AN OPTIMAL EVALUATION OF GROUPBY-JOIN QUERIES IN
DISTRIBUTED ARCHITECTURES

M. Al Hajj Hassan and M. Bamha
LIFO, Universie d’'Orléans, B.P. 6759, 45067 @dns Cedex 2, France

Keywords: Parallel DataBase Management Systems (PDBMS), Parallel joins, Data skew, Join product skew, GroupBy-
Join queries, BSP cost model.

Abstract: SQL queries involving join and group-by operations are fairly common in many decision support applications
where the size of the input relations is usually very large, so the parallelization of these queries is highly
recommended in order to obtain a desirable response time. The most significant drawbacks of the algorithms
presented in the literature for treating such queries are that they are very sensitive to data skew and involve
expansive communication and Input/Output costs in the evaluation of the join operation. In this paper, we
present an algorithm that overcomes these drawbacks because it evaluates the "GroupBy-Join” query without
the need of the direct evaluation of the costly join operation, thus reducing its Input/Output and communication
costs. Furthermore, the performance of this algorithm is analyzed using the scalable and portable BSP (Bulk
Synchronous Parallel) cost model which predicts a linear speedup even for highly skewed data.

1 INTRODUCTION cation cost because all the tuples of the relations are
redistributed between processors. Some of these tu-
ples may not even contribute in the result of the join
operation.

In addition, these algorithms fully materialize the in-
termediate results of the join operations and the In-
eput/Output cost is very high where it is reasonable
Jo assume that the output relation cannot fit in the
main memory of every processor, so it must be reread
from disk in order to evaluate the aggregate func-
tion. Finally, these algorithms cannot solve the prob-
lem of data skew because data redistribution is gener-
ally based on hashing data into buckets and hashing
{is known to be inefficient in the presence of high fre-
uencies (Bamha, 2005; Seetha and Yu, 1990).

In this paper, we present a new parallel algo-
rithm used to evaluate the "GroupBy-Join” queries on
Shared Nothing machines (a distributed architecture
where each processor has its own memory and own
disks), when the join attributes are different from the

Several parallel algorithms for evaluating "GroupBy- g}rgupl—by_?gtnbutesd Our}(maw(\jct:ontnt:ut!o:j IS ttL]at_, n
Join” queries were presented in the literature (Shatdal IS algorithm, we do not need to materialize the join

and Naughton, 1995: Taniar et al., 2000), but these operation as in the traditional algorithms where the
algorithms are inefficient due to their high communi- 10N operation is evaluated first and then the group-by

Aggregate functions used to summarize large volume
of data based on a designated grouping are widely em-
ployed in applications such as: the decision support
application, OnLine Analytical Processing (OLAP)
and Data Warehouse (Taniar et al., 2000), becaus
in such applications, aggregated and summarized dat
are more important than detailed records (Datta et al.,
1998). Aggregate operations may be applied on the
output of the join of multiple tables having potentially
billions of records. These tables may rapidly grow ev-
ery day especially in OLAP systems. Moreover, the
output of these queries must be obtained in a reason
able processing time. For these reasons, parallel pro-q
cessing of such queries results in huge performance
gain especially in PDBMS. However, the use of ef-
ficient parallel algorithm in PDBMS is fundamental
in order to obtain an acceptable performance (Bamha
and Hains, 2000; Seetha and Yu, 1990).

246

Al Hajj Hassan M. and Bamha M. (2007).

AN OPTIMAL EVALUATION OF GROUPBY-JOIN QUERIES IN DISTRIBUTED ARCHITECTURES.

In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 246-252
DOI: 10.5220/0001281302460252

Copyright © SciTePress

AN OPTIMAL EVALUATION OF GROUPBY-JOIN QUERIES IN DISTRIBUTED ARCHITECTURES

and aggregate functions (Yan and Larson, 1994). Itis
also insensitive to data skew and its communication
and Input/Output costs are reduced to a minimum.

In this algorithm, we partially evaluate the aggre-
gate function before redistributing the tuples. This
helps in reducing the cost of data redistribution. We
use the histograms of both relations in order to find
the tuples that participate in the result of the join oper-
ation. Itis proved in (Bamha and Hains, 2005; Bamha
and Hains, 2000), using the BSP model, that his-

togram management has a negligible cost when com-

pared to the gain it provides in reducing the commu-
nication cost.

