
QUERYING WORKFLOWS OVER DISTRIBUTED SYSTEMS

Hanna Kozankiewicz
Institute of Computer Science, Polish Academy of Sciences, Ordona 21, 01-237 Warszawa, Poland

Krzysztof Stencel
Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland

Kazimierz Subieta
Polish-Japanese Institute of Information Technology, Koszykowa 86, 02-008 Warszawa, Poland

Keywords: Workflow, query language, object-oriented, distributed system, pre-condition, post-condition, SBA, SBQL.

Abstract: We describe a new paradigm of declarative workflow, where an activity is modelled as an object which can
have other activities as subobjects. All activities act in parallel and have pre- and post-conditions
determining when they are to be started and when they are to be terminated. The proposal is based on the
Stack-Based Approach (SBA) to object-oriented query languages, query language SBQL and updatable
SBQL views. The idea is currently implemented within the European project eGov Bus.

1 INTRODUCTION

During our previous experience with workflow
management software (Momotko, 2004), (Momotko,
2005) we have made important observations
concerning the nature of querying a workflow data
environment and the nature of workflows.
Workflows are usually perceived as activities and
transitions (WfMC, 1995) in the spirit of Petri nets.
This view is common and quite successful, but has
disadvantages. There are problems concerning
parallel execution of sub-processes in a distributed
environment. Usually the parallelism is supported by
split/join operations build into the control of the
workflow. However, such synchronization of
parallel processes might be hard in many practical
situations, e.g. when splitting/joining concerns
statically unknown number of sub-processes. Such
situations are frequent in distributed and
heterogeneous workflow environment. There are
other disadvantages of too stiff control flow within
some graph of activities.

In the current projects we investigate an
alternative paradigm, when activities are objects in
an object-oriented model and sub-activities are sub-
objects. By definition, all such objects have some

attributes which can be queried, but they have also
executable parts which by definition run in parallel.
We provide synchronization means known as pre-
conditions and post-conditions that make it is
possible to start and terminate particular activities.
Sequential execution of activities can be forced by a
pre-condition of a next activity that depends on the
state of a previous one. For a complex activity a
post-condition determines when it has to be
terminated. Pre-conditions and post-conditions are
formulated in a query language which may work on
the entire workflow environment, the state of all the
population of workflow processes and the state of
resources (e.g. workflow performers). The
advantages of the approach concern, in particular,
inherent parallelism of activities, easier distribution
of parallel activities among many machines and
dynamic changes of executed processes (e.g. by
runtime inserting a new activity or removing an
activity). Synchronization of workflow sub-
processes by a post-condition corresponds to join
operators in a typical workflow definition language,
but a post-condition expressed as a query is
incomparably more powerful and flexible.

The proposed paradigm makes workflows close
to PERT nets that are used in project planning to

251Kozankiewicz H., Stencel K. and Subieta K. (2007).
QUERYING WORKFLOWS OVER DISTRIBUTED SYSTEMS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Society, e-Business and e-Government /
e-Learning, pages 251-254
DOI: 10.5220/0001285102510254
Copyright c© SciTePress

analyse critical time paths and other features of
available resources. PERT nets assume inherent
parallelism of processes, constrained however by
their in-out dependencies and availability of
resources necessary for execution. We argue that
this paradigm is worth investigation concerning new
qualities that it may bring for definition and
execution of workflow processes and to make them
more flexible for dynamic changes and parallel
execution.

Our approach is based on the Stack Based
Approach (SBA) to query languages and its
powerful query/programming language SBQL
(Subieta, 2004), (Subieta, 2006). The language can
be used to perform efficient tracking and monitoring
tools for population of workflows, just like in BPQL
(Momotko, 2004). We propose a new metamodel for
workflow processes and then show how SBQL can
be used in workflow-specific applications. An
important element of our architecture is that a
workflow system can work on resources that are
distributed among different organizations.

2 ARCHITECTURE OF A
DISTRIBUTED WORKFLOW

A workflow mechanism operates on top of a virtual
store which integrates data and services from
different distributed sources. The details concerning
the store are described e.g. in (Kozankiewicz, 2005).
It is implemented by means of updatable views.

