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Abstract: New data warehouse tools for Semantic Web are becoming more and more necessary. The present paper
formalizes one such a tool considering, on the one hand, the semantics and theorical foundations of Description
Logic and, on the other hand, the current developments of information data generalization. The presented
model is constituted by dimensions and multidimensional schemata and spaces. An algorithm to retrieve
interesting spaces according to the data distribution is also proposed. Some ideas from Data Mining techniques
are incorporated in order to allow users to discover knowledge from the Semantic Web.

1 TOWARD PATTERN
RECOGNITION IN THE
SEMANTIC WEB

The Semantic Webis a new form of web conceived
for allowing human users and software tools to pro-
cess and share the same sources of information. The
Semantic Web relies on a set of standards which pro-
vide syntactic consistency and semantic value to all
of its content. For example, Description Logic is used
as the theoretic base for the description of web items,
and the languages RDF and OWL for their syntac-
tic representation. Description Logic defines a family
of knowledge representation languages which can be
used to represent, in a well-understood formal way,
the knowledge of an application domain. This knowl-
edge, known as ontology, ranges over the termino-
logical cognition of the domain (the interesting object
classes, or concepts, itsTbox) and its examples (the
instances of the object classes, itsAbox).

Data analysis in the Semantic Web will be the
most important process when the population of on-
tologies1 becomes a reality. Its final goal is the recog-
nition of patterns amongst the values of the attributes

1The population of ontologies is the process of adding
instances to an ontology in order to enrich it with examples
of its domain knowledge.

of the ontological instances, which could turn into
knowledge or allow its discovery. OWL tools allow
users to create new concepts related to one or more
existing ontologies, and to determine the instances as-
sociated to such concepts.

An additional tool is needed if we want to perform
in a versatile way customized data analysis, either full
or partial, so that each object can be studied from dif-
ferent points of view focusing on distinct particular
features. Such a tool should allow users to navigate
through an instance set and its properties, being able
to discriminate between relevant and superfluous in-
formation. Moreover, it should compute and display
statistical indexes able to describe and report about
the extracted patterns.

The formalization of such a tool, following the
framework described below, is the purpose of the
present work. Starting from an available ontology,
this is enriched with information provided by the data
analyst, for example specifying theatomic data com-
bination functions. These functions provide the way
for combining atomic data to form a generalized in-
stance representing a set of instances. Then, two main
structures have to be built: the conceptual dimensions
and the multidimensional conceptual spaces. The
conceptual dimensions are partial order specifications
between objects, which allow to browse through their
semantic relations. The multidimensional conceptual
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spaces can be seen as “intelligent object containers”.
They make use of a subset of conceptual dimensions,
a specification of relevant abstraction levels and a
set of atomic data combination functions in order to
(re)construct appropriate generalized instances. Dif-
ferent statistical indexes (e.g. frequencies), associated
to the conceptual dimensions, can be used to char-
acterize patterns in the conceptual spaces. The most
suitable data analysis technique for carrying out this
proposal isdata warehousing.

The present work is not the first attempt to formal-
ize a data warehouse for the Semantic Web. Within
the Data Warehouse Quality (DWQ) project (Hacid
and Sattler, 1998) a formalization for the multidimen-
sional modeling based on an extension of the con-
structors of description logic is proposed. In this way,
new object classes could be described by specify-
ing aggregability operations, and the traditional rea-
soning over ontological instances could be applied.
However, the demonstration of the undecidability of
minimal languages that operate with aggregate opera-
tors(Baader and Sattler, 2003) makes the proposal of
the DWQ project unfeasible.

