started.

The execute-job wrapper is a special program pro-
vided together with an associated CTS. The compo-
nent that is in charge of submitting the user’s job to
the given Execution Manager replaces the actual job
with the adequate execute-job wrapper and passes to
the second the original job and the global identifier
assigned to this job. Which execute-job wrapper is to
be used depends on which CTS has been matched to
the job’s requirements, according with GIS records.
When the execute-job wrapper is started it appro-
priately configures the GCA environment and finally
with help of exec() syscall replaces itself into the orig-
inal job.

When the Workflow Analyzer decides that a given
job is to be recovered, then the job has to be resubmit-
ted in an adequate way: one relevant issue is that the
job can be resubmitted only to a Computing Element
associated with a CTS of the same type that was used
to checkpoint the job. When a proper Computing El-
ement is found the job is resubmitted to it, but instead
of resubmitting the original job itself the recovery-
job-wrapper is resubmitted. The original job, as well
as the identifier of the checkpoint that is to be used in
the recovery process, are passed to the recovery-job-
wrapper as the arguments.

The recovery-job wrapper is the counterpart of the
execute-job wrapper used for the recovery activity.
The recovery-job wrapper starts fetching the image,
and the subsequent actions are similar to those per-
formed by the execute-job wrapper. As a last step, the
recovery-job wrapper calls the appropriate low-level
checkpointing package to recover the job using the
image indicated by the calling Workflow Analyzer.

The GCA shares the motivations of the Grid
Checkpoint and Recovery working group of the GGF
(Stone et al., 2005), which is to include the check-
pointing technology into the Grid environment. How-
ever, the GCA focuses mainly on legacy checkpoint-
ing packages and, notably those that are not Grid-
aware, while the GridCPR ”is defining a user-level
API and associated layer of services that will permit
checkpointed jobs to be recovered and continued on
the same or on remote Grid resources”. Therefore,
while GridCPR works on a specification that future

GRID INFRASTRUCTURE ARCHITECTURE - A Modular Approach from CoreGRID

49



Grid applications will have to adhere to in order to
make them checkpointable, our effort is towards the
integration of existing products into a complex frame-
work.

2.3 User and Account Management

The User and Account Management component
(Denemark et al., 2005) offers a controlled, secure
access to grid resources, complemented with the pos-
sibility of gathering data from resource providers in
order to log user activity for accounting and audit-
ing purposes. These objectives are realized introduc-
ing authorization, ensuring an appropriate level of job
isolation and processing logging data. Avirtual envi-
ronmentencapsulates jobs of a given user and grants
a limited set of privileges. Job activity is bound to
a user identity, which is qualified as a member of an
organization.

The User and Account Management component is
a pluggable framework, that allows combining differ-
ent authorization methods (e.g. gridmap file, banned
user list, VO membership based authorization) and
different implementations of environments (virtual
accounts, virtual machines, and sandboxes). The con-
figuration of the framework is quite flexible and de-
pends on detailed requirements which may vary be-
tween the resources, so the administrators may tune
local authorization policy to the real needs and abili-
ties.

The internal architecture of an agent consists of
3 modules: an authorization module, a virtual envi-
ronment module and a virtual workspace database.
The authorization module performs authentication
first (based on existing software, such as Globus GSI).
The authorization is done by querying a configurable
set of authorization plugins. The virtual environ-
ment module is responsible for creation, deletion and
communication with virtual environments modeled as
Stateful Resources. The module is also pluggable,
so it is possible to use different implementations of
VE. The database records operations on the virtual
environments (time of creation and destruction, users
mapped to the environment, etc.). These records to-
gether with the standard system logs and accounting
data, provides complete information on user actions
and resource usage.

2.4 Resource Monitoring

The information on resources and accompanying
middleware is provided by the Resource Monitor. Re-
source Monitor component collects data from various
monitoring tools available on the grid. We do not pre-

sume any particular monitoring approach, since the
current state of the art provides quite wide range of
monitoring toolkits and approaches. It is however
a difficult task to integrate and process monitoring
information from various monitoring tools. More-
over, we cannot assume any scale of the resulting in-
frastructure thus scalability of the proposed solution,
both in terms of amount of monitored resources and
required processing throughput for monitoring data,
must be emphasized.

To achieve the desired level of scalability, with se-
curity and flexibility in mind, we propose the design
of a Resource Monitor based on the C-GMA (Kra-
jicek et al., 2006) monitoring architecture. C-GMA is
a direct extension of the GMA (Tierney et al., 2002)
specification supported by the Open Grid Forum.

