
A FLEXIBLE MODEL FOR PROVIDING TRANSACTIONAL
BEHAVIOR TO SERVICE COORDINATION IN AN

ORTHOGONAL WAY

Alberto Portilla∗, Genoveva Vargas-Solar, Christine Collet
LSR-IMAG Laboratory, BP 72, 38402 Saint Martin d’Hères, France

José-Luis Zechinelli-Martini
CENTIA, Universidad de las Américas Sta Catarina Martir, Puebla, Mexico

Luciano Garcia-Bañuelos
Departamento de Ciencias Básicas, Ingenierı́a y Tecnologı́a,Universidad Autónoma de Tlaxcala, Mexico

Keywords: Transactional behavior, advanced transactional models, services oriented systems, services based applications,
web services.

Abstract: A key step towards consistent services coordination is providing non functional properties. In that sense,
transactional properties are particularly relevant because of the business nature of current applications. While
services composition has been successfully addressed, transactional properties of services composition have
been mainly provided byad-hocand limited solutions at systems’ back end. This paper proposes a trans-
actional behavior model for services coordination. We assume that given a flow describing the application
logic of a service based application, it is possible to associate to it a personalized transactional behavior in
an orthogonal way. This behavior is defined by specifying contracts and associating a well defined behavior
to the activities participating in the coordination. Such contracts ensure transactional properties at execution
time in the presence of exceptions.

1 INTRODUCTION

A key step towards consistent services coordination
is providing non functional properties. In that sense,
transactional properties are particularly relevant be-
cause of the business nature of current applications.
While services composition has been successfully ad-
dressed, transactional properties have been mainly
provided to services coordination byad-hocand lim-
ited solutions at systems’ back end. In service based
applications, a service is a software component, avail-
able on a network, that offers some functions by ex-
porting an application programming interface (API).
Nowadays, services based applications are built by
coordinating interactions among several services.

Figure 1 shows an example of a service based

∗Supported by the Mexican Education Council through
the program for improving the teaching system in mexican
public universities (PROMEP-SEP), the Autonomous Uni-
versity of Tlaxcala, México and the Jenkins Excellence Fel-
lowship Program at UDLA.

application for trip reservation, composed using ser-
vices of several providers. In the Figure, boxes rep-
resent activities and each activity represents a service
method call. Let us consider that this application im-
plements the following logic: given a reservation it is
necessary to get a bank authorization for the payment
(a1). If the payment has been guaranteed, the flight
reservation (a2), the hotel reservation (a3) and the car
reservation(a4) can be done, otherwise the reservation
is canceled (a5). In addition, there are transactional
issues that must be considered, some are related to
application semantics and others to activities seman-
tics. In this example, we can consider the following
aspects: before making a reservation (flight, hotel or
car) the payment must be authorized (a1); a reser-
vation cannot be rejected (a5) and processed at the
same time (a2, a3 and a4). Furthermore, there are
several alternatives for executing an activity (e.g. a
flight reservation can be completed using Mexicana,
Air France or British Airways). Some activities are
critical for the success of the application. For exam-

104
Portilla A., Vargas-Solar G., Collet C., Zechinelli-Martini J. and Garcia-Bañuelos L. (2007).
A FLEXIBLE MODEL FOR PROVIDING TRANSACTIONAL BEHAVIOR TO SERVICE COORDINATION IN AN ORTHOGONAL WAY.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 104-111
DOI: 10.5220/0001289001040111
Copyright c© SciTePress

ple, while the flight and hotel reservations are critical
for the acceptance of the trip reservation, an unsuc-
cessfully car reservation can be tolerated. Some ac-
tivities can be retried in case of failure. For example,
asking for the bank authorization or booking the flight
can be retried several times.

Figure 1: Service based application example.

Transactional behavior for services coordina-
tion is currently addressed in three ways: it is
explicitly defined within the application logic by
adding sequences of activities to its workflow (e.g.
(Vidyasankar and Vossen, 2004), (Schuldt et al.,
2002), etc.); it is implemented by transactional pro-
tocols (e.g. BTP (Furniss, 2004), WS-Tx (Cox et al.,
2004), etc.); or it is specified by transactional poli-
cies expressed using transactional coordination lan-
guages (e.g.,πt-calculus (Milner et al., 1992), (Bhiri
et al., 2005), etc.). However, this leads to complex
service based applications difficult to maintain and
hardly adaptable to different application requirements
(Hagen and Alonso, 2000; Vargas-Solar et al., 2003;
Derks et al., 2001).