The resources are supplied by local servers.
Local schemata have to be adapted to the
requirements of the virtual store. To this end, the
administrators of local servers have to implement
wrappers, which provide mappings of local
data/services to the global canonical data/service
model assumed by the virtual store. These wrappers
can be implemented as updatable views. A basic
integration mechanism is on an intermediate server,
which contains integrators that virtually fuse
resources supplied by local servers. Integrators
resolve heterogeneities and redundancies and join
fragmented collections. Integrators are also to be
implemented as updatable views. On a client level
there are customization views that adopt the global
virtual schema to the need of a particular client
application and determines client’s access privileges.
A workflow mechanism is on a special server which
through the virtual store can access all the
distributed resources. The workflow server is
connected to its clients (workflow participants).

Such integration of e-Gov resources supported
by various partly independent institutions allows

building a workflow system over a distributed e-Gov
infrastructure. When resources are virtually
integrated, one can use the query/programming
language SBQL to write applications, with the use of
abstractions such as classes, methods, procedures
and updatable views. SBQL is also used in
definitions of workflow processes to query all the
workflow environment (through the workflow
metamodel) and to formulate pre- and post-
conditions for particular workflow activities.

3 DECLARATIVE WORKFLOWS

Our basic assumptions for workflow systems built
on top of a virtual store are as follows. Each activity
is modelled as an object. It can consist of sub-
activities, i.e. sub-objects. There is no restriction on
the size and the number of levels of the hierarchy of
the activity nesting. The top level activity can be
considered a workflow process.

Activities can be dynamically inserted into a
super-activity or removed from it. In such a way we
provide a flexible mean to adapt processes/activities
to dynamically changing complex application
requirements. There is no explicit graph describing
control flow between activities, because for many
workflow types such graphs are not enough flexible
concerning parallel execution, dependency on
resources necessary for an activity and the
possibility of runtime workflow changes. Instead, all
activities have pre- and post-conditions defining
when they are to be started and when they are to be
finished. Such conditions are expressed in SBQL.

Activities can include inner objects, procedures,
views, etc. Atomic activities have executable parts
that work concurrently to other activities. For
complex activities an executable part can be treated
as sub-activity. A sub-activity can be initialised if
and only if its super-activity has been initialised. All
activities are described by definitions, which can be
used e.g. to create activity instances and to type
checking. Not all sub-activities must be terminated
to terminate the given activity – this depends on its
post-condition only. Similarly, terminating all sub-
activities does not necessarily mean that the given
activity must be terminated too.

One of possible goals of our idea is to support
life events of citizens or enterprises. In Figure 1 we
show how activities related to a life event ‘family
location change’ are represented using our workflow
model. On the first part we show sub-activities such
as changing residence, changing schools, changing
home MD, and so on. On the second part we show

WEBIST 2007 - International Conference on Web Information Systems and Technologies

252

how the process of changing location can be
modelled as a hierarchy of workflow activities. Note
that the activity ‘Change school’ can appear zero,
one, or more times, depending on the number of
children in the family.

Figure 1: Activities as objects.

Activity instances are complex objects with the
following example structure:

ActivityName{ ontology, priority, …
activityState,
precondition, action,
cost, duration, deadline,…
refs to performers,
refs to subactivities,
postcondition,
ref to ActivityDef,
local objects, procedures, …}

Each activity is identified by its name, which bears
its business semantics. An activity can be in several
states (waiting, pending, terminated, etc.). Complex
activities have references to their subactivities and
post-condition. An activity may have a reference to
its definition in some metamodel.

Activity instances can generate activity
instances. In this way, in particular, one can organize
loops of some activities. As objects, activities can be
connected to classes containing some of their
invariant properties. The code of activity actions
may require special workflow-oriented functions,
such as an access to workflow client software.

4 SBQL FOR WORKFLOWS

In SBQL we can easily define workflow-specific
procedures and functions. For simplification we skip
typing information and make some simplifications
concerning right object naming and SBQL syntax.
The following function returns activities which are
in one of the states specified by the parameter and
have the highest priority.

procedure HighestPriorityActiv(states) {
 create maxPriority = max(Activity.priority);
 return Activity where priority = maxPriority

 and activityState ∈ state; }

The function can be called in the following query,
that selects all suspended and pending actives with
deadline during the next 10 days:

HighestPriorityActiv(bag(‘suspended’, ‘pending’))
where deadline – currentDate < 10

By SBQL recursive procedures one can easily
process nested activity structures, e.g. evaluate cost
of an activity and all its sub-activities:

procedure getActivityCost(act) {
 create local c = act.cost;
 for each act.subactivity.Activity as a do
 c := c + getActivityCost(a));
 return c; }

A workflow system can offer a large set of
predefined workflow procedures and functions, for
instance, a function returning the best workflow
participant for the given task, a function that
recursively returns all sub-activities, a procedure that
insert a new activity into the given one, etc.