The key feature supplied by the C-GMA is the in-
troduction of several metadata layers associated with
services, resources and monitoring data. The meta-
data may specify the data definition language used
by the services, the non-functional properties and re-
quirements imposed by the services and resources
(such as security and QoS-related requirements) and
others. The metadata are used in thematchmak-
ing process implemented by the C-GMA architecture,
which is essentially a reasoning on provided metadata
about the compatibility of the services and data de-
scribed by them. When the examined parties are con-
sidered compatible, the “proposal” is sent to them to
initiate a potential communication. In this way, and
with the introduction of various translation compo-
nents, the C-GMA architecture enables the exchange
of monitoring data between various monitoring ser-
vices.

The Resource Monitor service leverages this func-
tionality by connecting to the C-GMA monitoring ar-
chitecture and using translation services for various
monitoring toolkits it collects the monitoring data and
supplies them to the Grid Information System.

Special attention is paid to Network Monitor-
ing, since scalability issues appear as challenging.
We have identified one basic agent, the Network
Monitoring Element, which is responsible of imple-
menting the Network Monitoring Service (Ciuffo-
letti and Polychronakis, 2006). Network Monitoring
Elements (NMEs) cooperate in order to implement
the Network Monitoring component, using mainly
lightweight passive monitoring techniques. The ba-
sic semantic object is Network Monitoring Session,
which consists in the measurement of certain traf-
fic characteristics between the Domains whose NMEs
participate in the session.

To improve the scalability of the Network Moni-
toring Service, the NMEs apply an overlay Domain

WEBIST 2007 - International Conference on Web Information Systems and Technologies

50



partition to the network, thus decoupling the intra-
domain network infrastructure (under control of the
peripheral administration), from the inter-domain in-
frastructure (meant to be out of control of the periph-
eral administration). According to the overlay domain
partitioning network, monitoring sessions are asso-
ciated to Resources denoted as Network Elements
(NE), corresponding to inter-domain traffic classes.

The overlay domain partition is maintained in an
internal distributed database, which allows the coor-
dination among Network Monitoring Elements. The
management of network monitoring sessions includes
the control of periodic sessions, as configured by net-
work administrators, and of on-demand sessions dy-
namically configured by applications, and uses a scal-
able peer to peer mechanism to diffuse updates.

3 INTEGRATION BETWEEN
FUNCTIONAL COMPONENTS

The central idea of the proposed architecture is to con-
vey all the data through the Grid Information Service
in order to have a standard interface across the differ-
ent administrative sites and services (see (Aiftimiei
et al., 2006; Andreozzi et al., 2005) for a similar ap-
proach).

One relevant feature of a data repository, and of
the Grid Information System, is the volatility of its
content. At one end we find “write once” data, that
are not subject to update operations and have a rela-
tively low volatility. At the other hand we find data
that are frequently updated. The functionality associ-
ated to the Grid Information System is a mix of both:
while certain data, like a Workflow description, fall
in the “write-once” category, other kind of data, like
resource usage statistics, fall into the category of data
that are frequently updated: a solution that devises a
common treatment for both kinds of data suffers of a
number of inefficiencies, first the lack of scalability.

Therefore our first step is to recognize the need of
distinct solutions for persistent and for volatile data.
One criteria to distinguish the two kinds of data is
the length of the time interval during which the infor-
mation remains unchanged, under normal conditions.
Here we assume that a significant threshold is given
by the typical job execution time: we consider as per-
sistent those pieces of information that, under normal
conditions, remain valid during the execution of a job.
We call such informationsdescriptors: starting from
the specifications of the components that compose our
framework given in previous sections, we now clas-
sify the descriptors that are exchanged among them,
and that collectively represent the persistent content

of the Grid Information System.

Workflow descriptor It is acquired from a user in-
terface by the Workflow Analizer component. It
has the function of indicating the stepwise orga-
nization of a Grid computation. It contains high
level indications about the processing requested
at each step, as well as dependencies among in-
dividual steps. It should be designed in order to
hide all unnecessary details, for instance pack-
age names or versions, and focus on the func-
tionality (for instance, “fast fourier transform”, or
“MPEG4 compression”). During workflow ex-
ecution, such structure is used by the Workflow
Analizer component in order to monitor workflow
execution.

