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Abstract: In this paper we show how to efficiently integrate traditional GIS data into terrain models in order to 
generate complete 3D maps with little overhead for textures. The results meet the requirements for the Web 
3D Service (W3DS), a proposal for the standardization for delivering 3D web maps. Our approach is 
designed to create fully vectorized 3D scenes that deliver the best possible quality and do not require 
dynamic texture generation and handling. We describe the mesh operations for integrating polygonal GIS 
data like forests, parks, buildings blocks, or streets into the terrain mesh and compare the results with a 
texture based approach. 

1 INTRODUCTION 

In recent years much effort has been invested into 
the standardization of 3D GIS (Geographical 
Information Systems) solutions and to make them 
suitable for web applications. The Open Geospatial 
Consortium (OGC) plays a major role in this 
standardization process and has already issued a 
range of specifications for GIS web services, e.g. a 
Web Map Service (WMS) or Web Feature Service 
(WFS). Currently the foundations for exchanging 3D 
GIS related data structures and graphics over 
internet protocols are being discussed and first 
solutions implemented. The new specifications and 
recommendations include a Web 3D Service (W3DS 
- OGC 2005) which delivers 3D map display  
elements that can be explored in real time by any 
web client, and an information rich data exchange 
model (CityGML - Kolbe et al. 2005) that is 
specifically designed for 3D city models.  The latter 
incorporates not only the geometrical description but 
also semantic information of typical GIS objects. 

In order to make a 3D Spatial Data Infrastructure 
(SDI) work, which is the eventual goal of our 
activities, it is not sufficient to agree on the technical 
interfaces. A major research topic is related to the 
integration and preparation of various data coming 
from different sources. This refers to the automatic 

assembly of different Levels of Detail (LODs), 
integration of official cadastre data (Stoter 2004), 
terrain-object integration, point object processing, 
and other problems. In Schilling and Zipf (2002) the 
authors showed how to apply such integrated 
visualization models for 3D tour animations. 

In this paper we focus on the integration of 
traditional 2D GIS data into 3D landscape and city 
models which use terrain models as basic height 
source. Such models may be referred to as 2,5D, but 
can be complemented with models coming from 3D 
databases. The 2D data comes typically from a WFS 
and must be mapped on the terrain model based on 
Triangulated Irregular Networks (TIN). 

The remainder of this paper is structured as 
follows. First, we compare different approaches for 
the integration of 2D GIS data and digital elevation 
models. Then we briefly explain the technical 
background and requirements before we go into 
detail about the geometrical operations of our 
approach. In the last section we compare our results 
with an image based overlay. 
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2 RELATED WORK 

We can distinguish 2 general approaches how to 
display 2D vector data together with surface models.  

1) The most common approach is to render 
vector graphics into an image and to project it on the 
terrain as texture. Traditional GIS layers, raster data, 
and sometimes scanned paper maps are overlaid and 
combined to a single texture layer (e.g. Haeberling 
1999). Additionally, hardware accelerated 
techniques like mip-map filtering and image 
pyramids can be used to optimize rendering speed 
and memory consumption.  

In contrast to this static method also a dynamic 
version has been investigated by Kersting and 
Döllner 2002. They extend the concept of static 
texture pyramids and introduce on-demand texture 
pyramids, which are not prepared in a pre-
processing step, but rendered for each frame using 
an off-screen pixel buffer (p-buffer, see also Wynn 
2001). The advantage of this method is that huge 
amounts of texture data that would be necessary for 
every possible resolution don’t need to be 
transmitted over the network. Instead, only the 2D 
vector data is being transmitted. Since the p-buffer is 
hardware accelerated, the images of the texture 
pyramids can be rendered on demand for arbitrary 
resolutions. 

2) The second approach is a geometry based 
mapping, i.e. to adapt the 2D vector data to the 
surface of the terrain model and to render it as 
separate geometric primitives.  

Wartell et al. 2003 show how to overlay 2D 
polylines on top of terrain models. The overlayed 
polylines are rendered independently from other 
image data due to rasterization artefacts. They 
present the triangle clipping DAG (direct acyclic 
graph) data structure which allows rendering the 
projected polylines together with a quad-tree based 
terrain model. They address the challenging problem 
of combining progressive terrain meshes, which 
change at nearly every frame as described by e.g. 
Hoppe 1998 or Lindstrom and Pascucci 2002, with 
3D polyline data, which also needs to adapt 
accordingly. 

