
ERLANG/OTP FRAMEWORK FOR COMPLEX MANAGEMENT
APPLICATIONS DEVELOPMENT

Carlos Abalde, Vı́ctor M. Guĺıas, Laura M. Castro, Carlos Varela and J. Santiago Jorge
MADS Group, Department of Computer Science, University of A Coruña, A Coruña, Spain

Keywords: Distributed systems, functional languages, design patterns, cluster computing, client/server architecture.

Abstract: This paper presents our ideas about how to evolve a first and early architecture, which has been used in the
development of a large scale management client/server application, to a more sophisticated one, which could
be reused in other developments, significantly reducing the development life cycles of future versions. We
also expose some problems that arised in the process and suggest some solutions.

1 INTRODUCTION

In this paper, we will elaborate some ideas ex-
plaining how to evolve the first and early architec-
ture used in the development of a large scale man-
agement client/server application, using the distrib-
uted functional language Erlang (Armstrong et al.,
1996), to a more sophisticated one. The application
(ARMISTICE(Armistice, 2002; Cabrero et al., 2003;
Gulı́as et al., 2005; Gulı́as et al., 2006),Advanced
Risk Management Information System: Tracking In-
surances, Claims and Exposures) is a risk manage-
ment information system (RMIS) designed for a large
regional company. The aim of the proposed architec-
ture is to help to reduce the development life cycles,
and to be reused in similar projects.

The paper is structured as follows. Section 2 gives
an overview of the proposed architecture. Next, some
discussion is provided on section 3, explaining how
the framework would improve the development, tak-
ing our study case as example. Finally, section 4
shows some conclusions and future work to be done.

2 FRAMEWORK OVERVIEW

Our proposal is a layered client/server architecture,
based on two well-known architectural patterns: Lay-
ers and Model-View-Controller (Gamma et al., 1999).

The user sideis a lightweight client which only
makes remote procedure calls (RPCs), and has no as-
sociated logic (i.e., there are no business objects in the
user side). Theserver sidesupports the model and the
business logic, and is structured in four tiers:

WAN

DBDB

DB

DB

DB

DB

DB

DB

DB

Client side

UBF UBF

Persistent
objects
layer

Use case
facades

Interface
adapter

Server side

Distributed DB

CALLBACKCALLBACK

FACADE FACADE

DAO

VO

FACADE

Figure 1: Framework architecture overview.

• Interface adapter: Receives messages from
clients, deserialises their input and parameters,
and gives them the appropriate format so that the
server can process the enquiry, and viceversa.

• Use case facades: Facades of the system, which
represent the access points to each subsystem.
Every facade has methods implementing different
use cases, using the persistent objects layer.

422
Abalde C., Gulías V., M. Castro L., Varela C. and Santiago Jorge J. (2007).
ERLANG/OTP FRAMEWORK FOR COMPLEX MANAGEMENT APPLICATIONS DEVELOPMENT.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 422-425
DOI: 10.5220/0001281904220425
Copyright c© SciTePress

• Persistent objects layer: Here, domain trans-
fer objects (TOs) and data access objects
(DAOs) (Marinescu, 2002) are defined. Each TO
models a domain entity, and the DAO is the mod-
ule that interacts with the persistence layer.

• Persistence: It represents the permanent storage
over a relational database.

Source code for implementing these layers can be
automatically generated from a description of:

• The client-server communication format.

• The use cases.

• The domain transfer objects and relationships.

2.1 Client-Server Communication

The transport layer needs to be lightweight and easily
integrable with different client applications. There are
several possibilities to solve this problem. For exam-
ple, interface definition languages like XDR (XDR,
2003) or ASN.1 (ASN.1, 2003) or complex frame-
works like CORBA (Corba, 2003), most of them sup-
ported by Erlang/OTP.

The UBF scheme (Universal Binary Format (Arm-
strong, 2002)) has the expressive power of the XML
set of standards, but it is considerably simpler. Thus,
in our framework, we can see the server as a service
whose interface is defined in XML as follows,
<method name="add_customer" cache="0">
<input>UBF description</input>
<output>UBF description</output>

</method>

Then, our compiler gets each facade interface de-
finition and builds the following skeletons:
• customer.erl, which is a black box module

(from the programmer’s point of view).

add_customer(Session, UBFParams) ->
% unpack UBFParameters
% callback implementation module
R = customer_cb:add_customer(Session,

Param1,
...,
ParamN),

% pack R in a UBF value

• customer_cb.erl, which is a callback module
skeleton that must be filled in by the programmer.

add_customer(Session, P1,..., PN) ->
% call domain facade
case customer_facade:add_customer(Session,

P1,...,
PN) of

{error, Reason} -> % adapt result
R -> % adapt result;

end.

• Customer.java, which is an user interface facade
to access the service and perform internal tasks.

2.2 Access Points and Use Cases

Each access point is described by means of it use
cases. Use case descriptions include names, input pa-
rameter list, and transactional information.