This paper proposes a model for specifying trans-
actional properties for services coordination. Given
a coordination describing the application logic of a
service based application it is possible to associate it
with a transactional behavior. Our approach addresses
atomic behavior based on atomicity contracts for as-
sociating atomicity properties and recovery strategies
to sets of activities (i.e., spheres (Davies-Jr, 1978; Ha-
gen and Alonso, 2000; Leymann and Roller, 1997)).
Our model separates the specification of coordination
and transactional behavior as follows:
• The application logic is captured by using a coor-

dination approach based on workflows.

• Transactional behavior is defined by contracts ac-
cording to the behavior of services participating
in a coordination and the semantic of the target
service based application.

Our approach proposes recovery strategies for ensur-
ing transactional behavior of services coordination.
Such strategies can be chosen according to specific
application requirements. Thus, the same type of ap-
plication can have different associated behaviors ac-
cording to given application requirements.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the main concepts of the

transactional behavior model that we propose. Sec-
tion 3 illustrates the specification of transactional be-
havior for a target application through a use case. Sec-
tion 4 compares our work with existing approaches
that provide transactional properties to services coor-
dination. Finally, Section 5 concludes this paper and
discusses future work.

2 TRANSACTIONAL
COORDINATION MODEL

A coordination model can be used for expressing an
application logic defined by an orchestration. An or-
chestration specifies the workflow whereby activities
are synchronized using ordering operators. Acoord-
ing to its role within the application logic, an activity
has an associated behavior that specifies the way it
should be handled under the presence of exceptional
situations.

2.1 Service

A service represents a set of functions provided by
an autonomous software component through a port.
It is formally defined as a quadruple〈S-name, FM ,
NM , P 〉 where:

• S-name is the name of the service.

• FM and NM are interfaces consisting of a fi-
nite set of methods that provide respectively func-
tional and non functional aspects, for example
XA/XOPEN (The-Open-Group, 1991). A method
is defined by a tripleM=〈M -name, In, Out〉
where:

– M -name is the name of the method.

– In andOut are respectively the sets of input
and output parameters.

– A parameter is defined by a tuple〈P -name,
Type〉, where:

∗ P -name is the name of the parameter.
∗ Type represents a predefined type such as

boolean, string, integer, etc.

• P is the communication port used for interacting
with the service.

The trip reservation application previously introduced
uses three service providers (see Figure 1):bankthat
controls financial operations executed on accounts
(Provider 1), travel agencythat rates and manages
flight and hotel reservations (Provider 2), and car
rental company that manages car rental (Provider 3).

A FLEXIBLE MODEL FOR PROVIDING TRANSACTIONAL BEHAVIOR TO SERVICE COORDINATION IN AN
ORTHOGONAL WAY

105

2.2 Orchestration

An orchestration describes an application logic
through control and data flows. In our work an or-
chestration is defined using a Petri net, where a place
models the states among two transitions. A transition
represents a task, hereinafter, refered as activity. A
token represents an execution state. A directed arc is
used to link places and transitions. A Petri net is de-
fined as a triple〈PL, A, F 〉 (van der Aalst and van
Hee, 2004) where:

• PL is a finite set of places.

• A is a finite set of transitions,PL ∩ A = φ.

• F ⊆ (PL x A) ∪ (A x PL) is a set of arcs.

Using Petri nets the control flow of an orchestration
is expressed by order operators (sequential routing,
parallel routing, selective routing, and iteration) that
relate activities. The data flow is embedded within
the control flow. Figure 2 shows the orchestration of
the trip reservation example: places are represented
as circles (p1, p2, p3, p4, p5 andp6), transitions are
represented as boxes (a1, a2, a3, a4 anda5), tokens
are represented as black circles, and flow relationships
are represented as arrowed lines.

Figure 2: Service based application with Petri nets.

2.3 Activity

Depending on its role within an application logic,
an activity can have different behaviors at execution
time in the presence of failures (Gray, 1981; Eder and
Liebhart, 1996).