In traditional algorithms, all the tuples of the output of
the join are redistributed using a hash function. In the
contrary, in our algorithm we only redistribute the re-
sult of the semi-join of the histograms which are very
small compared to the size of input relations. This
helps in reducing the amount of data transferred over
the network and therefore the communication cost.
The performance of this algorithm is analyzed using
the BSP cost model which predicts for our algorithm
a linear speedup even for highly skewed data.

2 COMPUTATION OF
"GROUPBY-JOIN" QUERIES

In DBMS, we can distinguish two types of "GroupBy-
Join” queries. In the first type the join attributes and
the group-by attributes are the same. In this case,
it is preferable to carry out the group-by and aggre-
gate functions first and then the join operation (Taniar
et al., 2000), because this helps in reducing the size
of the relations to be joined and consequently de-
creasing the communication cost and the query exe-
cution time. In the contrary, this can not be applied
on the second type of queries, because the join at-
tributes are different from the group-by attribu(eee

(Al Hajj Hassan and Bamha, 2007) for a long and de-
tailed version of this pap@ar In this paper, we will fo-
cus on this type of "GroupBy-Join” queries where we
present an algorithm which partially evaluates the ag-
gregate functions before redistributing the tuples us-
ing histograms, thus reducing the communication cost
as much as possible.

3 GROUPBY-JOIN QUERIES: A
NEW APPROACH

In this section, we present a detailed description
of a new parallel algorithm used to evaluate the

"GroupBy-Join” queries when the group-by attributes
are different from the join attributes. We assume
that the relationR (resp. S) is evenly partitioned
among processors by horizontal fragmentation such
that|R;| ~ 2 (i = 1, ..., p) wherep is the number
of processors.
For simplicity of description and without loss of gen-
erality, we consider that the query has only one join
attributex and that the group-by attribute set consists
of one attributey of R and another attribute of S.
We also assume that the aggregate function is applied
on the values of the attributeof S.

In the rest of this paper we use the following nota-
tion for each relatiof” € {R, S}:

e T; denotes the fragment of relatidh placed on
processot, a sub-relation of’,

Hist®(T) denotes the histogranof relation T’
with respect to the attribute, i.e. a list of pairs
(v,n,) wheren, # 0 is the number of tuples of
relationT" having the values for the attributew.
The histogram is often much smaller and never
larger than the relation it describes,

Hist” (T;) denotes the histogram of fragmefit
while Hist(T) is processot’s fragment of the
histogram ofT’",

Hist”(T)(v) is the frequency(,) of valuew in
relationT” while Hist™ (T;)(v) is its frequency in
sub-relationT;,

AGGRY,,(T) 2 is the result of applying the aggre-
gate functions on the values of the attribute of
every group of tuples of" having identical val-
ues of the group-by attributes. AGGRY ,(T) is
formed of a list of tuplegv, f,) where f, is the
result of applying the aggregate function on the
group of tuples having value for the attributew

(w may be formed of more than one attribute),

AGGRY,,(T;) denotes the result of applying the
aggregate function on the attributeof relation

T; while AGGRY, ;(T) is processoi’s fragment

of the result of applying the aggregate function on
T,

AGGRY,,(T)(v) (respAGGRY ,(Ti)(v)) is the re-
sult f,, of the aggregate function of the group of
tuples having value for the group-by attribute

in relationT (resp.T;),

|IT'|| denotes the number of tuples of relatidn
and |T'| denotes the size (expressed in bytes or
number of pages) of relatidf.

[)

[]

!Histograms are implemented as a balanced tree (B-

tree): a data structure that maintains an ordered set of data
to allow efficient search and insert operations.
2AGGRY ,(T) is implemented as a B-tree.

247

WEBIST 2007 - International Conference on Web Information Systems and Technologies

The algorithm proceeds in six phases. To study AGGR};(S)
the cost of each phase we use the scalable andsult are redistributed.
Hist"

AGGR,(S:) = AGGR}(S:) x Hist™¥(R) using

portable Bulk-Synchronous Parallel(BSP) cost

model which is a programming model introduced

by L. Valiant (Valiant, 1990). In this algorithm, the
notation O(...) hides only small constant factors:

that will be present in the join re-
To this end, we compute
‘(Ri) = Hist"(R;) x AGGR}Z(S) and

proposition 2 presented in (Bamha and Hains, 2005),

where we apply the hash function on the tuples of
they depend only on the program implementation but Hist/”“'(Ri) and Hist'“”(si).