As in the previous section, two Erlang modules
are built from each access point description:

<access-point name="customer">
<use-case name="add_customer" trans="yes">
<param name="CustomerName"/>
<param name="CustomerDescription"/>

</use-case>
</access-point>

The Erlang generated black box module for this
access point is:

-module(customer_facade).
-export([add_customer/3]).

add_customer(Session, CName, CDescription) ->
ConnRef = db_facade:connect(),
session:set_connection(Session, ConnRef),
R = customer_facade_cb:add_customer(Session,

CName, CDescription),
db_facade:endtrans(ConnRef),
R.

And the callback module skeleton is:

-module(customer_facade_cb).
-export([add_customer/3]).

add_customer(Session, CName, CDescription) ->
%% write your code here
not_implemented.

The parameterSession represents the distributed
database over the deployment cluster, in which client
session state data is stored, providing fault-tolerance
features. Database connections are organised within
a supervision tree, so that automatic rollbacks can be
performed if necessary.

2.3 Persistent Objects Layer

Business logic associated with a complex RMIS usu-
ally has to deal with a big number of domain entities
with complex relationships amongst them. The actual
coding of these objects and relationships storage is a
very annoying and repeatable task.

The entities are described with their name, a list
of their attributes and their relationships.

<entity name="customer">
<primary-key>
<attribute name="id" type="integer"/>

</primary-key>

ERLANG/OTP FRAMEWORK FOR COMPLEX MANAGEMENT APPLICATIONS DEVELOPMENT

423

<attribute name="name" type="string"/>
<relation entity="account" multiplicity="*"/>

</entity>

Here some ideas from powerful persistence and
object-relational mapping frameworks like Hibernate
(Java) (Hibernate, 2006) and Active Object (Ruby on
Rails) (Ruby, 2006) are borrowed.

From this definition the obtained source code will
be composed by a TO module and a DAO module
skeleton. An example of TO source code could be:

-module(customer_to).
-include("customer_to.hrl").
-export([new/2, get_name/1, set_name/2]).

new(Id, Name) ->
#customer_to{id = Id, name = Name}]}.

get_name(CustomerTO) ->
State#customer_to.name.

set_name(CustomerTO, Name) ->
CustomerTO#customer_to{name = Name}.

And the DAO would look like:

-module(customer_dao).
-include("customer_to.hrl").
-export([create/2, find/2]).

create(ConnRef, CustomerTO) ->
Id = customer_to:get_id(CustomerTO),
Name = customer_to:get_name(CustomerTO),
Acc = customer_to:get_account(CustomerTO),
Query = "INSERT INTO customer "

"VALUES (" ++ Id ++ ", ’"
++ Name ++ "’, "
++ Acc ++ ")",

case db_facade:process(ConnRef, Query) of
...

end.

As we can see, the DAO assumes the existence of
a database table named after the entity and columns
after the attributes. Relationships are managed de-
pending on the multiplicity of the participants.

3 ARMISTICE: CASE STUDY

ARMISTICE is a risk management information sys-
tem for a large company. It is a three-tier client/server
vertical application which is able to:

• Model contracted policies.

• Select the most suitable warranty to cover re-
sources damaged in an accident.

• Manage the claims for accidents.

• Manage another several accident-related tasks
(payments, invoices, repairs. . .).

ARMISTICE logic is structured in three compo-
nents. Therisk subsystemmodels a set of basic con-
cepts: risk situations (e.g. a shop), risk situations at-
tributes (e.g. merchandise value), risk groups (which
classify risk situations), dangers (e.g. a fire),. . . and
defines the notion ofexposurebased upon dangers
and risk attributes. Thepolicies subsystemuses those
concepts to defineinsurance policiesbased upon ex-
posures and applicability constraints. Finally, the
claims subsystemuses the insurance policy to track
anaccidentaffecting one or more of the covered ex-
posures, providing useful guidance to forecast limits
and franchises and a way to manage the related tasks.

3.1 Actual Armistice Architecture

As we said before, ARMISTICE is a three-tier
client/server application. Client and a server commu-
nicate with each other via XML-RPC, a remote pro-
cedure call protocol which uses HTTP as the transport
and XML as the encoding.

The client, developed in Java, is a thin stand-
alone client, because the complex interactivity ad-
vised against a web or an Erlang-based solution.

Implementing ARMISTICE server using the func-
tional programming language Erlang has shorten the
development cycle, allowed its deployment over a
low-cost cluster, its scalability, and its configuration
in a supervision tree. Combined with these, storage
of its internal state in a distributed database gives it
fault-tolerance and reliability properties.

Last but not least, the use of abstraction in the
form of both functional and design patterns helped
to reduce the programming effort to evolve the pro-
totypes during the iterative development process.

3.2 Discussion

A powerful mixture of technologies has been put on
practice with ARMISTICE. But, at the same time,
there are a lot of work which could be automatically
performed, and the ideas presented in section 2 are
inspired by this reason.