SBQL can also be used to write pre- and post-
conditions. Below, we present a query which checks
whether we can find an employee with the current
workload less than 10 activities:

exists (Performer where
count(performs.Activity) < 10)

The next query is a post-condition of an activity that
verifies whether all its sub-activities with the name
‘Order Approval’ have been successfully finished:

forall (self.subactivity.OrderApproval) holds
activityState = ‘completed’

Pre- and post-conditions can be the subject of
manipulations during runtime, in particular, new
pre- and post-conditions can substitute the previous
ones by using a proper SBQL statement. Such
property of programming languages is known as
reflection, i.e. dynamic modification of a running
program. Reflexive capabilities require careful

QUERYING WORKFLOWS OVER DISTRIBUTED SYSTEMS

253

treatment in the programming language, in
particular, they are more difficult for strong type
checker. For this reason the function that modifies
pre- and post-conditions is not a regular assignment
function but the function that calls parser, compiler
and optimizer and then converts a condition into an
executable bytecode.

Another application of SBQL queries and
procedures is monitoring and tracing of the entire
population of workflow processes. Below we present
some examples.

• List all pending activities with the deadline
expiring during the next 3 days:

Activity where activityState= ‘pending’ and
 deadline – currentDate < 3

• List all pending activities which can be started,
i.e. all their pre-conditions are valid. In this
example we use a function valid that checks if a
set of conditions is fulfilled.

Activity where activityState = ‘pending’
 and valid(precondition)

• List all active activities which have already
missed their deadlines.

Activity where activityState = ‘active’ and
 deadline < currentDate

• List all activities which are close to their
deadlines and not assigned to anyone yet.

Activity where count(performers) = 0
and deadline – currentDate < 3

• List all activities performed by overloaded
employees, i.e. employees assigned to instances
of activities which must be completed in
following 7 days while their total duration is
greater that 40 working hours:

 Activity where sum(performers.Performer.
 performs. (Activity where deadline <
 currentDate + 7) . duration) > 40

5 CONCLUSIONS

We have shown how a declarative workflow systems
can be implemented on the top of distributed object-
oriented systems. The case covers most of e-
Government applications where complicated
routines should be performed at multiple institutions.
If a citizen or a company faces a life event, a number
of governmental agencies is to be involved in

serving it. The goal of an e-Government system
should be to let this citizen carry out a single visit to
one governmental web page in order to act upon this
life event. He/she should not be forced to visit many
web pages with different rules of the user behaviour.

A carefully designed workflow system on the top
of integrated e-Government resources is able to
achieve this goal. Such a system will facilitate the
concurrency of processes by using more powerful
synchronization mechanisms in comparison to join
and split operators. The critical feature is flexibility
of dynamic changes of processes. Furthermore, such
a system should support effective monitoring and
tracing of the entire population workflow processes
and activities, including resources and documents
necessary to perform them. For such complex
situation it seems that a high level database query
and programming language like SBQL is the best
choice.

ACKNOWLEDGEMENTS

This work is supported by European Commission
under the 6th Framework Programme project e-Gov
Bus, IST-4-026727-ST

REFERENCES

eGov Bus, 2006. Advanced eGovernment Information
Service Bus Project. http://www.egov-
bus.org/web/guest/home

Momotko, M., Subieta, K., 2004. Business Process Query
Language - a Way to Make Workflow Processes More
Flexible. Proc. of ADBIS 2004, Springer LNCS 3255,
pp. 306-321

Momotko, M., 2005. Tools for Monitoring Workflow
Processes to Support Dynamic Workflow Changes.
PhD Thesis, 2005. http://www.ipipan.waw.pl/~subieta/
→ Finished PhD-s

Subieta, K., 2004. Theory and Construction of Object-
Oriented Query Languages. Editors of the Polish-
Japanese Institute of Information Technology, 520
pages (in Polish)

Subieta, K., 2006. Stack-Based Approach (SBA) and
Stack-Based Query Language (SBQL).
http://www.sbql.pl

WfMC, 1995. Workflow Management Coalition: The
Workflow Reference Model, WfMC-TC-1003 issue
1.1

Kozankiewicz, H., Stencel, K., Subieta, K., 2005.
Implementation of Federated Databases through
Updatable Views. Proc. of the European Grid
Conference, Springer LNCS 3470, pp. 610-620

WEBIST 2007 - International Conference on Web Information Systems and Technologies

254