In fact the number of

neither on data nor on the BSP machine parameterstuples Oinst/‘”(Ri) and that of Hist”(R;) are equal,

(Al Hajj Hassan and Bamha, 2007).

Phase 1: Creating local histograms
In this phase, the local histogrami§st™Y (R;)(i =

what differs is only the value of their frequency

attribute, so |Hist'"(R:)| = |Hist"(R:)| (this also
applies to Hist *(S;) and Hist*(S;)) Hence the
cost of this phase is (Bamha and Hains, 2005):

1,...,p) of blocks R; are created in parallel by a Timephm(,Q =

scan of the fragment?; on processori in time
Cijo * max;=1,_.,|Ri| where ¢;, is the cost of
writing/reading a page of data from disk.

In addition, the local fragment$GG R} (S:)(i =
1,...,p) of blocks S; are also created in parallel
on each processoi by applying the aggregate
function f on every group of tuples having identical
values of the couple of attributegr, z) in time
ci/o*maxizl

,,,,,

In this phase we also compute the frequency

of each value of the attribute in Hist*¥(R;) and

AGGRy; Z(S) needed in phase 2. So while creating

Histmy) (resp. AGGR7;(S:)), we also create
on the fIy their local histogramsfist *(R;) (resp.
Hist *(S;)) with respect tar, i.e. Hist “(R;) (resp.
Hist (S;)) holds the frequency of each value of
the attributex in Hist™(R;) (resp. AGGR};(S:))

AAAAA p [[Hist™" (Ri)| 7

max;=1,..p HAGGRM(Si)ll
+min(g|Hist”(R)|+||Hist® (R)||,g*‘m+)
—I—min(g x |Hist®(S)| + ||Hist®(S)]],g * S‘

2+
lisity +l)

whereg is the BSP communication parameter dnd
is the cost of a barrier of synchronization.

During semi-join computation, we store for each
valued € Hist *(R) N Hist *(S) an extra infor-
mation calledindex(d) € {1, 2,3} which will allow

us to decide if, for a given valué, the frequencies
of tuples of Hist™(R) and AGG R} (S) having the
value d are greater (resp. lesser) than a threshold
frequencyf,. It also permits us to choose dynami-
cally the probe and the build relation for each vallie
of the join attribute. This choice reduces the global

where we count tuples havrng the same values of the e distribution cost to a minimum.

attributes(x, y) only once.
We use the following algorithm to creaf@ist *(R;)
and a similar one is used to creatBst “(S;).

Par (on each node in parallel) :=1,...,p
Hist" “(Ri) = NuLL B
For every tuple ¢ that will be inserted or used to
modify Hist™ ¥ (R;) do
it Hist™¥(R;)(t.x,t.y) = NULL Then *
’
freqn = Hist Z(RZ)(t(L')
If freqi # NULL Then
’
Increment the frequency of t.z in Hist “(R;)
Else
!/
Insert a new tuple (t.z,1) into Hist *(R;)
EndIf
EndIf
EndFor
EndPar

In principle, this phase costs:
Timephasel = O(Ci/o * MaxX;=1

p(1Ri] +18i])).-

,,,,,

Phase 2: Local semi-joins computation
In order to minimize the communica-
tion cost, only tuples of Hist®Y(R) and

248

In the rest of this paper, we ugg = p *log(p) as the
threshold frequency (Bamha and Hains, 2000).

For a given valuel € Hist “(R) N Hist *(S) 5, the
valueindex(d) = 3, means thafist “(R)(d) < fo
and Hist *(S)(d) < fo, while index(d) = 2,
means thatiist “(S)(d) > fo and Hist z(S)(d) >
Hist'*(R)(d) and index(d) = 1, means that
Hist *(R)(d) > fo andHist *(R)(d) > Hist *(S)(d).
Note that unlike the algorithms presented in (Shatdal
and Naughton, 1995; Taniar et al., 2000) where both
relations R and S are redistributed, we will only
redistribute Hist“*(R;) and AGGR7,, to find the
final result. This reduces the communication costs to
a minimum.