At the moment of writing this article, implemen-
tation of ARMISTICE’s TOs and DAOs is done com-
pletely by hand, as well as are client/server commu-
nication interfaces, etc. These tasks are very monoto-
nous and repeatable, so our XML-based description
framework will make developer’s life much easier, as
they will be able to concentrate on the design and im-
plementation of really important parts (business logic)
and also saving programming errors.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

424

4 CONCLUSIONS AND FUTURE
WORK

This paper has presented an innovative framework
based on the evolution of our first experiences de-
veloping a real application on a distributed functional
language. The proposed architecture could be reused
in other traditional management software develop-
ment and it is a step forward in features like main-
tainability, scalability and availability with regard to
the early architecture.

The implementation of management software us-
ing a functional language may seem an exotic ap-
proach. But the adaptation of O.O. concepts to the
functional environment is a key factor for success.
Another advantage of using Erlang/OTP as the un-
derlying platform for the system development (in ad-
dition to those common in declarative languages), is
that techniques coming from the formal methods area
can be applied in order to improve the system design
and performance (Arts and Benac Earle, 2002), and to
ensure (at least partially) the system correctness (Arts
and Sánchez Penas, 2002). These techniques can be
used more naturally with high level declarative lan-
guages, and their results are specially appreciated in
complex management software.

Also, the design of a full application container
(similar to the available in J2EE (J2EE, 2003)), its de-
sign and development could be a future work line, fo-
cusing on simpler applications where persistence mat-
ters can be hidden. Particularly interesting would be
the development of a persistence layer following the
same philosophy of the Ruby on Rails (RoR) Active
Record, for the Erlang platform. The two main design
principles of RoR, “Don’t repeat yourself” and “Con-
vention over configuration” have proved themselves
as highly productive in this architecture, taking ad-
vantage of the use of simple conventions and metapro-
gramming, which could be applied in the functional
world.

Finally, as far as lightweight-style user interface
development is concerned, we strongly believe that
the integration in the framework of any kind of inter-
face definition language like XUL (XUL, 2003) will
alleviate this task, and will improve interface design
and maintainability.

ACKNOWLEDGEMENTS

This work has been partially supported by Span-
ish MEyC TIN2005-08986 (FARMHANDS:Recur-
sos Funcionales para la Construccin de Sistemas Dis-
tribuidos Complejos de Alta Disponibilidad).

REFERENCES

Armistice (2002). Armistice, Advanced Risk Management
Information System: Tracking Insurances, Claims and
Exposures. http://www.madsgroup.org/armistice.

Armstrong, J. (2002). Getting Erlang to talk to the outside
world.

Armstrong, J., Virding, R., Wikström, C., and Williams, M.
(1996). Concurrent Programming in Erlang, Second
Edition. Prentice-Hall.

Arts, T. and Benac Earle, C. (2002). Verifying Erlang
code: a resource locker case-study. InInt. Symposium
on Formal Methods Europe, volume 2391 ofLNCS,
pages 183–202. Springer-Verlag.

Arts, T. and Sánchez Penas, J. J. (2002). Global scheduler
properties derived from local restrictions. InProceed-
ings of ACM Sigplan Erlang Workshop. ACM.

ASN.1 (2003). Introduction to ASN.1.
http://asn1.elibel.tm.fr/en/introduction/index.htm.

Cabrero, D., Abalde, C., Varela, C., and Castro, L. (2003).
Armistice: An experience developing management
software with Erlang.Proceedings of the 2003 ACM
SIGPLAN workshop on Erlang, pages 23–28.

Corba (2003). Object Management Group.
http://www.omg.org.

Gamma, E. et al. (1999). Design Patterns. Elements
of Reusable Object-Oriented Software. Professional
Computing Series. Addison-Wesley.

Gulı́as, V. M., Abalde, C., Castro, L., and Varela, C. (2005).
A new risk management approach deployed over a
client/server distributed functional architecture. In
Proceedings of 18th International Conference on Sys-
tems Engineering (ICSEng’05). August 16 - 18, 2005,
pages 370–375. IEEE Computer Society.

Gulı́as, V. M., Abalde, C., Castro, L., and Varela, C. (2006).
Formalisation of a functional risk management sys-
tem. InProceedings of 8th International Conference
on Enterprise Information Systems (ICEIS’06). May
23 - 27, 2006, pages 516–519. INSTICC Press.

Hibernate (2006). Hibernate homepage.
http://www.hibernate.org/.

J2EE (2003). Enterprise Javabeans 2.0 Specification.
http://java.sun.com/products/ejb/2.0.html.

Marinescu, F. (2002).EJB Design Patterns. Advanced Pat-
terns, Processes, and Idioms. John Wiley & Sons, Inc.

Ruby (2006). Ruby on rails project homepage.
http://www.rubyonrails.org.

XDR (2003). RFC 1832 - XDR: External Data Representa-
tion Standard. http://www.faqs.org/rfcs/rfc1832.html.

XUL (2003). XML User Interface Language.
http://xul.sourceforge.net.

ERLANG/OTP FRAMEWORK FOR COMPLEX MANAGEMENT APPLICATIONS DEVELOPMENT

425