2.3.1 Behavior

There are three possible scenarios for characterizing
the behavior:

1. An activity can be rolled-back/undone, but pos-
sible side effects must be taken into account. In

the trip reservation example (see Figure 1), undo-
ing the flight reservation (a2) can imply an extra
charge.

2. A committed activity can be compensated by a so
called compensation activity that semantically un-
does its actions but it does not necessarily gets
back the application to the previous state before
the activity was committed. For example, in
the trip reservation application, canceling a flight
reservation can be undone with an extra charge
which does not return the balance account to the
previous state. However, there are some activities
that cannot be undone, for example personalizing
an item using laser engraving.

3. The execution of an activity can be retried several
times within the same coordination. In our ex-
ample, hotel reservation can be executed several
times. However, retrying an activity can be asso-
ciated to other constraints according to its beha-
vior, such as the number of times that an activity
can be retried.

Considering the above scenarios an activity can be2:

• Non vital. The activity does not need to be com-
pensated if it has to be undone/rolled back after
having committed. For example, let us assume
an activity that uses the trip reservation informa-
tion for sending commercial information. It can
be defined as non vital because the reservation can
be done even if the customer does not receive the
publicity.

• Critical. There is no way to compensate or undo
the effects of an activity once it has been commit-
ted. Recalling the trip reservation example, the
activity bank authorization is critical because once
a reservation has been authorized the bank cannot
change its opinion. So the execution of the reser-
vation cannot be stopped for this reason.

• Undoable. A commited activity can be undone
by a compensating activity without causing side-
effects. Once it has been compensated the activity
can be retried. In our example the activity hotel
reservation can be defined as undoable, assuming
that a hotel reservation can be canceled at most
three days before the date of arrival.

• Compensatable. A commited activity can be un-
done by a compensating activity with associated
side-effects. Once it has been compensated the
activity can be retried but with side effects such
as extra costs. In our trip reservation example the
activity flight reservation can be undone by an ac-
tivity that cancels the flight and that reimburses a

2For the time being, this classification is non exhaustive.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

106

percentage of the original amount to the costumer
account.

2.4 Sphere

A sphere groups together sequences of activities or
spheres. In the following letA be a set of activities.
This set may be obtained from an orchestration de-
fined as a Petri net〈PL, A, F 〉. The set of spheres
associated toA denotedS(A) is defined by following
rules:

1. If ai ∈ A, then(ai) ∈ S(A) is a simple sphere
andai is called the component of the sphere. For
examples2 in Figure 3, wheres2 = (a5).

2. If s1, s2, ...,sn ∈ S(A), (s1,s2,...,sn) ∈ S(A)
is a complex sphere ands1, s2, ...,sn are called
the components of the sphere. For examples1 in
Figure 3 wheres2 = ((a2), (a3), (a4)). Similarly,
S3 is a complex sphere wheres3 = (s1, s2).

Figure 3: Spheres example.

2.4.1 Behavior

The behavior of a sphere at execution time can be de-
duced from the behavior of its components. Given a
sphereS its behavior is deduced according to the fol-
lowing rules:

• S is non vital, if its components are non vital.
For example, assuming that components (a2), (a3)
and (a4) are non vital the spheres1 is non vital
(see Figure 3).

• S iscritical, if it contains at least one critical com-
ponent that has been committed. For example as-
suming that the component (a2) is critical and it
has already been committed, then spheres1 is crit-
ical (see Figure 3). Note that a token in placep3

indicates that (a2) is committed for a given execu-
tion state.

• S isundoable, if all its components are undoable
or non vital. For example assuming that (a2) is
non vital and (a3) and (a4) are undoable, sphere
s1 is undoable (see Figure 3).

• S iscompensatable, if all its components are non
vital, undoable or compensatable. For example
assuming that (a2) is non vital, (a3) is undoable,
and (a4) is compensatable, spheres1 is compen-
satable (see Figure 3).

Note that the behavior of a sphere is determined at
run time since it depends on the behavior of its com-
ponents and on their execution state. For example,
consider spheres1 in Figure 3 with component (a3)
defined as critical. Thens1 is compensatable before
(a3) commits, and it becomes critical after (a3) has
been committed.

