
AN AGILE MODEL DRIVEN ARCHITECTURE-BASED
CONTRIBUTION TO WEB ENGINEERING

Alejandro Gómez Cuesta, Juan Carlos Granja
Software Engineering Department, University of Granada, Spain

Rory O’Connor
School of Computing, Dublin City University, Ireland

Keywords: Model Driven Development, Web Engineering, Software Engineering, Agile Development.

Abstract: The rise of the number and complexity of web applications is ever increasing. Web engineers need
advanced development methods to build better systems and to maintain them in an easy way. Model-Driven
Architecture (MDA) is an important trend in the software engineering field based on both models and its
transformations to automatically generate code. This paper describes a a methodology for web application
development, providing a process based on MDA which provides an effective engineering approach to
reduce effort. It consists of defining models from metamodels at platform-independent and platform-specific
levels, from which source code is automatically generated.

1 INTRODUCTION

The requirements for web applications involve a
great diversity of different services; multimedia,
communication and automation, which reside in
multiple heterogeneous platforms. The development
of such systems is a difficult task due to the large
number of complexities involved. Accordingly there
is a need for solid engineering methods for
developing robust web applications.

The development of most systems is based on
models as abstractions of the real world. In software
engineering the Unified Modelling Language (UML)
is becoming the standard for Object-Oriented (OO)
modelling. While OO models traditionally serve as
blueprints for systems implementation, the Model-
Driven Architecture (MDA) (Millar and Mujerki,
2003) (Mellor et al, 2004), which is a software
design approach, promotes the usage of models
throughout the entire development process. Such an
approach provides a set of guidelines for specifying,
designing and implementing models.

Currently there are many methodologies to
define web applications which are based on models
such as: OO-H (Gómez and Cachero, 2002), UWE
(Koch and Kraus, 2002), ADM (Díaz et al., 2001) or
WebML (Ceri et al., 2000). These methodologies

have different levels of abstraction, but all require
spending much time on defining conceptual and
usually do not take into account tangible elements
such as pages. However, other approaches such as
agile development are not so abstract. MIDAS (Vela
et al, 2005) is an approach to create web applications
which merges models and agile development.

The MDA approach defines three levels of
model abstraction and a way to transform them.

 CIM (Computational Independent Model): A
model of a system from a computation
independent viewpoint where details of the
structure of systems are not shown. It is used
to represent the specific domain and the
vocabulary for the specification of a system.

 PIM (Platform Independent Model): A model
of a software or business system that is
independent of the specific technological
platform used to implement it.

 PSM (Platform Specific Model): A model of a
software or business system that is linked to a
specific technological platform (programming
language, operating system or database).

 QVT (Query, View, Transformations): A way
to transform models (e.g., PIM can be
translated into PSM).

65
Gómez Cuesta A., Carlos Granja J. and O’Connor R. (2007).
AN AGILE MODEL DRIVEN ARCHITECTURE-BASED CONTRIBUTION TO WEB ENGINEERING.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 65-72
DOI: 10.5220/0001328500650072
Copyright c© SciTePress

The application of both MDA and agile methods
to web applications development can help to build
better and fast systems in an easier way than
applying traditional methods (Cáceres and Marcos,
2001). MDA supports agile development, providing
an easy way to create prototypes through automatic
code generation.

We have chosen the MIDAS (Vela et al, 2005),
approach as our starting point, as it is both a
development process based on an agile process and
an architecture for web applications based on
models. Using an agile approach prioritises the
client-developer relationship and a using model-
based approach improves communication between
client and developer models, which allows the
system to be seen from a higher level of abstraction.

The basic structure of web applications consists
of three tiers: the Client, the Server and the Data
store. In MIDAS, there are: graphical user interface
(GUI), business logic and persistence, where each
tier can be implemented with a different
programming language, but utilising the same data
structures. Thus MDA can be applied to this kind of
software: joining all the data structures into a PIM,
we can define the problem as only one and
afterwards, splitting it into each tier. Thus we can
define one problem and obtain code for different
platforms / programming languages.

The work presented in this paper proposes a
methodology for agile web applications
development based on models. We provide a model-
driven development method for the specification and
implementation of web applications through our
own metamodels. Our approach establishes a
methodological framework by automating the
construction of high-quality web applications (PIM)
in a productive way, starting from a UML based
representation for the, then an automated
transformation method for the refinement of
engineering models into technology models (PSM),
and finally an automated method for the generation
of platform specific code. Our approach has several
advantages, e.g. the diagrams to use are very known
and the metamodels are very simple so developers
has not to learn new techniques. In addition, the
automatic code generation provides boosts
development time.