On the other hand, the ideas of the traditional data
warehouse (and OLAP techniques) has been extended
to object oriented modeling, (Buzydlowski et al.,
1998; Trujillo et al., 2001; Nguyen et al., 2000; Binh
and Tjoa, 2001; Abelĺo, 2002). Considering that de-
scription logic was designed as an extension to frames
and semantic networks, the basis of object-oriented
data warehouse could be applied in order to define
a data warehouse for the Semantic Web. However,
the flexibility of object-oriented formalization causes
a more sparse structure in object-oriented databases
that in traditional ones. Moreover, the restrictions of
OLAP implementations drastically reduce the useful
set of objects to be used in the analysis.

Unlike these previous works, this paper proposes
a multidimensional model for the analysis of ontolog-
ical instances that merge both approaches. The idea
is the creation of meta-ontologies in order to enrich
the knowledge of ontologies with data analysis infor-
mation. This data analysis information focuses on the
description of interesting object classes and on the ag-
gregation process. The reasoning of description logic
is used in a preliminary phase to 1) recover the satisfi-
able2 object classes that can be used on analysis pro-
cesses, 2) discover the hierarchical and aggregate or-
ders between the classes, and 3) assign each instance
to the set of object classes to which it belongs.

This paper describe our proposal in detail. Firstly,

2A concept (or object class) is satisfiable if it is consis-
tent and there exists an interpretation on which appears at
least an instance of this concept.

the data analysis information is introduced. Then, the
proposed model is described, starting from the defini-
tion of dimensions and their operators (section 3) and
following with the specification of the multidimen-
sional conceptual space (section 4). The two follow-
ing sections are focused on the extraction of interest-
ing conceptual spaces and their use, respectively. The
last section gives some conclusions and future work.

2 ANALYSIS METADATA

Information descriptions useful for the analysis are
those available in the ontologies in form of instances.
However, they are not enough to analyze data and dis-
cover patterns. New interesting concepts and partic-
ular issues related to the generalization process are
essential in order to generate descriptions that repre-
sent relevant and realistic visions of the application
domains of the analyzed ontologies. We call all this
informationanalysis metadata, which comprises the
following elements:

• description of new concepts, which it is used to in-
troduce additional levels of abstraction in the con-
cept hierarchies expressed in an ontology, and/or
to link concepts from different ontologies. New
concepts may be obtained extending old ones with
paths to previously unrelated concepts. They can
also semantically represent hierarchical clusters
obtained using clustering algorithms.

• description of the combination functions(see def-
inition below); it is used to specify ways for gen-
eralizing sets of data of the same type during the
instance generalization process. The data analyst
is responsible for deciding the combination func-
tions that are semantically suitable for a given data
set. For example, the combination function which
computes the average of a set of values is seman-
tically suitable for a temporal sequence of temper-
atures of a town, but not for a set of temperatures
of different towns.

Although it is perfectly plausible to define such
descriptions for every new multidimensional concep-
tual space, a better solution is to keep this semantic
information always available and to apply it accord-
ing to the requirements of each case. This goal can be
achieved building a meta-ontology containing the sort
of information described above, again using Descrip-
tion Logic. In this way, analysts can proceed more ef-
ficiently as they can reuse the analysis metadata. Even
more importantly, in this way the coherence of differ-
ent studies is granted, providing an ontology with an
intrinsic robustness toward analysis processes. Thus,
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further studies can be more easily performed by com-
paring different analysis on the same knowledge do-
main and/or the point of views of different analysts.

The description of the combination functions can
be specified through instances associated to the notion
of Combinable Conceptof this meta-ontology:

CombinableConcept≡
≡ ∃hasConcept.URI⊓∀hasRelation.URI⊓
∃hasCombinationFunction.CombinationFunction

CombinationFunction⊑
⊑ ∃hasName.String⊓∃hasImplementation.URI

Combinable concepts are those for which a com-
bination function can be defined. A combinable con-
cept can be a datatype, a named concept (defined via
a URI), or a concept derived from a composition of
relations beginning with a named concept (specified
by the URI where the start concept is defined and the
relations from it).

3 DIMENSIONS AND THEIR
OPERATIONS

A dimension is described by a set of concepts and the
way to browse through them. Such browsing is per-
formed using the operators of abstraction and general-
ization between ontological instances, and the selec-
tion operators defined below.