At the end of this phase,

we will divide

Hist"’(R;) and AGGR;.(S;) on each pro-
cessor ¢ into three sub- histograms such
3
that: Hist” U Hist"” and

®The intersection off ist’ “(R) andHist #(S) is found
while computing the semi-joins (c.f proposition 2 presented
in (Bamha and Hains, 2005))

AN OPTIMAL EVALUATION OF GROUPBY-JOIN QUERIES IN DISTRIBUTED ARCHITECTURES

if (Hist/m(R)(d)mod(p) =0) then

<7>x z
AGGRf“ U AGGR (S’) where all the each processor j will hold a block of size
j=1 e
© ooz Hist *(R)(d
tuples of Hist “(R;) (resp. AGGRy."*(S:)) are block;(d) = % of tuples of value d.
associated to valuessuch thatmdea:() =1 (resp. else
index(d) = 2), while that of Hist ™" (R;) (resp. begin

AGGR?L“(&)) are associated to values such

that index(d) = 2 (resp. index(d) = 1), and all
the tuples offist " (R;) and AGGR,) " (S:) are
associated to valuessuch thatznder(d) 3.

Pick a random val ue jo between 0 and (p —1)
if (processor’s index j is between jp and
’
jo + (Hist *(R)(d)modp)) then
processor of index j will hoI d a bl ock

Hist (R)(d)

of size: block;(d) = |+1
Phase 3: Creating the communication tem- olse P
plates processor of index j will hold a bl ock
The tuples of relations Hist "“*(R;) and Hist'*(R)(d)
(3)95 *(. of size: blockj(d) = | —————]
AGGR;.,, " (S:) (have very low frequencies for P

the join attribute) have no effect neither on Attribute _end-

Value Skew (AVSS) nor on Join Product Skew (JPS) so In the above algorithm|z| is the largest integral
they are red|str|bl(11t)ezd using a hash f“{{?j'?”- However value not greater than ahdblockj(d) is the number
the tuples ofHist *“"(R;) and AGGR;,, *(Si) are of tuples of valuel that processof should own after
associated to high frequencies for the join attribute redistribution of the fragments; of relationT.

so they have an important effect on AVS and JPS. So The absolute value oRest;(d) = Hist;(T)(d) —
we will use an appropriate redistribution algorithm in block;(d) determines the number of tuples of value
order to efficiently avoid both AVS and JPS (Bamha ¢ d that processoy must send (ifRest;(d) > 0) or
and Hains, 2000) receive (IfRest () < 0)

3.a To this end, we partition the histogram For d ¢ stt(1 > (R~ S), processori owns

Hist'*(R x S) (which is simply the intersection of & description of the layout of tuples of value
e d Hist's into t b-hist . over the network. It may therefore determine the
Hist “(R) and Hist *(S)) into two sub-histograms: |imber of tuples of value which every processor

Hist"?*(R w S) and Hist” *(R x) where must send/receive. This information constitutes the
the valuesd e Hist(h2'*(R x S) are associ- communication template. Only thogefor which
ated to high frequencies of the join attribute (i.e. Restj(d) > 0 (resp. Rest;(d) < 0) send (resp.
index(d) = 1 or index(d) = 2) while the values recelve) tuples of value af. This step is thus com-

d € Hist®'*(R x S) are associated to low fre- _l?_lﬁted 'rl‘t'me-TWe&bd* Ol(HH?f(1 2 (R S)]). |
quencies (i.eindex(d) = 3). This partition step is € tples associated to low frequencies (i.. tuples

. . 3)z .
performed in parallel, on each processapy a local ~ havingd € Hist!” *(R S)) have no effect neither
traversal of the histograniist/*(R = S) in time: ~ ©N the AVS nor the JPS. These tuples are simply
Times., = O(max ||Hz‘st'l””(R % S)) mapped to processors using a hash function.