Job descriptor It is produced by the Workflow Anal-
izer component, and fed to various other compo-
nents: it is used by the Checkpointing compo-
nent in order to prepare the execution environment
with checkpointing facilities, and by the User and
Account Management component in order to as-
sociate an appropriate environment to its execu-
tion. The Job description is used by the Workflow
Analizer component in order to instruct resources
about their activity, and during workflow execu-
tion, to monitor workflow advancement.

Checkpoint Image Descriptor It is produced by the
Checkpointing component (in case of the GCA,
this descriptor is produced by the CTS) upon
recording a new checkpoint. The descriptor con-
tains the bookkeeping data regarding the newly
created image. The data can be used by the Work-
flow Analizer in order to find the identifier of the
image that is to be used in order to perform recov-
ery and migration. The GCA itself, basing on the
descriptor, is able to fetch the image to the node
on which the given job is to be recovered.

Checkpoint Provider Descriptor It is produced by
the Checkpointing component. The descriptor ad-
vertises the location of service that provides ac-
cess and unified interface to a particular low-level
checkpointing package. The Workflow Analizer
uses such descriptior to find the node that provides
the desired checkpointing package, as specified in
job descriptor. Upon recovery, the descriptor al-
lows finding the nodes offering the same package
used for checkpointing.

Session descriptorIt is produced by a generic com-
ponent, and supports the exchange of volatile
data, as described below.

User descriptor It is produced and used by the User
and Account Management component. It contains
a description of a user, like its name, institution,

GRID INFRASTRUCTURE ARCHITECTURE - A Modular Approach from CoreGRID

51



reachability, role, as well as security related data,
like public keys. The Workflow Analysis compo-
nent uses such data to enforce access restrictions
when scheduling a Workflow.

Environment descriptor It is produced and used by
the User and Account Management component.
It contains references to he descriptions of the re-
sources associated to a given processing environ-
ment, as well as the access modes for such re-
sources. This may correspond, for instance, to
what is needed to run a specific kind of job, and
to the identities of the users that are allowed to
operate within such environment. The Workflow
Analysis component uses such data in order to
process a workflow description.

Resource descriptor It represents usual resource de-
scriptions, including storage, processing, network
and network monitoring elements. The identifica-
tion of a resource includes its network monitoring
domain. The Workload Analyzer uses such de-
scriptions in order to schedule job execution, and
allocate checkpoint storage.

The management ofdescriptors relies on a
directory-like structure. Such structure cannot be con-
centrated in replicated servers, but distributed in the
whole system based on local needs. Functional com-
ponents that need to have access to such data should
address a proxy, which makes available the requested
information, or add/delete a descriptor. An LDAP
directory provides a first approximation of such en-
tity: however, descriptors are not organized hierarchi-
cally. A better alternative is an adaptive caching of
those descriptors that are considered locally relevant:
for instance, the descriptor of a monitoring session
might be cached in a GIS proxy near the monitored
resource. Descriptors are diffused in the system using
a low footprint, low performance broadcast protocol,
and cached wherever needed.

The volatile data is represented by data that
change during the execution of a job: a typical ex-
ample is the workload of a computing element. Such
data are produced by one of the components de-
scribed in the previous section, and made available
to a restricted number of other components. The
storage into a globally accessible facility, included
a distributed relational database, seems inappropri-
ate since the information is usually transferred from a
source to a limited number of destinations. The con-
cept that is usually applied to solve such kind of prob-
lems is the multicast.

A multicast facility appropriate for diffusing
volatile data of a Grid Information System has many
points in common with a Voice over IP infrastructure:

the container of the communication is similar to a Ses-
sion (as defined in the SIP protocol). In contrast with
a typical VoIP application, the data trasfer within a
session in mainly uni-directional and requires a low
bandwidth with moderate real time requirements: we
call streamsthe information flows associated to the
trasport of volatile data within a Grid Information
System.

All of the components outlined in section 2 are
able to initiate or accept a session with another com-
ponent: security issues are coped with using the de-
scriptors associated with the agents. E.g., a Resource
will accept a call only from a Workflow analyzer that
submitted a job. Here we outline some of the relevant
streams:

Resource usage streamIt is originated by a re-
source, like a Storage Element, and summarizes
the performance of the resource, as well as the
available share of it. Typical callers are the Work-
flow Analyzer, either during the resource selection
or the execution phase.

Workflow advancement stream It is originated by a
Workflow Analyzer component, and reports the
caller about the workflow advancement. Typical
callers are user oriented interfaces.