We consider that an abstract ontology is consti-
tuted only by the terminological knowledge. An on-
tology that contains a set of instance axioms (theAbox
of the ontology, composed by axioms specifying the
classC of an instancea -C(a)- or the relations be-
tween two instancesa andb -R(a,b)-) is called con-
crete ontology. As it is usual in description logic, the
interpretation of the ontology is(I = ∆I , .I ), where∆I

denotes the set of instances belonging to an ontology
O , and.I the interpretation of the concepts defined on
O ; I 
 x represents thatx is deduced fromI ; ⊤ rep-
resents the top concept:thing. We denote withA the
Abox of O , with R the set of axioms associated with
the relations of an ontology, withNC andNR the set
of named concepts and relations of the ontology, re-
spectively. Besides, the interpretation of a datatype is
defined byID = (ΦD, .D), whereΦD denotes the data
set belonging to a datatype,Φ, of the ontology, and
.D associates each datatypeΦ with a strict subset of
data inΦD, ∆I ∩ΦD = /0. All representable data in the
ontology belongs to the setU = ·I ∪⊕D .

The definition of path between two conceptsC
andC′ and that of dimensional partial order are given
below. Intuitively, the former is the set of lists of

relation-concept pairs that linksC and C′ by using
consistent ontological definitions, and the latter is
used to relate concepts using both the aggregate (as
defined bellow) and the hierarchical order between
concepts implicitly defined in a given ontologyO .

Definition1. Path(C,C
′
) = ⊕1≤i≤n 〈RSi ,Ci〉 is an ag-

gregation path from conceptC to conceptC
′

of the
ontologyO if C1 = C, Cn = C

′
, and there exists an in-

terpretationI = (∆I , .I ) of O such that∃xi ∈ ∆I ,0 ≤
i ≤ n, such thatx0 ∈ CI y xi ∈ CI

i ,〈xi−1,xi〉 ∈ RI
i , for

1≤ i ≤ n, Ri ∈ RSi .
The process of path retrieval must be exhaustive

enough to allow the recovering of all aggregation re-
lations between two concepts. It can be performed
by using an extension of the tableau algorithm for the
SHOIQ(D) language (Danger, 2007). It is worth em-
phasizing that these paths not only describe the aggre-
gation relations between two concepts, but also the
aggregation order between all concepts of an ontol-
ogy.
Definition 2. Let O be an ontology. A dimensional
partial order, denoted as

⊏
→ is a partial order between

all possible pairs of conceptsC,C′ ∈ NC defined ac-
cording to the following constraints:

• C
⊏
→C′ if C′ ⊏ C, or

• C
⊏
→C′ if ∃Path(C,C′)

The symbol
⊏
→∗ is the reflexive and transitive closure

for relation
⊏
→.

Definition 3. Let O be an ontology. The pairD =

(Cd,
⊏
→) is a conceptual dimension, beingCd a set of

satisfiable concepts inO , ⊤ ∈ Cd and
⊏
→ the relation

of dimensional partial order for the elements inCd.

Example 1. In Figure 1 a workplace dimension
which combines hierarchical and aggregation rela-
tions is shown. This dimension can be used to identify
a specific place with different levels of granularity.

Workplace

Sector Stratigraphic 

Unit

Archaeological 

Site

Municipality

Country

Continent

Figure 1:Workplace.dimension.

