
LINKING SOFTWARE QUALITY TO SOFTWARE
ENGINEERING ACTIVITIES, RESULTS FROM A CASE-STUDY

Jos J.M. Trienekens, Rob J. Kusters
University of Technology Eindhoven, Den Dolech 2 5600 MB Eindhoven, The Netherlands

Dennis C. Brussel
Centre for Autonation of Mission-critical Systems (CAMS), Royal Navy

De Ruyghweg 200, Den Helder, The Netherlands

Keywords: Software quality specification and implementation.

Abstract: Specification of software quality characteristics, such as reliability and usability, is an important aspect of
software development. However, of equal importance is the implementation of quality during the design and
construction of the software. This paper links software quality specification to software quality
implementation using a multi-criteria decision analysis technique. The approach is validated in a case-study,
at the Royal navy in The Netherlands.

1 INTRODUCTION

Command frigates (Dutch acronym LCF) are
warships that are used in national and international
task forces to support political decisions. An
important aspect of the power of these frigates are
the so-called guided missiles. The heart of the
command function of such a warship is supported by
the Combat Management System (CMS). This
highly advanced software-intensive system
integrates sensor and missile systems and is the
central operating system of the cruiser. Up to
twenty-two operators are working in the kernel of
the command function on powerful working stations
to identify air attacks and to determine defense
actions. The information that is needed to identify
foreign objects is provided by different types of
sensors, e.g. from radar systems. The various signals
are being collected by the sensors and are tracked
and analysed by the kernel functionality of the CMS,
called Multi Sensor Tracking (MST).
Recently the quality assurance team at CAMS, in
close collaboration with selected user representatives
and representatives of software engineering teams,
have identified quality problems. Users, c.q.
command function operators of the LCF, are not
fully satisfied with the quality of the software, in
particular the reliability and the time-behaviour of

software applications. Also the software engineers
have incrasing 'quality' problems, e.g. caused by the
need to explicitly define distinct software quality
attributes, and to carry out explicit engineering
activities to implement quality into a software
application.
One of the biggest problems is the high degree of
subjectivity in the way quality is dealt with. Both
domain experts, e.g. business context and
information analysts, and software engineers have
their own definitions and interpretations of quality
which often leads to misunderstandings and
confusion. Another problem is the increasing
complexity of the advanced software applications,
due to the extended functionality and the high level
of integration of the different components. Software
engineers often have to deal with conflicting quality
requirements.
The management of CAMS decided to set up a
project in that the concepts and terminology
regarding software quality had to be clarified, and
that had to result in an operational approach for the
specification and implementation of software
quality. The approach should limit subjectivity in the
determination of the quality characteristics of a
particular software application, and should link an
operational specification of quality attributes to
particular engineering activities Key issues in the
project are:

117
J. M. Trienekens J., J. Kusters R. and C. Brussel D. (2007).
LINKING SOFTWARE QUALITY TO SOFTWARE ENGINEERING ACTIVITIES, RESULTS FROM A CASE-STUDY.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 117-122
DOI: 10.5220/0001325501170122
Copyright c© SciTePress

- the usage of complexity reduction techniques
regarding the specification of quality
requirements;

- the usage of techniques to support close
collaboration between users and engineers
regarding the definition and prioritisation of
quality attributes.

The paper presents results regarding the
decomposition of software quality characteristics,
the determination of their relative importance by
using AHP-techniques, and the determination of the
contribution of particular engineering activities to
the implementation of software quality.

2 BACKGROUND

The International Standard Organization (ISO),
defines quality as ‘the totality of characteristics of an
entity that bear on its ability to satisfy stated and
implied needs’ (ISO/IEC 9126, 2001). ISO 9126
makes a dinstinction between internal and external
quality, and quality in use. Internal quality attributes
reflect e.g. the statical aspects of the software code
of an application. External quality characteristics are
determined by the dynamic aspects of a software
application, and 'quality in use' is determined by the
level to that a software application meets the
expectations of the user. Although ISO9126 offers
clear definitions of the quality characteristics and
attributes, it doesn't offer guidance to the process of
identification and prioritisation of quality
characteristics, and it doesn't support software
engineers in the process of implementing particular
quality attributes (Trienekens and Kusters, 1999). As
a consequence, currently a lot of subjectivity exist in
the way that quality is dealt with. Both the
specification and the implementation of quality into
the software applications are characterised by vague
and often ambiguous decisions of both domain
experts, information analysts and software
engineers.