In this paper we use the case study of a web
bookshop which allows the purchaser to search
books by author, subject or title from a database.
Once the user has a listing with the result, he can
select several books which will be added to a cart.
The user can manage this cart adding or deleting his
selected books as times as necessary. Finally, the

user can buy those books which are in the cart, and
in this moment is when he has to insert his personal
details in the system. We construct a web system for
this example using own described methodology.

2 MDA-BASED APPROACH FOR
WEB APPLICATIONS

The development of a web application system
implies the use of many different technologies in
order to satisfy all user requirements. Usually these
technologies provide low abstraction level constructs
to the developer. Therefore, applying a MDA
approach to web applications involves bridging an
abstraction gap that must deal with the technology
heterogeneity. Thus, MDA approach raises the
abstraction level of the target platform and,
therefore, the amount of code is clearly reduced. We
reach a balance between model based and agile
development. Although we are not completely
fulfilling the requirements of MDA (that of
abstracting as much as possible) we are adding some
level of work schema to an agile development, even
though this kind of development is not based on
restrictions when writing code.

Accordingly our proposed approach for web
applications development is based on:

 Web application PIM.
 Web application PSMs.
 Transformations from PIM into PSM.
 Code generation from PSMs.
 Validation of this approach.
We can see this methodology is purely based on

MDA. As we will see the metamodels used are not
very complex and therefore we are also taking into
account a certain level of agile development.

2.1 The Web Application PIM

Our PIM is intended to represent web application
which consists of services. A service can be defined
as functionalities offered by the system and whose
results satisfy some specific needs from a user.

Our approach consists in defining at an early
stage the services we want our application to fulfil.
The second step is to refine those services into
others more detailed. Finally, for each detailed
service a set of messages is defined. These messages
specify the relationship between the previous
defined services and the final system. Moreover, we
need to set up a class model collecting the elements

ICSOFT 2007 - International Conference on Software and Data Technologies

66

that have to be modelled into the web application
and can be used into the previous models.

So, our methodology define four stages - or from
an MDA perspective - four different submodels,
which all together shape our web application
platform-independent model:

 Class model: a typical definition of the problem
by means of classes.

 Conceptual user service model: defines the
actors and services for a web application.

 Extended service model: details the
functionality of a conceptual user service
dividing it into extended services.

 System sequence model: establishes how each
actor acts on the web application through
messages or callings to other extended
services within a extended service

The conceptual user and extended services are
definitions which are taken from MIDAS, but which
have simplified the conceptual user service model
and added new features to the extended service
model to support our system sequence model as well
as our class model.

2.1.1 Class-PIM

This is a typical class model, but using many
simplifications. There is neither encapsulation for
attributes (all are public), complex associations
between classes nor interfaces. It is a simple
metamodel of a class model which is useful for the
agile development and keeping the MDA process.

2.1.2 Conceptual User Service Model

This model is similar to a use case model where the
system services as well as who uses them are
represented. System services are called Conceptual
User Services (CUS) and are depicted like a use
case, where an actor is somebody or something who
executes a CUS. Actors and services connect
themselves the former to the latter.

Figure 1: A diagram of a conceptual user service model.

Figure 1 shows an example CUS. The execution
of the BuyBooks service consists of: searching some
books, adding them into a cart. The execution of a
CUS is related to the execution of a web by their
actors. This concept is a new feature on conceptual
user service that MIDAS does not include.

In Figure 2 we can see the metamodel of this
model. Actors are instances of the class called Actor.
CUSs are instances of the ConceptualUserService
class. As the ConceptualUserService class is a
subclass of the abstract class UseCase, an
unspecified number of actors can be associated to
CUS’s.

Figure 2: Metamodel for CUS and ES models.

2.1.3 Extended Service Model

Each CUS is related to an extended service model.
This model breaks up each CUS into simpler
elements called Extended Services (ES) which are
usually either a data input or output. Figure 3 shows
the ES model associated to the Purchaser actor
depicted in Figure. We can see the functions such
actor performs within the CUS called BuyBook; the
ESs describe how the actor buys a book, managing
them by means of a cart. The AddBookToCart ES is
called by both UpdateCart and OrderBooks due to
the <<include>> associations which go out from
them, and AddBookToCart ES calls to SearchBook.
On other hand, we have that SearchBook ES could
be replaced with SearchForAuthor,
SearchForSubject or SearchForTitle due to the
<<extends>> associations.