2.4.2 Well Formed Sphere

A sphereS is well formed if it contains at most one
critical component, denoted asccr, or all components
within the sphere are not critical. Note that whenS
contains a critical activity, onceccr commitsS must
commit becauseccr cannot be compensated or un-
done. In such a case, for ensuring thatS commits
whenccr commits, it is necessary that the set of com-
ponents to be executed afterccr must be retriable. For
example, spheres1 in Figure 3 is well formed if (a2)
is compensatable, (a3) is critical and (a4) is undoable.

2.5 Contract

A contract specifies a transactional behavior for a
sphere (e.g. atomicity, isolation, etc.). It specifies
a recovery strategy that must be executed in case of
failure according to the sphere behavior. In order to
define such strategies we introduce the concept of safe
point.

2.5.1 Safe Point

Given a simple sphereS its safe point is either the
most recent critical component committed withinS
or the activity/sphere before the first component ofS.
The safe point represents the last consistent state of
a coordination before the execution ofS. If S fails,
it is possible to cancel the components withinS and
restart the execution from the safe point. For example,
a1 can be a safe point for spheres1. Assuming that
a1 is the safe point ofs1, it is also the safe point for
spheres3 if spheres2 is well formed and spheres2 is
undoable (see Figure 3).

A FLEXIBLE MODEL FOR PROVIDING TRANSACTIONAL BEHAVIOR TO SERVICE COORDINATION IN AN
ORTHOGONAL WAY

107

2.5.2 Recovery Strategies

There are three main recovery strategies that can be
implemented in case of failure: forward execution,
backward and forward recovery. Recovery strategies
help to decide wether the execution of a coordination
can continue after the occurrence of a failure. Given
a well formed sphereS with its associated safe point
SP :

• Forward execution. If a retriable or non vital com-
ponent inS fails the execution ofS can proceed
anyway. For example considering that all compo-
nents ofs1 are non vital (see Figure 3), its exe-
cution can proceed even if one of its components
fails.

• Backward recovery. If a component inS fails and
forward recovery cannot be applied then previ-
ously committed components inS are undone by
their corresponding compensating activities until
a safe point is reached. For example, assume that
the components ins1 are defined as follows: (a2)
and (a3) are compensatable and (a4) is critical. If
during the execution ofs1, (a3) fails, then (a2)
and (a3) are succesively compensated untila1 is
reached.

• Forward recovery. It combines backward recov-
ery and forward execution. If forward execution
cannot be applied because a critical or compensa-
table component has failed then apply backward
recovery until a safe point is reached and forward
execution with a different execution path can be
applied.

Using one of the above recovery strategies de-
pends on the type of component that fails and the type
of previously executed components.

2.6 Atomicity contracts

A classic example of a transactional behavior is ato-
micity. We used the notion of contract and recovery
strategies for defining so called atomicity contracts.
We show in the following the definition of a strict
atomicity contract3. Intuitively, an atomicity contract
specifies that given a sphereS all its components must
be successfully executed or no component at all. The
strict atomicity contract is defined by the following
rules. Given a well formed sphereS:

• Rule 1. If a critical component inS fails, the
sphere fails and backward recovery is applied.

3In fact, we are relaxing the classic atomicity concept.

• Rule 2. If a component inS fails and the critical
component ofS has already been committed then
forward execution is applied untilS commits.

• Rule 3. If a component inS fails and the criti-
cal component ofS has not yet been committed,
forward execution is applied untilS commits. If
the component has failed repeatedlyS fails and
backward recovery is applied.

3 DEFINING TRANSACTIONAL
BEHAVIOR FOR AN
E-COMMERCE APPLICATION

Consider the e-commerce application illustrated in
Figure 4. A costumer first provides an order and
her/his account information, then the system sends
commercial information. If the purchase is authorized
by the bank, the purchase can proceed; otherwise the
order is canceled. For processing authorized orders,
the stock is checked and the purchase process starts.
If products are available the purchase is applied to an
account, an invoice is sent and the order is completed;
at the same time the packet is wrapped and deliv-
ered. On the other hand, if products are not available,
the payment and the shipment are canceled. Thus
the application logic (see Figure 4) of such an appli-
cation specifies activities for defining and authoriz-
ing an order (Get Order(), Get Payment Information(),
Bank Authorization()); and four other execution paths
for:

• Sending commercial information:
Send Commercial Info();

• Stop a rejected order:Cancel Order();

• Processing an authorized order:Process Order(),
Check Stock(), Wrap() and Deliver() (if there
is enough stock); orCancel Shipment(), Can-
cel Payment() (if there is not enough stock).