3 LINKING QUALITY
SPECIFICATION TO QUALITY
IMPLEMENTATION: THE
APPROACH

Specification and implementation of software
quality cover complex decision processes because of
issues such as the high degree of subjectivity,
conflicting needs, weak structuredness of

requirements, etc. Decision processes with these
characteristics are being explored in a research area
called Multi Criteria Decision Analysis (MCDA)
(Roy, 1996). The objective of MCDA is to provide
practitioners with a rationale for the ordering and
rating (i.e. prioritisation) of different aspects of a
process or product by using different types of
criteria. At CAMS it has been concluded that
MCDA could offer support in the specification and
prioritisation of quality characteristics and attributes,
and also regarding the selection of appropriate
engineering activities to implement particular quality
attributes into a software-intensive system.
Analytical Hierarchy Process (AHP) makes use of a
set of techniques that offer support to reduce the
complexity of a problem, and to determine the
relative importances of particular aspects of a system
(Saaty, 2001). This set of techniques offer domain
experts and engineers the opportunity to clarify and
motivate their decisions in complex engineering
processes.
The first step in applying AHP in our case study is
the specification of quality characteristics (i.e. the
external quality) and quality attributes (i.e the
internal quality). Based on the ISO9126 standard on
software quality a hierarchical well-specified
structure of quality characteristics and attributes has
been developed
In the second step AHP is used to determine the
weights to specify the relative importances of the
various quality characteristics and attributes. AHP is
a hierarchical method of pairwise comparisons of
each quality (sub)-attribute against one another with
respect to a higher level quality characteristic or
attribute. Preferences among quality characteristics
and attributes are converted into numerical weights,
see for a clear report of an AHP application (Weil
and Apostolakis, 2001).
In the third step the engineering activities are being
determined that are needed to implement the
particular quality attributes into the software
application. For these engineering activities so-
called contribution functions are being determined.
A contribution function reflects the contribution of a
particular engineering activity to the implementation
of particular quality attributes.
In the fourth step, the performance index (PI) of
each quality (sub)-attribute is calculated which
expresses the relative contribution of a software
quality (sub)-attribute to the overall quality of a
software application. The following section presents
the application of the stepwise approach in a case
study.

ICSOFT 2007 - International Conference on Software and Data Technologies

118

4 VALIDATION OF THE
APPROACH: A CASE STUDY

The case study has being executed on the Multi
Sensor Tracking (MST) application which covers
the kernel functionality of the Combat Management
System of a frigate. To limit complexity in this
paper a selection has been made from the kernel
functionality, repectively the sub-function localising
signals and the data objects set of signals and
location of signal data.

Step 1: Development of the software quality
hierarchy.
The hierarchical structure is in fact the result of the
complexity reduction of a decision problem. It
clarifies different types of decisions that have been
made, such as the decision on the type of quality
characteristics and attributes that should be
recognised, and the decision in what way these
characteristics and attributes are interrelated. Figure
1 shows that the total system quality is splitted up
into three quality characteristics, respectively
timeliness, reliability and user friendliness These
quality characteristics are decomposed further into
quality attributes and sub-attributes. For example
reliability is decomposed into availability and

operational reliability and the latter is decomposed
further into failure rate and overload prevention. At
CAMS for this task several domain experts have
been selected, in conformance with (Karydas en
Gifun, 2006). These experts have a broad experience
regarding the type of functionality of the software to
be developed. The 'time box' teams consist of both
software developers and users representatives. In the
team sessions various techniques are being used
such as brainstorming and peer reviews. Different
sources of information are used, respectively
historical information, quality standards such as
ISO/IEC 9126, and the current functional
specification of the Combat Management System.

Step 2: Determination of the relative importance of
quality characteristics and attributes
A weigth reflects the importance of a particular
quality characteristic or attribute, to a particular
characteristic or attribute at a higher level. Note, in
Figure 1, that reliability has received the highest
weigth, or the highest level of importance regarding
the 'overall' quality of the system. Three sub-
attributes of reliability, respectively overload
prevention, redundancy and failure rate have
received the highest weigths in the whole set of
quality attributes and sub-attributes.

Figure 1: A software quality hierarchy.