The ES model execution is similar to that of the
CUS. It starts from the principal service and it
continues through the <<include>> relations to
other ESs depending on the associated system
sequence. If the user executes an ES where
<<extend>> associations are coming in, as
SearchBook ES, means that any of those ESs can be
executed instead; the final selection depends on the
user. As ESs are similar to functions, when one is
ended, the execution returns to the ES which made
the call.

Using the example in Figure 3, a user executes
the first extended service, OrderBook. Later he/she
can select either UpdateCart or AddBookToCart
extended services. From UpdateCart can change the
number of books selected for a specific one and
he/she can delete one, as well as to add other book
selecting the appropriate extended service. From
AddBookToCart the user can makes a search, and
this search can be done for: author, subject o title.

AN AGILE MODEL DRIVEN ARCHITECTURE-BASED CONTRIBUTION TO WEB ENGINEERING

67

This model extends the requirements specified in
the CUS model to have a second level of abstraction.
Using this model, it is easy to check how many parts
have a specific CUS. In Figure 2 we have the
metamodel of the ES model. We can see the relation
between CUSs and ESs, where the latter owns
several elements of the former, besides the relation
principalService.

Figure 3: ES model for the purchaser.

2.1.4 System Sequence Model

A System Sequence (SS) model describes the
functions performed by an ES. This model is simpler
than the legacy sequence models which exist in
UML. In the diagrams of these models there are two
vertical lines: first one for actors and the second one
for objects, but in our case we use only one: the
System. Figure 4 shows an example of a system
sequence model, in this case for the OrderBook
extended service Figure 3.

Figure 4: SS Model for OrderBooks ES.

Actors from a specific ES can send two types of
messages:

 Functions with return values and/or parameters,
where both are objects which belong to classes
defined in the class model. The functions are
algorithms which are not modelled. They are
just a reference for code generation, because
they will transform into methods in Java code.

 Calls to other extended services.

Note in Figure 4, the second call to other
extended service on the left has a little box with the
text while above. It means that this call can be
performed as times as the user wants. We have
defined three kinds of way of execution for the
messages on a box:

 Sequential: is the normal order.
 Repetition: messages are always repeated while

the user wants.
 Choose one: from all messages the user selects

one.
It is possible to have multiple levels of

execution, so for example, we could have several
messages upon a choose one execution and upon
that one, other messages as well as other repetition
executions. Therefore we define a specific order for
the execution. MIDAS defines an activity diagram
for this purpose, but we have the same idea using the
previous execution concept. Using our approach we
define a number of messages which are closer to
implementation without getting into this low level
favouring the agile development.

Figure 5 shows the system sequence metamodel.
We can note that every ES has only a message
sequence. An object of a MessageSequence class can
have just one type of elements: Objects from
Message class (functions) or MessageSequence
objects (calls to other Ess). The attribute
MessageSequenceDefault indicates what order of
execution owns such sequence: sequential,
repetition or choose one.

Figure 5: SS metamodel.

2.2 PSM

MIDAS defines web applications with three-tiers:
the GUI, the business logic and the content. In our
case we have one PSM for each part, as each part is
a platform-specific model. We have chosen SQL for
the content, Java servlets for the business logic and a
Java servlet application for the GUI.

2.2.1 The Logic Business and Content
PSMs

The logic business PSM is a class model, but in this
case is the same Class-PIM but adding interfaces.

ICSOFT 2007 - International Conference on Software and Data Technologies

68

The content model is a database model which has
been taken out from (Kleppe et al, 2003).
Summarizing, we have tables which consist of
columns, where each column owns a SQL data type.
Tables have both primary keys and foreign keys and
both are related to a column.

2.2.2 Web Application PSM

A web is the place where users or actors connect to
access the web services which are related to CUSs.
A service consists of a number of web pages which
are executed in a certain order. Each page is related
to a ES. Every page has associations to others which
are next (outgoings) and previous (incomings) ones;
then, crawling among these pages a concrete service
is executed. As each service has a first page we
know from where that listing of services has to start.