• Executing the purchase: Apply Charges(),
Send Invoice(), Finish Order().

3.1 Activities

The company that uses this application has specific
business rules that must be respected. For instance:

• BR1: the bank authorization can be only executed
once during the process of an order.

• BR2: once a package has been delivered it cannot
be returned to the company.

• BR3: The company has implemented packages
recycling strategies, so if a package has been

WEBIST 2007 - International Conference on Web Information Systems and Technologies

108

Figure 4: E-commerce application with transactional requirements.

wrapped, the wrapping paper can be removed and
used for other packages.

• BR4: Invoices can be canceled.

• BR5: If clients are unsatisfied with the products
they can return it to the company but extra charges
are applied.

Considering such business rules, we associated the
following behaviors to activities (see Figure 4):

• Bank authorization() andDeliver() are critical ac-
tivities (BR1, 2).

• Wrap() andSend invoice() are undoable activities
(BR3, 4).

• Apply charges() is a compensatable activity
(BR5).

• The remaining activities are non vital ones be-
cause no specific business rule is specified in the
application.

It must be noted that activities behavior depends on
the application semantics. If the application changes
its business rules, activities behavior can change. An
advantage of our approach is that this can be easily
done because the application logic and the transac-
tional behavior aspects are defined separately.

3.2 Spheres

The business rules defined in the previous section
concern activities behavior. Still, the following busi-
ness rules concern more complex patterns that com-
plete the application semantics. The authorization of

the bank is requested once the costumer information
has been obtained (BR6). An order is finished only
when charges have been applied to an account and
the corresponding invoice has been sent (BR7). Once
packages have been packed they must be shipped
(BR8). The purchase is finished once the package
is delivered and the order has been processed (BR9).
Thus the following spheres and their associated be-
haviors must be defined:

• S1 groups components involved in
the order authorization ((Get Order()),
(Get Payment Information()), (Bank Authoriza-
tion())). S1 is a critical sphere because it contains
the critical component (Bank authorization()).

• S2 groups activities used for implementing
the order processing ((Apply Charges()),
(Send Invoice()), (Finish Order())). S2 is
compensatable because (Apply Charges()) is a
compensatable component.

• S3 groups activities for delivering the package
((Wrap()), (Deliver())). S3 is critical because it
contains a critical component (Deliver()).

• S4 groups spheresS2 and S3 for ensuring that
the purchase will finish only if the package is
wrapped and delivered and the payment has been
executed and the invoice has been sent.S4 is a
critical sphere becauseS3 is critical.

Note that all spheres are well formed because they
contain at most one critical component.

Once spheres have been defined, they must be as-
sociated to contacts that specify strategies to be under-
taken at execution time in the presence of failure. In

A FLEXIBLE MODEL FOR PROVIDING TRANSACTIONAL BEHAVIOR TO SERVICE COORDINATION IN AN
ORTHOGONAL WAY

109

the case of our example, we have identified spheres
requiring strict atomicity properties in order to ful-
fil BR7-9. Coupled with the strict atomicity contract
that we defined in Section 2.6,S1 ensures BR6,S2

ensures BR7,S3 ensures BR8, andS4 ensures BR9.

4 RELATED WORKS

Several research projects have addressed transactional
behavior for information systems, first in the context
of DBMS and after for process oriented systems.

In DBMS, transactional behavior has been tack-
led successfully to data through the concept of ACID
transactions (Delobel and Adiba, 1982; Ozsu and
Valduriez, 1999; Doucet and Jomier, 2001; Gray
and Reuter, 1993) and advanced transactional models
(Garcı́a-Molina and Salem, 1987; Elmagarmid et al.,
1990; Wachter and Reuter, 1992). These approaches
are well suited when data reside in one site and trans-
actions lifetime is short. Besides they operate with
homogeneous execution units and therefore they are
not applicable directly to others environments such as
Internet.

In workflow systems there are several approaches
that aim at ensuring consistency among computations
using process as execution units. WAMO (Eder and
Liebhart, 1995) introduces a complex transactional
language for workflows. (Hagen and Alonso, 2000)
introduces an approach to add atomicity and excep-
tion handling for IBM-FlowMark. (Grefen et al.,
2001) proposes a workflow definition language to im-
plement the saga model. (Derks et al., 2001) ad-
dresses atomic behavior for workflows by means of
spheres. (Schuldt et al., 2002) proposes a model
based in flexible transaction model for handling con-
currency and recovery in process execution. However
these approaches address transactional behavior in an
ad-hocfashion.