LINKING SOFTWARE QUALITY TO SOFTWARE ENGINEERING ACTIVITIES, RESULTS FROM A
CASE-STUDY

119

Step 3: Determination of the quality contribution of
engineering activities
To be able to implement quality (sub)-attributes into
a software system appropriate engineering activities
have to be determined. In order to reflect the distinct
contributions of the particular engineering activities
to the implementation of a quality attribute, again
AHP is used. In the following we give an example of
the way engineering activities are being specified
and contribution factors are being determined.
In this example we take the quality (sub)-attribute
‘overload prevention’ which has the heighest weigth
of the four attributes of the quality characteristic
reliability. 'Overload prevention' of a particular
software functionality is defined as the degree to that
a particular software functionality prevents, that the
maximum number of system tracks that a software
functionality can handle, is reached. The objective of
'overload prevention' is to apply in a structured and
well-defined way so-called graceful degradation.

Regarding the particular engineering activities that
are needed to implement 'overload prevention' two
engineering aspects have to be recognised,
respectively the 'detection of the overload threat' and
the 'prevention of overload'. Different engineering
activities have been specified by the engineering
experts and it has been made clear what type of
engineering activities are complementary or
mutually exclusive. For example regarding an
overload that cannot be detected it is also not
possible to prevent it. Or, in case an operator has
detected an overload threat, it is not possible to carry
out an automated prevention algoritm. Subsequently
the contribution factors have been determined for
each of the engineering activities. These factors
reflect the relative contribution of each of the
distinct engineering activities to the implementation
of the quality sub-attribute 'overload prevention'.
Table 1 presents the result.

Table 1: Engineering activities and their contribution factors.

Software System

Quality
Characteristic C1

Quality
Characteristic Cj

WCj

Quality Attribute A1j Quality Attribute Aij
WAij

Engineering Activity
Contribution Factor

Uij

Software System

Quality
Characteristic C1

Quality
Characteristic Cj

WCj

Quality Attribute A1j Quality Attribute Aij
WAij

Engineering Activity
Contribution Factor

Uij

Figure 2: Hierarchical structure of quality characteristics and quality attributes.

Engineering
Activity Description Contribution

factors

1 An overload threat will not be detected and will not be prevented. As a consequence not
any track is being processed by the functionality. 0,07

2 An overload threat will be detected by an operator, but cannot be prevented.
Subsequently all tracks are being processed by the functionality with quite some delay. 0,17

3
An overload threat will be detected by an operator but is not prevented in an automated
way. The consequence is that alle low priority tracks are being deleted by the operator
and all high priority tracks are processed by the functionality.

0,4

4
An overload threat will be detected in an automated way but will not be automatically
prevented. Subsequently all low priority tracks have to be deleted by the operator and
all high priority tracks can be processed by the functionality.

0,94

5 An overload threat will be detected automatically and prevented automatically so that
all high priority tracks are being processed by the functionality. 1

ICSOFT 2007 - International Conference on Software and Data Technologies

120

Figure 3: The relative contribution of attributes to 'overall' software quality.

Step 4: Determination of the performance index (PI)
of the quality attributes
For each quality (sub)-attribute a so-called
performance index (PI) is being calculated. The PI
reflects the level to that particular quality attributes
are being implemented, by carrying out particular
engineering activities. The PI of a quality sub-
attribute is the sum of the multiplications of the
weights of the sub-attributes by the contribution
factors of the particlar specific engineering
activities.

 n
 PICj= (Σ (WAij * Uij))/ WCj)) * 100% i=1

 n = number of attributes per quality characteristic.

PICj = Performance Index of quality characteristic Cj.

WCj = Weight factor of quality Characteristic Cj
WAij= Weight factor of quality (sub)-Attribute Ai of

quality characteristic Cj.
Uij = contribution factor of engineering activity to quality

attribute Aij of quality characteristic Cj.

In Figure 3 the relative contribution to the 'overall'
quality of a particular software functionality is
shown. The 'overall' quality is the result of particular
engineering activities that have been carried out to
implement the quality (sub)-attributes. Figure 3
clarifies the effectiveness of the engineering
activities. The bar chart expresses the contribution of
the different quality attributes to the total quality of
the software system. Based on this information,
engineers can predict the effects of particular
engineering activities and it becomes easier for them

to calculate the effort that is needed to reach a
certain level of quality. Also via recalculations it
becomes possible to predict the effects of an
increase or decrease of particular engineering efforts
regarding the implementation of particular quality
attributes. For example it became clear that chosing
engineering activities with 'average' contribution
factors still resulted in a satisfactory level of
particular quality (sub)-attributes, and a satisfactory
'overall' quality level of the software application.