Agrawal et al. 2006 use a similar technique for 
combining a textured terrain model with polyline 
data. In their case, the terrain is organized as block-
based LOD structure derived from a height raster, 
which allows efficient memory paging and 
optimized data structures like triangle-strips. Due to 
this block-based simplification and visualization 
scheme (9 tiles are visible at one time), height values 
can be picked up for each line segment from the 

underlying mesh with the highest resolution. Over 
meshes with lower resolutions, these height values 
must be corrected accordingly. 

Schneider et al. 2005 show how to handle 
polygonal GIS data in a similar manner. The 
polygon borders are treated in a similar way as the 
polylines described above. The interior of the 
polygon is triangulated and added to the new 
geometry, to which a z-offset is added in order to 
avoid interference with the terrain and rendering 
artefacts. An overview of earlier works in this field 
and some foundations on practicable topological 
data structures is provided by Lenk 2001. 

Both approaches have advantages and 
drawbacks. A naïve texture mapping without 
dynamic rendering is suitable for remote sensing 
raster data like satellite imagery. Vector GIS data 
like streets, borders, and landuse areas require a 
much higher resolution in order to avoid aliasing and 
jagged edges. Especially thin lines must be drawn 
with variable width, otherwise they will be filtered 
out or look odd in the far distance. Vector 
integration requires more complex geometric 
operations and is more expensive in the preparation 
phase. Overlaying triangulated polygons on top of 
the terrain causes huge overheads for large areas. 

3 WEB APPLICATION FOR 3D 
MAPS 

The presented work is embedded in a larger project 
that involves a 3D web map server, catalogue 
services, several clients and the integration of 
various data sources (see Figure 6 for a screenshot of 
the web client). We give a brief introduction in the 
deployed technologies since they provide important 
implications and also constraints for the presented 
method for 3D map generation. In this project, 
among other issues, we implement two technologies 
that have been proposed to the Open Geospatial 
Consortium (OGC) as Discussion Papers. 

Finally the need for standardization of 
geographical 3D web services has been 
acknowledged, which led to the first efforts in that 
direction. A specification for the delivery of 
perspective views of digital terrain models has 
already been accepted, the Web Terrain Server 
(WTS) – it will be renamed Web Perspective View 
Service (WPVS) in future versions. Being an image 
based service, it does not support interactive 
applications very well. The Web 3D Service 
(W3DS) goes one step further (OGC 2005). The 
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parameters are similar to those of the WTS. The 
requested area is described as simple bounding box. 
Information on available layers and styles is 
provided by the server using the GetCapabilites 
request. The GetScene request delivers complete 3D 
scenes that can be displayed by web browsers or 
integrated in specialized client software. VRML 2.0 
must be supported as basic format, but also other 
formats can be used. The requested area is described 
as simple bounding box. Optional parameters 
include a point of interest, a point of camera and a 
style for each layer based on the OGC Styled Layer 
Descriptor (SLD). 

The W3DS follows the concept of a medium 
server & medium client scheme, that is, the server is 
responsible for the data integration and transfers the 
display elements to the client, which is rendering the 
scene in real time. Usually browser plugins that 
support the specified format are downloaded from 
third party companies and used for rendering and 
navigation.  

Dynamic concepts like continuous LODs for 
triangle meshes or streaming of geometry parts are 
not incorporated, which is on the one hand beneficial 
for the broad applicability, but on the other hand 
shows the need for developing standards that cope 
with classical GIS features as well as techniques that 
are already state of the art in computer graphics. 

In our scenario we need to be able to support 
desktop computers as well as mobile handsets such 
as cell phones equipped with 3D graphics chips. 
Consequently, the scenes that we deliver to the client 
are static. However, block based visibility schemes, 
in which complete tiles with variable size and LOD 
are streamed to the client, are still feasible. 