3.a — =1 P i J

" y . Thus the cost of creating the communication tem-
3.b Communication templates for high frequencies: plates is: Timephases =

We first create a communication template: the list of O(max;_i [Hist/ (R w S)|| + ||Hist™2 (R
messages which constitutes the relations’ redistribu- 9.
tion. This step is performed jointly by all processors,

each one not necessarily computing the list of its own Phase 4: Data redistribution

messages, so as to balance the overall process. 4.a Redistribution of tuples havingd ¢
So each processoi computes a set of neces- Hist!*?'*(R w S): Every processori holds,

sary messages relating to the valuést owns in for every one of its locall € Hist™? *(R x S), the
Hist{"? 2 “(R x S). The communication template of non-zero communication volumes it prescribes as a
Hist e (R) is derived by applying the following part of communication templateRest;(d) # 0 for

. . 1,...,p. This information will take the form of
algorithm. We also apply the same algorl(tlt;:t;nzto com- sendlng | ordersent to their target processor in a first
pute the communication template ata

(S), superstep, followed then by the actual redistribution
but we replacefist “(R) by Hist *(S). supe_rst((jap where processors obey all orders they have
received.

Each processarfirst splits the processors indices
j into two groups: those for whicRest;(d) > 0 and
those for whichRest;(d) < 0. This Is done by a
sequential traversal of thest..(d) array.

,,,,,

,,,,,

249

WEBIST 2007 - International Conference on Web Information Systems and Technologies

Let o (resp. 3) be the number ofj’s
where Rest;(d) 1S positive (resp. negative) and
Proc(k)k=1,. o+s the array of processor in-
dices for which Restj(d) # 0 in the manner

that: Restyroc;y(d) > 0 for j = 1,..,a and
Restproc(j)(d) <0fOrj=1+a,..,8.
A sequential traversal ofProc(k)i=1.. .15 deter-

mines the number of tuples that each procegsaitl

send. The sending orders concerning attribute value AGG Ry,

d are computed using the following procedure whose
maximal complexity isO(||Hist"?'*(R x S)][)
because for a givet) no more tharip—1) processors
can send data and each procegserin charge of re-
distribution of tuples having € Hist{"? (R x S).
7:=1; ji=a+1,
while (¢ < «) do
begin
ntuples = min(Resty oci)(d), —Restproc(s)(d));
order to_send(Proc(i), Proc(j),d,n-tuples);

Restp,,.oc(,i> () : = Restm,oc(i) (d) - n_tuples;
Restproc(j)(d) = Restproc(sy(d) + ntuples;
if Restproc(s)(d) =0 then i :=1441; endif

if Restproc(yy(d) =0 then j:=j+1; endif

end.

For each processarandd € Hist"?'*(R w S),

all the orderto_sendyf, i, ...) are sent to processgr
when;j # i in time O(g |Hist(1’2)/’:(R x S)| +1).
Thus, this step COStSTimes.q =

O(g*|Hist™? 2'%(R w §)|+||Hist™?'* (R x S)||+1).
4.bTuples ofist ¥ (R,) andAGGR "% (S:) (i.e.
tuples havingl € Hist™ *(R x) are associated
to low frequencies, they have no effect neither on the
AVS nor the JPS. These relations are redistributed
using a hash function.
At the end of stepst.a and 4.b, each processat,
has local knowledge of how the tuples of semi-joins

Hist""(R;) and AGGRy,,(S:) will be redistributed.
Redistribution is then performed in time:

Times = O(g « (Hist " (R:)| + [AGGR,(S:)) +
).

Thus the total cost of the redistribution phase is:

1 | Hist D " (R S)\) + HHist(l’Z)'””(R M S| +1)

We mention that we only redistribute the tuples
of the semi-joins Hist"(R;) and AGGR;.(S:)
where|Hist" " (R;)| and|AGGR;,,(S;:)| are generally
very small compared toR;| and |S;|. In addition
|Hist *(R S)| is generally very small compared to
|Hist™¥(R)| and|AGG R} (S)|. Thus we reduce the
communication cost to a minimum.

Phase 5:
function
At this step, every processor has partitions of

local computation of the aggregate

250

Hist""(R) and AGGR}.(S). Using equation 2
in (Bamha, 2005), we can deduce that the tuples
of Hist ""Y(R:), Hist"“(R;), Hist"""(R;)
can be joined with the tuples FQ 228,
AGGR)7 (i), AGGR: .7 (S;) respectively. But
the frequencies of tuples offist "**(R;) and
AGGRY)"*(S;) are by definition greater than the
correspondmg (matching) tuples Hist ™" (R;)
andAGGR}."*(S;) respectively. So we will choose
Hist """ (R;) and AGGRy.*(S:) as the build
relations andiist " (R;) and AGGRy . (S;) as

probe relations. Hence, we need to duplicate the
probe relations to all processors in time:

Timephases.a O(g * (|stt<2 - y(R)\ +

[AGGRE(S)]) +1).