In Web services, transactions are used to ensure
sound interactions among business process. Web ser-
vices transactions (WS-Tx) (Cox et al., 2004) and
business transaction protocol (BTP) (Furniss, 2004)
remain as the most accepted protocols for coordinat-
ing Web services. A coordination protocol is a set
of well-defined messages that are exchanged between
participants of a transaction scope. However, these
approaches do not offer mechanisms to ensure cor-
rectness in the specification because there is no ref-
erence model and the developer implements transac-
tional behavior.

Other approaches provide transactional frame-
works. (Fauvet et al., 2005) introduces a model for
transactional services composition based on an ad-

vanced transactional model. (Bhiri et al., 2005) pro-
poses an approach that consists of a set of algorithms
and rules to assist designers to compose transactional
services. In (Vidyasankar and Vossen, 2004) the
model introduced in (Schuldt et al., 2002) is extended
to web services for addressing atomicity. These ap-
proaches support the definition of atomic behavior
based in the states of termination of activities with
execution control flow defined a priori, which makes
them not adaptable.

There are other approaches, transaction policies
(Tai et al., 2004),πt-calculus (Bocchi et al., 2005)
and transactional Web services orchestration (Hrast-
nik and Winiwarter, 2006), that address transactional
behavior to web services based on existing proto-
cols (BTP and WS-Tx) and therefore implement par-
tially transactional behavior without a clear separation
among application logic and transactional require-
ments.

In contrast to Web services protocols and frame-
works, we consider that transactional aspects can
be separated from the coordination specification and
tackled using a general point of view. In this way our
model fulfills the current spirit of reusing practices
existing in software engineering.

5 CONCLUSIONS AND FUTURE
WORK

The main contribution of this paper is an approach
that adds transactional behavior to services coordina-
tion. For modeling transactional behavior, we intro-
duce a model based on behavior of activities and set
of activities (spheres). The contract concept is used
for addressing a transactional behavior to spheres.
Our model can be added to existing coordination ap-
proaches with minor changes but must important re-
specting the application logic. Our behavior model
can be scaled because spheres can be defined recur-
sively. Different from existing proposals our approach
enables the definition of transactional behavior with-
out implying the modification of the original appli-
cation logic. Besides, our model is not based in any
advanced transactional model, but enables such kind
of behavior if necessary.

We are currently formalizing our model to pro-
vide a general framework for specifying transactional
properties for services coordination and for ensuring
such properties at execution time. We are also con-
ducting the implementation of a contract management
engine that can be plugged in existing orchestration
engines to enact transactional orchestrations.

Finally, we will explore how our behavior model

WEBIST 2007 - International Conference on Web Information Systems and Technologies

110

can be extended to address other properties such as
isolation, and durability.

ACKNOWLEDGEMENTS

This research is partially related to DELFOS project
of the Franco-Mexican Laboratory of Informatics
(LAFMI) of the French and Mexican governments.

REFERENCES

Bhiri, S., Godart, C., and Perrin, O. (2005). Reliable
web services composition using a transactional ap-
proach. In International, I., editor,O. e-Technology,
e-Commerce and e-Service, volume 1 ofeee, pages
15–21.

Bocchi, L., Ciancarini, P., and Rossi, D. (2005). Transac-
tional aspects in semantic based discovery of services.
In Jacquet, J.-M. and Picco, G. P., editors,COORDI-
NATION, volume 3454 ofLecture Notes in Computer
Science, pages 283–297. Springer.

Cox, W., Cabrera, F., Copeland, G., Freund, T., Klein, J.,
Storey, T., and Thatte, S. (2004). Web services trans-
action (ws-transaction). Technical specification, BEA
Systems, International Business Machines Corpora-
tion, Microsoft Corporation, Inc.

Davies-Jr, C. T. (1978). Data processing spheres of control.
IBM Systems Journal, 17(2):179–198.

Delobel, C. and Adiba, M. (1982).Bases de données et
systèmes relationnels. Dunod, Informatique.