The second important technology that we deploy 
is the CityGML specification that addresses 
interoperability problems during data exchange 
between different systems (Kolbe et al. 2005). It has 
been developed by the SIG3D (Special Interest 
group of the Geodata Infrastructure of North-Rhine 
Westphalia, Germany) and proposed to the OGC in 
June 2006 as discussion paper. The geometry 
description is based on the Geographic Markup 
Language (GML), but furthermore includes 
materials and textures, prototypic objects, 
aggregations and 5 predefined LODs. Although 
CityGML is primarily envisaged to completely 
describe any 3D city model, and not 2D vector 
maps, it is mentioned here because some important 
interrelationships between the terrain model and 
built objects are addressed. First, it introduces the 
concept of closure surfaces, which are used to seal 
holes in the ground. Open structures like tunnels and 

pedestrian underpasses can be modelled this way. 
The triangulation of the terrain is not perforated 
since the closure surface belongs to both object and 
terrain. Similar to closure surfaces are terrain 
intersection curves, which describe the exact 
location where a building is touching the ground. 
Using these curves, buildings floating over or 
sinking into the ground can be avoided. 

Both kinds of curves need to be integrated into 
the terrain using a similar method as described in the 
remaining part of this paper. However, the height 
values must be taken from the input curves. 

4 APPROACH FOR POLYGON 
INTEGRATION 

Reviewing the preconditions above, we can state 
that: 

a) dynamic off-screen rendering is not 
supported by standard web browsers, 
b) the amount of transmitted data should be 
as small as possible, especially when we 
consider low bandwidth mobile networks, 
c) raster images are very inefficient for 
representing polygonal data. 

Therefore, geometric mapping should be preferred 
over image based mapping. In this paper we pursue 
an approach that produces fully vectorized 3D maps. 
Polygonal data sets such as building blocks, green 
areas, forests, and roads are loaded from 2D GIS 
layer files and integrated into a custom Constrained 
Delaunay implementation for the terrain. The main 
properties of this method is, that the shape of the 
terrain is not altered, and z-buffer problems do not 
occur, since the resulting terrain is still a single 
continuous surface but with integrated areas that 
represent the input 2D shapes. After the geometrical 
integration operation we can identify the triangles 
lying completely inside the area and mark them as 
owned by the GIS layer the polygon comes from.  
 
 
 
 
 
 
 
 

Figure 1: Polygon integration. Comparison of the 
situations before (left) and after (right) the mesh 
operations. The area becomes visible when different 
colours are applied to the triangles. 
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When the mesh is encoded into the target 
transmission format, a style (e.g. a layer colour) can 
be applied to these areas which thus become visible. 
Figure 1 shows the comparison of the situations 
before and after all integration operations for one 
polygon. The edges of the mesh which lie exactly on 
the polygon border are marked as constrained in 
order to avoid the destruction of the area by 
subsequent mesh operations. 

It should be noted that in this context 
“constrained” does not mean that the edge must not 
be altered at all. It means that the line shape must be 
preserved. Nodes may still be inserted directly on 
the constrained edge, splitting it into two and 
changing the topology. This case occurs regularly, 
when geometries of different layers lie next to each 
other, for instance at the transition between different 
biotopes, at the border between land and water and 
many other cases. 

Geometries of different layers may be 
overlapping. In this case the last layer will take the 
ownership of the triangles beneath. Integrating 
several layers in a specific order will look like 
painting them on top of each other in a desktop GIS 
program. 

5 MESH OPERATIONS 

In order to achieve the result as displayed above, we 
need to focus on the polygon borders. All vertices 
can be easily integrated into the mesh, but the 
connection between them by edges must be treated 
more carefully, since direct lines might lead to 
distortions. 

The algorithm handles all layer polygons after 
each other. The first step is to integrate all vertices 
of the outer and inner polygon boundaries into the 
triangulated irregular network (TIN) of the terrain. 
For each vertex v we find the triangle under v.x / v.y 
and compute the height h value h. The new node 
n(v.x, v.y, h) is inserted into the TIN and the 
triangulation is adjusted (Figure 2). All these 
vertices are now part of the TIN as nodes (called 
Constrained Nodes here). 

For all search operations on the TIN it is very 
important to work with an effective spatial index, 
otherwise huge overhead computations would slow 
down the process. We use our own Quadtree 
implementation optimized for triangle meshes. 