Now, using the following algorithm, we are able
to compute the local aggregate function on every
processor without the necessity to fully materialize
the intermediate results of the join operation.

In this algorithm, we create on each processor
, the relationAGGRY;((R w S);) that holds the
Iocal results of applylng the aggregate function on
every group of tuples having the same value of the
couple of attributesy,). AGGRY;((R x S);) has
the form(y, z, v) wherey andz are the group-by at-
tributes andb is the result of the aggregate function.

(1) Par (on each node in parallel) :=1,...
(2) AGGRYZ((Rw™ S);) = NULL; °

(3) For every tuple ¢ of relation Hist ™'Y (R;) do

(4) For every entry vy :m}f?fﬂ(si)(t.z, z) do

(5) va = AGGRY L (R ™ S)i)(t.y, 2);

(6) If vy # NULL Then

(7) Updat e AGGR?:z((R X S)i)(t.y, z)=F(v1, va)
where F() is the aggregate function;
Else

Insert a new tuple (t.y,z,v1) into the

» P

(8)
(9)

hi stogram AGGRY, (R w S)i);

(10) Endif

(11) EndFor

(12) EndFor

(13) Repeat steps (3)...(12) but repl ace
Hist V™Y (R;) in (3) by AGGRS)" (S))
and AGGRY)"*(S:)(t.x,z) in (4) by
Hist DY (R (tx, y);

(14) Repeat steps (3)...(12) but repl ace

Hist V™Y (R;) in (3) by HistV™Y(R;)
and AGGRY)"7(S:)(t.x,z) in (4) by
——5(3)z,2 .
AGGR)T(5:) (tx, 2);

(15) EndPar

The cost of this is:

Timephase&b =

applying algorithm

AN OPTIMAL EVALUATION OF GROUPBY-JOIN QUERIES IN DISTRIBUTED ARCHITECTURES

Cijo % O(maxizl ,,,,, (|st7f(1)76 Y(R;) X
AGGRY™(9)+
[Hist VY (R) x AGGRY.(S:)|+
[Hist ™" (Ry) M
——~53)z,z
AGGR} ™ (S)))

So the total cost of this phase is simply the sum of

Timephase{i.a andTimephase&b .

Phase 6: global computation of the aggregate
function

Join” queries when the join attributes are different
from the group-by attributes has an optimal asymp-
totic complexity when:

maz [Hist 7Y (R)|, [AGGR) (S)], | Hist 2 (R
S)|
< cijo ® max(@, @7 M),
PP P
this is due to the fact that the local join results
have almost the same size and all the terms in

Timeqorqr are bounded by those 6bund;,s,. This

In this phase, a global application of the aggregate inequality holds if we choose a threshold frequency

function is carried out. For this purpose, every

processor redistributes the local aggregation results,frequencyf, =

AGGRY (R » S);), using a common hash func-
tion whose input attributes ageandz. After hashing,

every processor applies the aggregate function on the 4
received messages in order to compute the global

resutAGG Ry (R » S). The time of this step is:

Timephases = o(mm(g * |AGGRY% (R w S)|+
IAGGRYZ(R w 1R8]

[[=x S]]

sty 1)

where we apply proposition 1 in (Bamha and Hains,

2005)) to redistributelGGRY . (R x S)i)-

g * +

The global cost of evaluating the "GroupBy-
Join” queries in this algorithm is of order:

Timeiotar = O<ci/o * MaAXi=1,...,
+min(g * |Hist™(R)| + ||sttz()H g* 1
+min(g * |Hist"(S)| + ||Hist™(S)|], g * % S %)
+g * maxi—1,...p ([Hist" " (Ri)| + [AGGR; .(Si)]
+|Hist"?'® (R x 9)|) + ||Hist™2 *(R » S)|]
+g* ([Hist """ (R)| + [AGGR, " (S)])