If we need to define a page which has the same
execution than other one already defined, we can
associate the first one to the second one, e.g., if we
need to request certain information twice in different
points, we create one page and the other just calls to
this one.

Web

Service: Register

Service: Login

Page with form:
Personal information

Page with form:
Data enter

Page:
User logged

Page:
User not logged

System

Web

Service: Register

Service: Login

Page with form:
Personal information

Page with form:
Data enter

Page:
User logged

Page:
User not logged

System

Figure 6: Web Application Example.

Figure 6 shows an example of web application.
We want to create a web application with just two
services: register and log in the web application. The
first service, register, has two pages: the first one is
where the user writes down his personal information
and the second one does his preferences. Once he
writes his personal information and tries to go to the
second page, a web operation saves his personal
information into a temporal container and, when he
finishes inserting his preferences, other web
operation sends both personal information and
preferences to a data base. On the other hand, we
have the second service, log in, where a form is
showed to the user who can fill it with its
information for accessing; other web operation is
executed. If the information provided is not of any
user, he is sent to the register page which belongs to

the register service; in other case, he becomes
registered. At the end, the web application will show
to the user what service he wants to select: register
or login. Depending on what he chooses, the specific
service will be run.

Figure 7 shows our web metamodel.
WebOperation class is related to the messages
defined in the previous system sequence model.

WebElement

CommonElement

PageLeadPageFoot

Website

1

0..n

website1

commonElements0..n

Service 10..n
website

1
services
0..n

PageElement

Text

Page

1
firstPage
10..n

1

pages
0..n

service
1

1
callTo
1 1

0..n

page
1

pageElement0..n

0..n0..n
outgoings

0..n
incomings

0..n

Form WebOperation

0..n

1

webOperations
0..n

page
1

11
form
1

operation
1

Figure 7: Web application metamodel.

Figure 8 shows how the structure of a PIM which
consists in actors associated to CUSs, CUSs
associated to a set of ESs, ESs associated to a SS
model which has messages, it is related to a structure
in the web applications-PSM where webs have
services, services have pages, and pages have web
operations. At this level a relationship exists
between both structures and that is the reason to
create a transformation between each level.

Figure 8: Parallelism between the structure of the PIM and
the structure of the web application-PSM.

AN AGILE MODEL DRIVEN ARCHITECTURE-BASED CONTRIBUTION TO WEB ENGINEERING

69

2.3 Transformations

A transformation is defined as an operation that
takes as input a model and produces another one
(Kleppe et at., 2003). This process is described by a
transformation definition, which consists of a
number of transformation rules. We have three
transformations:

 Class-PIM to content-PSM
 Class-PIM to business logic-PSM
 PIM to web application-PSM
As transformations for this methodology are

many, due to space limitations we just introduce
them a little bit. In a future work, we will develop
them with more detail.

2.3.1 From class-PIM to Content-PSM

The first transformation we have to perform is to
transform the class platform-independent model into
the content model. There are many ways to approach
this problem (Keller, 2004) from which we have
chosen ‘one class one table’. This transformation is
made up of the rules we can see in Table 1.

Table 1: Transformation rules.

Class PIM Content PSM
Class A table with a column which is a

identifier and a principal key
Extended class A table with a column which is

identifier. This identifier is a foreign
key pointing to the identifier of the
resulting transformed table of the
parent class. See Figure 10

Multiple class
association

A table with two columns being both
identifiers and foreign keys and…

1:1 ... each one is also unique and both
are the primary key

1:n .. the column which makes references
to '1' in the multiplicity, is not a
primary key, while the other one is
the primary key

n:m ... both columns are the primary key
An attribute A column which is inserted into the

resulting table of the class which has
the attribute

2.3.2 From Class-PIM to Business Logic-
PSM

This is a complex transformation. We copy the same
model from PIM to PSM but we change each class
for an interface and we add a new class which
implements such interface. Bézivin et al. (2004)
describe how this is done.

Table 2: Transformation rules.

Class PIM Business logic PSM
Package
structure

The same package structure is copied.

Datatype
structure

The same data type structure is copied.

Class c An interface i and a class c’. Both are
added to the same transformed package
that the initial class c was. This new
class c’ implements the new interface i.

Attribute a
(belonging
to a class c)

An attribute a’ whose visibility is
private. As c is transformed into i and
c’, the attribute a’ is added into i and
c’.
Besides, two new methods are added to
interface i: some get- and set- public
methods which let the access a’.