The next step is to connect all Constrained 
Nodes by edges. The general approach is to remove 
all triangles that lie between the two Constrained 
Nodes of a segment and connect them directly with a 

single edge. The holes on either side of the edge are 
triangulated afterwards. Although the resulting mesh 
would seem to be correct from above, it would mean 
to create a ridge or a trench in the surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Connecting two nodes by a string of constrained 
edges. Situation before insertion (top) with the new 
segment as dashed line and the involved original edges 
and new nodes in bold style. Situation afterwards (bottom) 
with the new segment represented by constrained edges. 

Therefore, we need to find the intersection points 
of the segment and existing TIN edges and compute 
the correct height over the edges (Figure 2). On each 
intersection point we perform a node on edge 
insertion operation. This deletes the edge and the 
adjacent triangles and produces 4 new edges and 4 
new triangles. The new nodes can be inserted in a 
random order. In fact, the order is given by the 
spatial index which is used to find the triangles 
beneath the segment and can hardly be predicted. 
Now we need to find the new edges under the 
segment and mark them as constrained edges, 
because their shape should be preserved and not 
modified by subsequent operations. In order to avoid 
a relatively costly search on the spatial index, we 
start with the first Constrained Node and look for 
connected edges in the direction of the segment. 
This is a topological function and is performed very 
quickly. The loop is finished when the second 
Polynode is reached. 

The last step is to identify all triangles within the 
polygon and mark them as owned by the layer which 
is currently processed. For this we use the quadtree 
again which performs a simple search by the triangle 
centre points. The following pseudo-code shows the 
complete loop for one layer. 
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for each polygon p in layer 
for each vertex v in p 
calculate height h over tin at v 
insert new node(v.x,v.y,h) into tin 

end 
for each segment s in p  
n0 = start node of s 
n1 = end node of s 
if n0 and n1 are connected by edge e 
mark e as constraint 

else 
find intersection points I of s with 
edges of the tin 

for each p in I 
calculate height h over edge e 
insert new node(p.x,p.y,h) on e 

end 
n = n0 
while n!= n1 
find edge e lying in direction of s 
mark e as constraint 
n = opposite of n node on e 

end 
end 

 
find all triangles T of tin within p 
for each t in T 
mark t belonging to layer 

end 
end 

6 GEOMETRY EXTRACTION 

Before the finished vector map is transmitted to the 
web client, the TIN topology must be broken down 
into an indexed triangle array or triangle strip array. 
Most formats support a mesh colouring by triangle 

so that we can distinguish the integrated areas. The 
other possibility is to put all triangles that are owned 
by one layer into a separate geometry. Thus we get 
one geometry per layer (Figure 3). The advantage is 
that we can apply a different style to each layer. A 
style can be a simple colour, material, or texture. 
Especially generic textures for the natural 
environment like grass or crop areas can improve the 
visual quality of landscape models enormously, also 
for map-like non-photorealistic visualizations. 
Additionally we can better influence the reflectivity 
for different materials. For instance water surfaces 
should be rendered using higher shininess values 
than for wood. 

7 VECTOR MAP VS. TEXTURE 
MAPS 

One of our main goals was to reduce the file size of 
3D maps as much as possible since they need to be 
transmitted to Web Map clients within a low 
bandwidth network. In this chapter we compare the 
file sizes of vector maps and textured maps with the 
same content. The map area has an extent of 2x2 km 
and contains layers for water, wood, parks, and 
streets. The original DEM consists of 14504 
triangles. After the integration of all layers we get 
39208 triangles; that is an increase of 170%. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Terrain areas are separated into geometries representing the layers. To each layer geometry a different style can be
applied. Buildings are placed on top of the terrain. 
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This value depends strongly on the relation 
between the LOD of the digitized areas and the LOD 
of the terrain. For data sets consisting of larger areas 
like geological maps, it is much lower. 

We found that compressed VRML encoding is 
the most effective one compared to other 
compressed ASCII and binary encodings like X3D, 
3ds, Viewpoint and others. After encoding the vector 
map into VRML and performing a standard ZIP 
compression the resulting file is as small as 414 KB 
(see Figure 4c). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Comparison of texture mapping and geometry 
based mapping, a) texture map with low resolution, low 
JPEG compression, b) texture map with high resolution, 
high JPEG compression, c) vector map with integrated 
areas. 