» ([Hist ™" (Ry) M

,,,,,

+cijo *
AGGRYL(9))|
+[Hist® ™Y (R) x AGGR}." Z(s-)\
+[Hist D"V (R,) m AGGREL(S:)])
+min (g [AGGRYZ (R w S)|+ HAGGR%(R M S)||,
« 3n3) o 2l || Hist™ (Ry)]|

»IAGGRTL(S) +1).

max;—=1

,,,,,

+ max;—1

,,,,,

+ max;=1,...,

fiu

Remark 1

In the traditional algorithms, the aggregate function
is applied on the output of the join operation. The
sequential evaluation of the "groupBy-Join” queries
requires at least the following lower bound:

bounding, = Q(c;j0 * (IR + |S|+ |R » S])).

Parallel processing witp processors requires there-
fore: boundiny, = % * boundn f, -
Using our approach, the evaluation of the "GroupBy-

fo greater thamp (which is the case for our threshold
p*log(p)).

CONCLUSION

In this paper, we presented a parallel algorithm used
to compute "GroupBy-Join” gueries in a distributed
architecture when the group-by attributes and the join
attributes are not the same. This algorithm can be
used efficiently to reduce the execution time of the
query, because we do not materialize the costly join
operation which is a necessary step in all the other al-
gorithms presented in the literature that treat this type
of queries, thus reducing the Input/Output cost. It also
helps us to balance the load of all the processors even
in the presence of AVS and to avoid the JPS which
may result from computing the intermediate join re-
sults.

In addition, the communication cost is reduced to
the minimum owing to the fact that only histograms
and the results of semi-joins are redistributed across
the network where their size is very small compared
to the size of input relations.

The performance of this algorithm was analyzed us-
ing the BSP cost model which predicts an asymptotic
optimal complexity for our algorithm even for highly
skewed data.

In our future work, we will implement this algo-
rithm and extend it to a GRID environment.

REFERENCES

Al Hajj Hassan, M. and Bamha, M. (2007). An opti-
mal evaluation of groupby-join queries in distributed
architectures. Research Report RR-2007-01, LIFO,
Universié d’'Orleans, France.

Bamha, M. (2005). An optimal and skew-insensitive
join and multi-join algorithm for ditributed architec-
tures. InProceedings of the International Confer-
ence on Database and Expert Systems Applications

251

WEBIST 2007 - International Conference on Web Information Systems and Technologies

(DEXA'2005). 22-26 August, Copenhagen, Dane-
mark LNCS 3588, pages 616-625.

Bamha, M. and Hains, G. (2000). A skew insensitive al-
gorithm for join and multi-join operation on Shared
Nothing machines. Ithe 11th International Confer-
ence on Database and Expert Systems Applications
DEXA’200Q LNCS 1873, London, United Kingdom.

Bamha, M. and Hains, G. (2005). An efficient equi-semi-
join algorithm for distributed architectures. Rro-
ceedings of the 5th International Conference on Com-
putational Science (ICCS’2005). 22-25 May, Atlanta,
USA LNCS 3515, pages 755-763.

Datta, A., Moon, B., and Thomas, H. (1998). A case for
parallelism in datawarehousing and OLAP. Nimth
International Workshop on Database and Expert Sys-
tems Applications, DEXA 98 EE Computer Society,
pages 226-231, Vienna.

Seetha, M. and Yu, P. S. (December 1990). Effectiveness of
parallel joins.|IEEE, Transactions on Knowledge and
Data Enginneerings2(4):410-424.

Shatdal, A. and Naughton, J. F. (1995). Adaptive paral-
lel aggregation algorithms ACM SIGMOD Record
24(2):104-114.

Taniar, D., Jiang, Y., Liu, K., and Leung, C. (2000).
Aggregate-join query processing in parallel database
systems. IrProceedings of The Fourth International
Conference/Exhibition on High Performance Comput-
ing in Asia-Pacific Region HPC-Asia200@lume 2,
pages 824—-829. IEEE Computer Society Press.

Valiant, L. G. (August 1990). A bridging model for par-
allel computation. Communications of the ACM
33(8):103-111.

Yan, W. P. and Larson, R- (1994). Performing group-
by before join. InProceedings of the Tenth Inter-
national Conference on Data Engineerinupges 89—
100, Washington, DC, USA. IEEE Computer Society.

252