One characteristic of a session, that makes it not
interchangeable with a directory service, is that the
establishment of a session has a relevant cost, which is
amortized only if the session persists for a significant
time interval. For this reason we include sessions in
the number of entities that have a descriptor recorded
in the Grid Information Service.

Such descriptor advertizes the existence of a given
session: it is a task of the callee to create and make
available an appropriateSession descriptor, as out-
lined above. Sessions can be activated on demand,
or be permanently available: such option depends on
the balance between the workload needed to activate
a new session on demand, and of keeping it warm for
connection. E.g., Network Monitoring sessions will
be mostly activatedon demand, while Storage usage
statistics can be maintained permanently active.

4 COMPARISON WITH OTHER
WORKS

The architecture we propose takes into account the
goals and achievements of a number of scientific, as
well as industrial projects that accepted the challenges
proposed by the design of an effective grid infrastruc-
ture.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

52



One outstanding project which is being developed
to meet the requirements the scientific community is
gLite: it is developed within the European EGEE
project, the successor of DATAGRID. Its purpose is to
capitalize tools and experience matured in the course
of DATAGRID, in order to assemble a Grid infrastruc-
ture usable for high performance computation, first
the LHC experiment on schedule for the next year.

We consider gLite (Laure et al., 2006) as a pre-
cious source of experience about a real scale Grid en-
vironment. We considered as relevants the inclusion
of a number of features that are not considered, or
considered at an embrional level, in gLite. Namely,
we introduce a specific component that takes into ac-
count job checkpointing, we adopt a more powerful
workflow description language (but gLite is working
towards a DRMAA (Rajic et al., 2004) compliant in-
terface), we take into account the task of workflow
monitoring under scalability requirements, also con-
sidering networking resources, we differentiate the
functionality of the GIS into a high latency direc-
tory service, and a multicast real-time streaming ser-
vice. Overall, with respect to gLite, we considered the
need for a wide portability: although such problem
is not overly relevant for the environment for which
gLite has been developed, we considered it relevant
in a broader scope. To improve portability we sug-
gest the realization of an integrated framework for the
whole infrastructure, hosting legacy components en-
capsulated in specific wrappers.

With respect to implementations based on the DR-
MAA proposed standard (Rajic et al., 2004) we con-
sider the interactions between Resource Management
and Checkpointing, since we observe that the re-
source management is the component in charge of in-
structing the resource about activities relevant to re-
covery and relocation of running jobs. Therefore we
describe an interface between a component in charge
of managing a transparent management of check-
points, and another in charge of interpreting user re-
quests.

The N1GE by Sun (Bulhes et al., 2004) is consid-
ered as a relevant representative of the industrial effort
towards the implementation of a Grid infrastructure.
Such project recognises the problems arising from the
adoption of a monolythic relational database, and ad-
heres to the DRMAA standards as for job descrip-
tions. In order to overcome scalability limits imposed
by a monolythic databases, it adopts a more flexible
commercial database, Berkeley DB (BerkeleyDB, ).
In our proposal we identify the kind of services of
interest for our infrastructure, and indicate comple-
mentary solutions, that cannot be assimilated to a re-
lational database. This should improve scalability and

resource usage.
The focus of the GPE (Ratering, 2005) prototype

by Intel is to bridge users from non-Grid environ-
ments, and to provide an interface that will remain
sufficiently stable in the future, shielding the user
from the changes of a still evolving middleware tech-
nology. Therefore the focus is on the provision of
a powerful interface that adapts to several kinds of
users. In order to take advantage of legacy tools,
like UNICORE (UNICORE, 2003), security issues
are delegated to a specific component, the Security
Gateway, that enfoces a secure access to sensitive re-
sources. In our view this is a source of problems,
since the presence of a bottleneck limits the perfor-
mance of a system. Instead, we indicate a pervasive
attention to security issues, in order to implement ap-
propriate security issues inside each agent.

We pay special attention to a Grid resource that
is often overlooked: the network infrastructure. Such
resource is difficult to represent and to monitor since,
unlike other resources, its complexity grows with the
square of system size. Yet this resource has a vital role
in a distributed system as a whole, since its availabil-
ity determines its performance, and directly reflects
on jobs performance.