Derks, W., Dehnert, J., Grefen, P., and Jonker, W. (2001).
Customized atomicity specification for transactional
workflows. InProceedings of the International Sym-
posium on Cooperative Database Systems and Appli-
cations, pages 155–164. IEEE.

Doucet, A. and Jomier, G., editors (2001).Bases de données
et internet, Modèles, languages et système. Hermes,
Informatique et Systèmes d’information. Lavoisier,
first edition.

Eder, J. and Liebhart, W. (1995). The workflow activity
model WAMO. InConference on Cooperative Infor-
mation Systems, pages 87–98.

Eder, J. and Liebhart, W. (1996). Workflow recovery. In
Proceedings of the International Conference on Co-
operative Information Systems. CoopIS’96.

Elmagarmid, A. K., Leu, Y., Litwin, W., and Rusinkiewicz,
M. (1990). A multidatabase transaction model for in-
terbase. InProceedings of the sixteenth international
conference on Very large databases, pages 507–518,
San Francisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.

Fauvet, M.-C., Duarte, H., Dumas, M., and Benatallah, B.
(2005). Handling transactional properties. In LNCS,
S.-V., editor,WISE 2005: 6th International Confer-
ence on Web Information Systems Engineering, vol-
ume 3806, pages 273–289.

Furniss, P. (2004). Business transaction protocol. Technical
specification, OASIS.

Garcı́a-Molina, H. and Salem, K. (1987). Sagas. In ACM,
editor, 9th Int. Conf. on Management of Data, San
Francisco, California, USA, pages 249–259.

Gray, J. (1981). The transaction concept: Virtues and lim-
itations (invited paper). InVery Large Data Bases,
7th International Conference, September 9-11, 1981,
Cannes, France, Proceedings, pages 144–154. IEEE
Computer Society.

Gray, J. and Reuter, A. (1993).Transaction processing:
concepts and techniques. Morgan Kaufmann Publish-
ers.

Grefen, P., Vonk, J., and Apers, P. (2001). Global tansac-
tion support for workflow management systems: from
formal specification to practical implementation.Very
Large Data Base Journal, 10(4):316–333.

Hagen, C. and Alonso, G. (2000). Exception handling in
workflow management systems.IEEE Transactions
on Software Engineering, 26(10):943–958.

Hrastnik, P. and Winiwarter, W. (2006). Twso transactional
web service orchestrations.Journal of Digital Infor-
mation Management, 4(1):–.

Leymann, F. and Roller, D. (1997). Workflow-based appli-
cations.IBM Systems Journal, 36(1).

Milner, R., Parrow, J., and Walker, D. (1992). A calculus
of mobile processes, part i/ii.Journal of Information
and Computation, -(100):1–77.

Ozsu, M. T. and Valduriez, P. (1999).Principles of distrib-
uted database systems. Prentice Hall, second edition.

Schuldt, H., Alonso, G., Beeri, C., and Schek, H.-J. (2002).
Atomicity and Isolation for Transactional Processes.
ACM Transactions on Database Systems (TODS),
27(1):63–116.

Tai, S., Mikalsen, T., Wohlstadter, E., Desai, N., and Rou-
vellou, I. (2004). Transaction policies for service-
oriented computing.Data Knowl. Eng., 51(1):59–79.

The-Open-Group (1991).Distributed Transaction Process-
ing: The XA Specification. X/Open Company Ltd.,
U.K.

van der Aalst, W. and van Hee, K. (2004).Workflow Man-
agement, Models, Methods, and Systems. The MIT
Press, first edition.

Vargas-Solar, G., Garcı́a-Banuelos, L., and Zechinelli-
Martini, J.-L. (2003). Toward aspect oriented ser-
vices coordination for building modern information
systems. InEncuentro Internacional de Computacion
2003. ENC-SMCC, IEEE.

Vidyasankar, K. and Vossen, G. (2004). A multi-level
model for web service composition. InICWS, pages
462–. IEEE Computer Society.

Wachter, H. and Reuter, A. (1992). The contract model.
In Elmagarmid, A. K., editor,Database Transaction
Models for Advanced Applications, chapter 7, pages
219–263. Morgan Kaufmann Publishers.

A FLEXIBLE MODEL FOR PROVIDING TRANSACTIONAL BEHAVIOR TO SERVICE COORDINATION IN AN
ORTHOGONAL WAY

111