Operations
The ontological instances of each dimension can

be represented by using different point of views of
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(concepts associated with) the dimension. It is thus
necessary to define two different kinds of operations
over such instances. The first one is the selection op-
erator, used to specify the interest portion of the in-
stance that must be shown (for example, when the
concept represented by a dimension is replaced by a
concept related to the first one by an aggregate re-
lation). The second important operation is the gen-
eralization, used to generalize a set of instances (for
example, when the concept represented by a dimen-
sion is replaced by a concept related with the first one
by a hierarchical relation). The following definitions
formalize these operators.
Definition4. LetO be a concrete ontology with Abox
A ; the description of an instancea ∈ A is the set
d(a) = {R(a,b),R(a,b) ∈ A }. This instance is said
to be of typeC if C is the most specific concept that
can be deducted fromI for a, i.e., ∀C∗ such that
I 
 C∗ (a), C ⊏ C∗.
Definition 5. Instancea′ is called the specialization
of an instancea of classC towards classC′, if its de-
scriptiond(a↑C′ a′) is not undefined, and ifA \C(a)∪
{C′(a′),d(a)}∪d(a↑C′ a′) is consistent. The descrip-
tion of d(a ↑C′ a′), is defined as follows:

{R′(a′,b′)|R(a,b) ∈ d(a),
f e(C,C′)(R) = {〈R′,C′〉},
d(b ↑C′′ b′) 6= unde f ined},

if ∃ fe(C,C′),
|d(a ↑C′ a′)| = |d(a)|

unde f ined, otherwise

where fe is a specialization function of the con-
ceptC to the conceptC′. This function defines how to
transform each relation on the abstract concept to the
appropriate relation on the specialized concept (Dan-
ger, 2007).

The operation of abstraction of an instance, de-
noted byd(a ↓C′ a′), can be defined in a similar way.
Definition 6. Let O be an ontology. Letℓ be an un-
defined data that represent any data inU . A pseudo-
instancea3 of typeC is a selector if its description,
d(a), satisfies that:

∀b|∃{R1, ...,Rn} ⊆ NR,R1(a,a1), ...,Rn−1(an−1,an),
Rn(an,b) ∈ d(a) ⇒
b∈ {ℓ}

S
∀C′,∃Path(C,C′)andR1, ...,Rn

is the order of the relations onPath(C,C′)

C′I .

Definition7. LetO be a concrete ontology with Abox
A , a ∈ U . Let ℓ be an undefined data that represent
any data inU . An instancea′ ∈ U is selected by an
instance selectora if:

3We calla pseudo-instance becauseℓ does not belong to
the ontology, although in order to improve the clarity of the
explanation we will call it instance selector.

• a′ ∈ Φ, a′ ∈ {a, ℓ} or
• a∈ CI ,C ∈ NC y a′′ computed ford(a′ ↓CI a′′) is

such that:
∀b∈ Φ∪{ℓ} such that∃R1(a,a1), ...,

Rn−1(an−1,an),Rn(an,b) ∈ d(a) ⇒
∃R1(a′′,a′′1), ...,Rn−1(a′′n−1,a

′′
n),Rn(a′′n,b

′′) ∈
∈ d(a′′)∧ (b′′ = b∨b = ℓ)

Example 2. In Figure 2 a fragment of an arche-
ology ontology is represented. A selector in-
stancea constituted by the set{hasmorphology(a, a’),
hasgroup(a’, “open”), hasorder(a’, ℓ), hasdecoration(a,
ℓ), hascolor(a, “gray”) } allows the users to recover
from the ontology the descriptive fragments ofce-
ramic artifacts instances according to the properties
group, order, decorationandcolor, but notice that the
morphologic group of the ceramic must be open, and
its color gray.

Definition 8. Let cΦD be a function (called a com-
bination of simple data) which allows each datatype
Φ to be mapped to another functionrepΦ, which in
turn maps subsets ofΦ in a compact representation
of the input subset4. Let d, d′ be two data in∆I ∪ΦD.
A complete combination of datad andd′ is the data
d ·∪td′ computed as follows:

cΦD(Φ)({d,d′}), if {d,d′} ⊆ Φ,

d′ ·∪td,
if d ∈∗ C,d′ ∈∗ C′,
C⊑C′

d(d ↑C′ d′)∪d(d′)\
\{R(d′,b1), ...,R(d′,bn)|
{b1, ...,bn} ⊆∗ C′′}∪
∪{R(d′,b1 ·∪t ... ·∪tbn)|
{R(d′,b1), ...,R(d′,bn)|
{b1, ...,bn} ⊆∗ C′′}

if d ∈∗ C,d′ ∈∗ C′,
C′ ⊑C and
during the process
no indefinitions
are obtained

unde f ined, otherwise

In particular, two types of functions for data com-
bination can be identified:

• unification functionswhich map data from 2Φ to
Φ. They can be oriented to statistical indexes,
such as means or deviations. Of special interest
is the functionrestrictive unificationdefined for
all types of data as:

f ({d1, ...,dn}) =

{

d, if d1 = ... = dn
unde f ined, otherwise

4For example, if ΦD = {Z }, cΦD =
{〈Z , rangeO f IntegerSets〉}, where the function
rangeO f IntegerSetshas domainZ and as images the most
compact representations of integer sets, 2Z , using integer
range sets, thenrangeO f IntegerSets({1,2,3,4,5,7}) =
[1,5]∪ [7,7].
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Archaeological 

Site
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Country
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Context
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SU

Artifact
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Id_SU

Stone Artifacts
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Ceramic Part

Body

Neck

Base

ovoid, cylinder, 

cone, ...
open, 

closed
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Black,...
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Excavation 

date

Period

Interpretation

Culture

……
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Artifacts
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polished, stamping, 
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Figure 2: Fragment of an archeology ontology. The concepts are represented in ellipses, the shady ones correspond to root
concepts of different hierarchies of the ontology and the dashed-line ones correspond to datatypes. The thick lines represent
the hierarchical relations between concepts, the thin lines aggregation relations and the dashed lines represent hierarchies
between relations.

• generalization functions: which map data from 2Φ

to acompact notation.

Example 3. Let d be an instance represented by the
set {hascolor(a, “black”), has decoration(“incisions”),
hasweight(20g)} and d′ an instance represented by
{hascolor(a, “ochre red”), hasdecoration(“incisions”),
hasweight(12g)}. The outcome of the combination
of d and d′ by using the union of sets as combina-
tion function for thehascolor and hasdecoration
relations and the maximum of values as com-
bination function for hasweight is {hascolor(a,
{“black”, “ochre red” }), hasdecoration({“incisions” }),
hasweight(20g)}. However, if all relations have to be
combined using unification functions, the result is un-
defined, becaused andd′ have different values for the
same relations.

4 MULTIDIMENSIONAL
CONCEPTUAL SPACES

The definitions of multidimensional conceptual
schema and multidimensional conceptual space are
given below. The former can be seen as the structure
which defines how to analyze the information. The
latter is the container where the analyzed instances
are described according to the specifications of the
schema.

Definition 9. Let O be an ontology,C ∈ NC and
CC = path1, ..., pathn a set of paths from conceptC
toward conceptsC∗

1, ...,C
∗
n, respectively, (i.e.,pathi =

⊕1≤ j≤ni−1

〈

RSi j ,C
∗
i j

〉

⊕
〈

Rini
,C∗

n

〉

). The tupleE =

(D1, ...,Dn,cφ1, ...,cφn) is an n-dimensional (or sim-
ply multidimensional) conceptual schema ofO as-
sociated toC using pathsCC, where it is satisfied
that∀Di = (Cdi ,

⊏
→), ∀Ci j ∈ Cdi , C∗

i
⊏
→ ∗Ci j and cφi

is a function which assigns a combination function to
each simple type of data that can be reached from a
concept inCdi .

Definition 10. Let O be a concrete ontology with
Abox A . Let E be an m-dimensional conceptual
schema ofO associated toC using the paths inCC.
The set of tuples{t1, ..., tn}, ti = (di1, ...,dim), ti 6=
t j ,∀i, j ∈ {1, ...,n} is called m-dimensional concep-
tual space ofO with respect toE, if for each data:

1. dik ∈CI
is,Cis ∈Cdi , or

2. ∃d ∈CI
is such thatdik is an instance selected with

respect to a selector instance of classCis, or

3. dik is a generalized data of a dataset selected with
respect to a selector instance of classCis,Cis ∈
Cdi .