5 LESSONS LEARNED

Although ISO9126 offered a useful quality basis,
some of the quality attribute definitions had to be
reinterpreted and/or translated to the specific
technical context of the software-intensive system.
During the project it was still necessary to redefine
particular quality attributes as a result of brainstorm
sessions and peer reviews. An interesting result of
the case study was that some quality (sub)-attributes
have been identified and defined that have not been
discovered in previous projects at CAMS.

However, also some restrictions and shortcomings
have been identified. First of all the time aspect.
Both the collection of information in the beginning
of the project, the brainstorm sessions, the peer
reviews to develop the quality hierarchy, including
the weigths took much time. This problem of
applying MDCA and AHP in practice has also been
recognised by (Weil en Apostolakis, 2001). In the
case study only one piece of the software

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

D
ur

at
io

n
of

 v
al

id
ity

ac
tiv

at
io

n
tim

e

ac
qu

is
itio

n
tim

e

pr
oc

es
si

ng
 ti

m
e

de
liv

er
y

tim
e

re
du

nd
an

cy

M
TT

R

fa
ilu

re
 ra

te

ov
er

lo
ad

 p
re

ve
nt

io
n

in
tu

itiv
e

he
lp

 fu
nc

tio
ns

tra
in

in
g

op
po

rtu
ni

tie
s

de
gr

ee
 o

f a
ut

om
at

io
n

pr
es

en
ta

tio
n

in
pu

t o
pt

io
ns

de
gr

ee
 o

f a
pp

ea
l

LINKING SOFTWARE QUALITY TO SOFTWARE ENGINEERING ACTIVITIES, RESULTS FROM A
CASE-STUDY

121

functionality of the Multi Sensor Tracking (MST)
has been investigated, and only with regard to a
particular quality characteristic, i.e. 'overload
prevention', which is one of the sub-attributes of the
quality characteristics 'reliability'. Therefore it is
suggested to determine first the critical parts of a
complex software application and subsequently to
apply then for only the critical parts of the software
application the approach presented in this paper.

To solve the time problem it has been suggested to
develop a database with information about the
various type of software applications, their quality
profiles (quality characteristics, attributes), and
experiences from earlier work such as experiences
regarding the interpretation and the redefinition of
ISO9126 quality terminology. Also the contribution
of the distinct engineering activities that are needed
to implement particular quality (sub)-attributes
should be defined and stored. This type of
knowledge management should improve the
efficiency of the engineering of software quality.

6 CONCLUSIONS

The CAMS department of the Dutch Department of
Defense has investigated an approach to deal in a
formal and systematic way with the quality of
software. Software quality can be specified in a
precise and formal way. The importance of the
distinct quality attributes can be determined by
applying AHP techniques.
A quality hierarchy forms a basis for software
engineers to build in quality into a software
application. Also regarding the determination of
appropriate engineering activities, and their relative
importances, AHP can be used. Contribution factors
reflect the relative contribution of particular
engineering activities to the 'overall' quality of a
software application
A major drawback that has to be mentioned is the
time aspect of applying MDCA and AHP. To solve
this problem the reuse of previous work is stressed.
A knowledge repository has been defined that
captures quality profiles of software components and
applications, best practices in quality specification
and implementation, sets of weights and contribution
factors, that can be reused in future projects.

REFERENCES

ISO/IEC 9126 Software engineering - Software Product
quality, 2001. International Organization for
Standardization,

Karydas D.M., J.F. Gifun, 2006. A method for the effcient
prioritization of infrastructure renewal projects,
Reliability Engineering and System Safety.

Roy B., 1996. Multicriteria Methodology for Decision
Aiding, Kluwer Academic Publishers.

Saaty T.L., 2001. Models, methodes concepts and
applications of the Analytic Hierarchy Process,
Kluwer academic publishers.

Trienekens J.J.M. and R.J. Kusters, 1999. Identifying
embedded software quality, two approaches, Quality
and Reliability Journal, Addison Wesley.

Weil R., G.E. Apostolakis, 2001. A methodology for the
prioritization of operating experience in nuclear
power plants, Reliability Engineering and System
Safety.

ICSOFT 2007 - International Conference on Software and Data Technologies

122