An
operation o
(belonging
to a class c)

An operation o’ added to the
transformed interface i from the class
c. The data types used in o’ have to be
the copied ones.

Association
between
classes

An association, with the same features,
between the created interfaces from the
initial classes.

Association
end

An attribute. An association end with
multiplicity equals to '1' is transformed
into an attribute whose type is the class
which points to. If the multiplicity is
'n', the association end is transformed
into other attribute but in this case the
type is
Vector<class_which_points_
to> (using Java 5 notation)

2.3.3 From PIM to Web Application-PSM

Even though it is quite easy to see this
transformation, it has many rules. A summary are
the following rules which are explained in Table 3.

Table 3: Transformation Rules.

Class PIM Graphical User Interface PSM
An actor A web
Conceptual user
service associated to
actor

A service associated to the
transformed web for such actor

An extended service A page. The same structure
defined for a extended service
model is built using pages from
the web application-PSM

A message A web operation

2.4 Code Generation

The last stage of our methodology is code
generation. Once the PSMs are automatically
obtained from the created PIM, they are used to

ICSOFT 2007 - International Conference on Software and Data Technologies

70

generate source code. There are many ways to
generate source code from models. Most of them are
based on templates considered as other kind of
model transformation: model-to-text transformation
(Czarnecki and Helsen, 2006). The code generation
helps the developer to not start from scratch his
development. We have defined these
transformations:

 From the content PSM, SQL code.
 From the business logic PSM, Java code.
 A general web application is created for the

web application PSM. This application just
needs the model to run.

In summary, code generation covers business
logic which is the data structures, and data base.
Finally instead of creating code for the web
application, its model is directly executed.

2.4.1 From Business Logic-PSM to Java

From a given class-PSM for each class or interface
we need to create a new file where we have to:

 Write the name of the package and define the
class or interface.

 Write every attribute: visibility, type & name.
 Write every method with all its parameters. It is

possible that some methods have some
associated source code as get and set methods.

Czarnecki and Helsen (2006) provide the
following example to illustrate how a template-
based model-to-text transformation is.
<<DEFINE Root FOR Class>>
public class <<name>>
{
 <<FOREACH attrs AS a>>
 private <<a.type.name>> <<a.name>>;
 <<ENDFOREACH>>
 <<EXPAND AccessorMethods FOREACH
 attribute>>
}
<<ENDDEFINE>>

<<DEFINE AccessorMethods FOR
 Attribute>>
public <<type.name>>
 get<<name.toFirstUpper>>()
 {
 return this.<<name>>;
 }
public void
 set<<name.toFirstUpper>>(
 <<type.name>> <<name>>)
{
 this.<<name>> = <<name>>;
}

<<ENDDEFINE>>

2.4.2 From Content PIM to SQL

From a given relational model and for each table
create a new file where we have to:

 Write code which defines a table.
 Look up all its columns and write its name

along with its type.
 Usually every table has a primary key which

has to be written in the code.
 Finally, if the class has some foreign key.

2.4.3 Web Application-Model to Servlets

Creating the web application has been done by
means of other different kind of transformation.
Instead of creating directly code for the web
application using JSP or similar, we directly execute
the created model. The final web application is a
web previously constructed which only needs a
parameter which is a model, in our case, the web
model automatically generated, to work properly.

2.5 Validation

A plugin for Eclipse has been developed to validate
this process (Figure 9). Such a tool comes with a
GUI which allows to directly draw the diagrams we
have seen before for the PIM. Once this model has
been created the next step is to transform it. At this
moment the tool does not allow to modify PSM
models, but the transformation can be performed.
When it is done, a new Eclipse project is created and
you can see both the PSM models created and the
generated code. Models created with this tool use
XMI format, therefore can be exported to other
tools.

Figure 9: Use case diagram editor of our tool on Eclipse.

The proposed example was created using this
approach. Although this application is not very
complicated, we have seen that from CUSs we are
defining at the same time requirements and a certain

AN AGILE MODEL DRIVEN ARCHITECTURE-BASED CONTRIBUTION TO WEB ENGINEERING

71

degree of the navigation of the web application
which is being created. Such a navegation is
completely described by means of ESs. Finally,
when defining SSs, we are getting some functions
which are very close to code but they are enough
abstract to be a part of the PIM.