Eachti represents a generalized instance of a set of
instances ofA selected with respect to a selector in-
stance of classC which contains all paths inCC.
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Table 1: Analysis and generalization of ceramic artifacts.
Each row maintains the number of instances represented by
the associated description (values between parenthesis).

Decoration Morphology Weight [g]

incisions group:{open}
order:{ovoid, spheroid} 20 (3)

polished group:{open, closed}
order:{cone, ovoid} 500 (3)

stamping group:{open}
order:{cone} 5 (2)

without dec. group:{closed}
order:{spheroid} 12 (2)

Example 4. The multidimensional schema shown
in Table 1 has been constructed by using the
following multidimensional conceptual space as-
sociated to the conceptCeramicArti f act, E =
(D1,D2,D3,cφunion,cφunion,cφmax), where:

D1 = ({Decoration}, /0),
D2 = ({Morphology}, /0),
D3 = ({Weight}, /0),
cφunion = {〈Φ, ∪̂〉 |Φ ∈ ΦD},
cφmax = {〈ℜ,Max〉}.

∪̂ is defined by∪̂(d1, ...,dn) = {d1}∪ ...∪{dn} and
Max represent the maximum function for real num-
bers (in this case to compute the maximum weight in
each generalization).

Algorithm for the generation of multidimensional
conceptual spaces

Algorithm 1 describes how an m-dimensional
conceptual space is obtained from a given ontology
O and a conceptual schema ofO associated to the
classC, E. The technique of attribute-oriented induc-
tion (Carter and Hamilton, 1998; Han et al., 1998)
was taken as inspiration for its simplicity and flexi-
bility. One remarkable common feature between such
technique and this one is that no restrictions are put
on the data. The first step of the algorithm is to de-
fine a mapping between each data of each dimension
and its generalized value, according to the conceptual
schema for instances of typeC. Then, the generalized
instances are formed, substituting each m-tuple with a
generalized m-tuple that constitutes the generalization
of the instances of the same type for each dimension.

5 INTERESTING CONCEPTUAL
SPACES

A conceptual space as previously defined allows users
to freely browse the conglomerate of objects and re-
view the aspects they consider more interesting. If the

Algorithm 1 Generation of multidimensional concep-
tual spaces.
Require: O , E, C, βm, βM
{ O , instantiated ontology with AboxA ,
C, reference class to generate multidimensional spaces,
E, multidimensional schema,
βm, βM , minimum and maximum percentage of different
values in each dimension}

Ensure: E′

{E′, multidimensional space associated to the schemaE
and the ontologyO }

First part: Eliminate the irrelevant dimensions and create
the generalization mappings between the data.
AC = {a|a∈CI}.
IterateAC and group different data associated to each di-
mension ofE.
if βm ≥

|Di |
|A C|

≥ βM (Di must be removed)then
E = (D1, ...,Di−1,Di+1, ...,Dn,cφ1 , ...,cφi−1 ,cφi+1 , ...,cφn)

else
Generate mappings(d,d′) for each valued collected
in Di , d(d ↓Csup

i
d′) with Csup

i being one of the classes

direct ancestors ofCi , d ∈CI
i .