5 CONCLUSIONS

CoreGRID is an European project whose primary
goal is to foster collaboration among european orga-
nizations towards the definition of an advanced Grid
architecture. One of the tasks that contributes to this
achievement is targeted at the description of anInte-
grated Framework for Resource and Workflow Moni-
toring. In order to enforce integration since the early
steps, the research and development activities from
several research groups are included in the same con-
tainer, with frequent and planned meetings.

This paper presents an early result on this way, af-
ter two years from the beginning of the project. We
have tried to understand the problems left opened by
other similar initiatives, specifically aiming at scal-
ability and security issues, and identified the actors
inside our framework. The research groups have pro-
duced relevant results for each of them that are only
summarized in this paper; instead, we focus on the
integration among such actors, based ondescriptors
advertised in theGrid Information Service.

GRID INFRASTRUCTURE ARCHITECTURE - A Modular Approach from CoreGRID

53



ACKNOWLEDGEMENTS

This research work is carried out under the FP6 Net-
work of Excellence CoreGRID funded by the Euro-
pean Commission (Contract IST-2002-004265).”

REFERENCES

Aiftimiei, C., Andreozzi, S., Cuscela, G., Bortoli, N. D.,
Donvito, G., Fantinel, S., Fattibene, E., Misurelli,
G., Pierro, A., Rubini, G., and Tortone, G. (2006).
GridICE: Requirements, architecture and experience
of a monitoring tool for grid systems. InProceedings
of the International Conference on Computing in High
Energy and Nuclear Physics (CHEP2006), Mumbai -
India.

Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Ru-
bini, G., Tortone, G., and Vistoli, C. (2005). GridICE:
a monitoring service for Grid systems.Future Gener-
ation Computer Systems Journal, 21(4):559–571.

BerkeleyDB. Diverse needs, database choices. Technical
report, Sleepycat Software Inc.

Bulhes, P. T., Byun, C., Castrapel, R., and Hassaine, O.
(2004). N1 grid engine 6 – features and capabilities.
Technical report, SUPerG.

Ciuffoletti, A. and Polychronakis, M. (2006). Architecture
of a network monitoring element. Technical Report
TR-0033, CoreGRID.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,
Cavanaugh, R., and Koranda, S. (2003). Mapping
abstract complex workflows onto grid environments.
Journal of Grid Computing, 1(1):25–39.

Denemark, J., Jankowski, M., Matyska, L., Meyer, N.,
Ruda, M., and Wolniewicz, P. (2005). Usermanage-
ment for virtual organizations. Technical Report TR-
0012, CoreGRID.

Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002).
The physiology of the grid: An open grid services ar-
chitecture for distributed systems integration.

Jankowski, G., Januszewski, R., Mikolajczak, R., and Ko-
vacs, J. (2006). Grid checkpointing architecture - a re-
vised proposal. Technical Report TR0036, CoreGRID
- Network of Excellence.

Jankowski, G., Kovacs, J., Meyer, N., Januszewski, R., and
Mikolajczak, R. (2005). Towards Checkpointing Grid
Architecture. InPPAM2005 proceedings.

Krajicek, O., Ceccanti, A., Krenek, A., Matyska, L., and
Ruda, M. (2006). Designing a distributed mediator for
the C-GMA monitoring architecture. InIn Proc. of the
DAPSYS 2006 Conference, page to appear, Innsbruck.

Laure, E., Fisher, S., Frohner, A., Grandi, C., Kunszt, P.,
Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White, J.,
Barroso, M., Buncic, P., Hemmer, F., Meglio, A. D.,
and Edlund, A. (2006). Programming the grid with
glite. Technical Report EGEE-TR-2006-001, EGEE.

Rajic, H., Brobst, R., Chan, W., Ferstl, F., Gardiner, J.,
Haas, A., Nitzberg, B., and Tollefsrud, J. (2004).
Distributed resource management application API
specification. Technical report, Global Grid Fo-
rum. http://www.ggf.org/documents/GWD-R/GFD-
R.022.pdf.

Ratering, R. (2005). Grid programming environment (GPE)
concepts. Technical report, Intel Corporation.

Stone, N., Simmel, D., and Kielmann, T. (2005). An ar-
chitecture for grid checkpoint and recovery (gridcpr)
services and a gridcpr application programming inter-
face. Technical report, Global Grid Forum. draft.

Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M.,
Taylor, V., and Wolski, R. (2002). A grid monitoring
architecture. Technical Report GFD 1.7, Global Grid
Forum.

UNICORE (2003). UNICORE plus final report. Technical
report, BMBF Project UNICORE Plus.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

54