Additionally to the vector map we produced 
terrain textures by loading the GIS layers into the 
commercial GIS package ArcMap and exporting the 
display as TIFF raster image with maximum 
resolution. The TIFF was post processed by standard 
imaging software in order to crop the image to the 
correct map extent and to create JPEG and PNG 
textures of various resolutions and JPEG 
compression ratios. Texture coordinates were 
calculated by projecting the images from above and 
added to the scene. Although much more 
sophisticated texturing schemes are feasible 
including dynamic texture trees and multi-texturing, 
comparing to this simple approach is still valid if we 
consider only a small region, which must be sooner 
or later rendered everywhere at the highest available 
resolution if the avatar is exploring the whole scene. 

Figure 4 shows a comparison of two different 
texture maps and the vector map loaded in a 
standard web browser plug-in. The textures have 
different resolutions and JPEG compression ratios. 
The term Texel refers to the pixels of the texture 
image. The compression ratio is a compound value 
based on the entries in the Huffman encoding table, 
ranging from 0 (worst quality) to 12 (best quality). 

a) Resolution 1,33 m per texel, JPEG com-
pression 10, file size 413 KB. 

b) Resolution 0,5 m per texel, JPEG com-
pression 02, file size 390 KB. 

c) Vector map, file size 414 KB. 
d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: File sizes of texture maps in relation to image 
resolution and quality compared to the equivalent vector 
map. 

Figure 5 shows how these parameters influence 
the texture file size. The mentioned file sizes refer to 
the combined size of compressed VRML and JPEG 
files. The JPEG textures have also been ZIP 
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compressed. This is usually not done for 3D web 
applications, since JPEG is very effective for most 
images. However, in the case of rendered vector 
graphics the file size could be reduced to 30% - 65% 
of the original JPEG file, due to the monotonous 
image structure. As can be seen, the 3 scenes have 
about the same file size. PNG as an encoding with 
lossless compression is in general better suited for 
GIS data, but yields unacceptable amounts of data. 

Figure 4 shows that higher resolutions should be 
preferred when trading off between resolution and 
image quality. However, only the vector map 
(Figure 4 c) allows rendering crisp edges. 

8 CONCLUSIONS AND 
OUTLOOK 

We showed how to effectively combine 2,5D terrain 
models and 2D GIS data - especially polygonal data 
– by using mesh integration operations. We can 
achieve superior visual quality for representing areas 
like forests, streets, water, geological strata, and 
others on terrain models. On the downside, the 
proposed method involves some additional 

 computations that naturally increase the response 
time. In our current implementation and for the 
example above, the polygon integration takes 10 
times longer than the initial terrain triangulation. So 
this should be done in a pre-processing step if 
possible. 

Another important aspect is how to apply mesh 
reduction algorithms on this kind of meshes for 
deriving lower LODs or producing hierarchical data 
structures for continuous LOD streaming 
(progressive meshes, e.g. Hoppe 1998). Of course, 
the interior constrained edges should be preserved as 
long as possible so that the map appearance is not 
destroyed by edge collapse or vertex removal 
operations too early. Basically, the error metric 
needs to be adapted so that alterations of interior 
edges are charged with a penalty factor. Schroeder 
1997 shows how to classify vertices and edges and 
how to adjust the quadratic error metric.  

The file sizes of vector maps can be further 
reduced with mesh compression techniques. 
Isenburg and Snoeyink 2002 report a reduction of 
about 50% for gzipped VRML files using an ASCII 
based encoding of mesh compression Higher 
compression ratios can be achieved with binary 
encoders that produce optimized bit streams, for  

Figure 6: Screenshot of the final Web 3D Map client. The software runs as Java Webstart application and includes a
custom Java3D viewer. Parameters for the OGC GetScene request can be set on the left panel, which include layers, spatial
extent, coordinate system, POI, POC and others. Data courtesy of Land Surveying Office City of Heidelberg. 
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instance Delphi (Coors and Rossignac 2004). 
They use as few bits as possible for describing 

the mesh connectivity. Another advantage is that 
such compressed binary formats can be decoded 
very quickly on the client side, whereas text parsers 
tend to be very slow and need many resources (esp. 
XML parsers). We are currently investigating 
methods to transmit 3D geo data more effectively 
since we also need to handle complex 3D city 
models that include buildings, textured landmarks, 
point objects, and many more. One way could be to 
describe only the model structure (the scenegraph) in 
an open format like X3D, and to use compressed 
binary encoding for the geometry. 
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