For the future, the tool should add the possibility
of modifying the PSM models and to define a
customed presentation of the web pages. We are
now working on these aspects.

3 CONCLUSIONS

In this paper we have shown a methodological
approach to web applications development. We have
kept to MDA framework, where the development is
performed by two different abstraction levels:
independent and specific from the platform. The
chosen models allow the user who uses this
methodology to not lose in any moment the sense of
what he is doing: he will generate code. This method
help us construct better web applications in a time
not very high, because it joins on the one hand
advantages of having a set of steps very marked
from a model-based methodology and on the other
hand the agile development allows to construct
prototypes of the final system from very early
development stages. The automatic code generation
makes MDA promote agile development, since the
models from the code which are generated are kept,
and they are the documentation of the final web
application.

Using this process, we extend the work made by
MIDAS adding new models to take into account, as
well as a new approach closer to agile development
such as our system sequence models. It should be
feasible to make a fusion between MIDAS and our
approach to build one more complete one.

Using this method, the web engineering industry
has a new way to build simple web application in a
faster manner. Our contribution is to provide
metamodels which are applied. It is not easy to find
metamodels which are applied to a specific field.
Usually, other proposed model-based methodologies
only offer diagrams and one cannot see how the
process is really working. Besides, they used to be
models for UML class or Java diagrams. We have
proposed a set of metamodels for web engineering
as well as concrete syntax for those ones, explaining
what each one does and how the models are
transformed.

There is much possible future work to be done. It
would be useful to include new models from UML

but considering our goal of simplifies them to keep
to agile development. Also, we could leave the agile
development to centre our effort in constructing a
comprehensive methodology for web engineering
using complex models and complex transformations.
Independently, our transformations have to be
improved.

REFERENCES

Bézivin, J., Hammoudi, S., Lopes, D., Jouault F. 2004.
Applying MDA Approach forWeb Service Platform.
Enterprise Distributed Object Computing Conference.

Cáceres, P., Marcos, E. 2001. Procesos ágiles para el
desarrollo de aplicaciones Web. Taller de Web
Engineering de las Jornadas de Ingeniería del Software
y Bases de Datos de 2001 (JISBD2001).

Ceri, S., Fraternali, P., Bongio, A. 2000. Web Modeling
Language (WebML): a modeling language for
designing Web sites. Computer Networks 3 (1-6): 137-
157.

Czarnecki, K., Helsen, S. 2006. Feature-based survey of
model transfomation approaches. IBM Systems
Journal, Vol 45, No 3.

Díaz, P., Aedo, I. Montero, S. 2001. Ariadne, a
development method for hypermedia. Dexa 2001,
Munich. LNCS 2113, 764-774.

Gómez, J., Cachero, C. 2002. OO-H Method: Extending
UML to Model Web Interfaces. Idea Group Publishing.

Keller, W. 2004. Mapping Objects to Tables.
http://www.objectarchitects.de/ObjectArchitects/paper
s/Published/ZippedPapers/mappings04.pdf, 2004

Kleppe, A., Warmer, J., Bast, W. 2003. MDA Explained -
The Model-Driven Architecture: Practice and
Promise. Addison-Wesley.

Koch, N., Kraus, A. The Expressive Power of UML-based
Web Engineering. 2002. Second International
Workshop on Web-oriented Software Technology
(IWWOST02).

Mellor, S., Scott, K., Uhl, A., Weise, D. 2004. MDA
Distilled, Principles of Model Driven Architecture.
Addison-Wesley.

Millar, J., Mukerji, J. 2003. MDA Guide Version 1.0.1.
http://www.omg.org/cgi-bin/doc?omg/03-06-01.

Vela, B., Cáceres, P., de Castro, V., Marcos, E. 2005.
MIDAS: una aproximación dirigida por modelos para
el desarrollo ágil de sistemas de información web,
Chapter 4 from the book "Ingeniería de la web y
patrones de diseño", Coordinadores: Mª Paloma Díaz,
Susana Montero e Ignacio Aedo. Pearson - Prentice
Hall.

ICSOFT 2007 - International Conference on Software and Data Technologies

72

http://www.objectarchitects.de/ObjectArchitects/papers/Published/ZippedPapers/mappings04.pdf
http://www.objectarchitects.de/ObjectArchitects/papers/Published/ZippedPapers/mappings04.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01