Second part: Creation of the multidimensional space
E′ = {}
for all a∈ A C do

Let t = (d1, ...,dn) be the tuple of data associated toa,
according toE.
t ′ = (d

′

1, ...,d
′

n), computed from the mapping gener-
ated in the previous step, beingC

′

i the type of datadi .
if ∃t ′′ = (d

′′

1, ...,d
′′

n) ∈ E′, beingC
′′

i the type of datad
′′

i
such that∀i ∈ {1, ..,n} then

t ′′ = (d
′′

1 ·∪td
′

1, ...,d
′′

n ·∪td
′

n)
else

E′ = E′∪{t ′}

data analyst were not informed on the features of the
object distribution in the domain, or if the number of
such features were too high, her analysis capabilities
would be strongly affected. Nevertheless, this prob-
lem can be overcome with an analysis tool able to
suggest to the user some interesting analysis dimen-
sions. This can be obtained with a customizedfeature
selectionprocess. The concept of feature selection
was introduced for the task of dimensionality reduc-
tion originally defined in Statistics and widely studied
in Machine Learning.

Anyway, it is necessary to define a way of assess-
ing the importance of a given feature subset. The
measures more used in the literature are the informa-
tion gain , the Gini index , the uncertainty and the
correlation coefficients. Nevertheless, the large num-
ber of studies that argue in favor of decision trees and
information gain (like ID3 and C4.5), made us decide
to choose such a combination for our feature selec-
tion process. More exactly, in this work we propose
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Let Cp be an ancestor concept in a dimension,
{C1, ...Cn} concepts directly specialized ofCp, and
ob jsa function which associates each concept with its
objects set. Letβ be the percentage of maximum cor-
relation between the number of objects of descendant
and ancestor concepts.
If ∃Ci such that|ob js(Ci)| ≥ β|ob js(Cp)|

Promote conceptsC1, ...,Cn to level of conceptCp
DeleteCp from the dimension.

Figure 3: Rules for filtering out uninteresting concepts.

to compute interesting conceptual multidimensional
schemata associated to a conceptC by way of algo-
rithm 2, an adaptation of the one proposed by (Han
and Kamber, 2001). The purpose of such customized
algorithm is that of using the distributions of a set of
concepts in relation to a set of classes, in order to se-
lect the compositions of relations (paths) that assure
the highest information gain with respect to the distri-
bution. The main block of the algorithm is procedure
ComputePseudoSchematawhich selects, as a first
step, the paths with highest information gain. Then,
for each path, the initial distribution is subdivided ac-
cording to the possible values of the data associated to
the objects through such path, and the process of sub-
division of the clusters is repeated while the informa-
tion gain is maintained in a desirable range. A parallel
task performed during this process is the computation
of the weights which indicate the interest estimation
for each conceptual schema that may be generated for
each path set.

A further filtering step can be done for each di-
mension taking into account the relation between the
quantity of objects associated to a concept and to its
ancestor concept. In this way, an uninteresting an-
cestor concept can be removed from the dimension,
following the rule described in Figure 3.

6 USING A MULTIDIMENSIONAL
CONCEPTUAL SPACE

As explained in the introduction, the major advantage
of a multidimensional space is that a user can see her
data from different points of view. Tabular models in
3D, function graphs, histograms and relational graphs
are the most natural tools to use for the analysis of
results. The possibility of realizing generalizations
and selections at each level also represents a powerful
analysis skill. In this way, it is possible to character-
ize object classes in relation to others, allowing for
the comparison and discovering of class features.

Although these are the analysis methods that have
traditionally been used, an analyst may be interested

Algorithm 2 Generation of interesting schemata of
multidimensional conceptual spaces.
Require: O , C, I , γ, α
{O , ontology with Abox AI
C, reference class for generating a schema of multidimen-
sional spaces,
γ, minimum allowed information gain
α, minimum number of objects in a description}

Ensure: SP
{SP, set of paths associated toC whose subsets can be
used to form interesting multidimensional schemata}

Let PathsC be the dictionary of paths starting fromC with
key in the destination concept.

S= {Si |Si = {a∈CI
i },∀Ci , i ∈ {1, ...,n},C⊑Ci ,

Ci 6= Cj , j ∈ {1, ...,n}, i 6= j}
SP= ComputePseudoSchemata(PathsC,S,γ)

function ComputePseudoSchemata(PathsC,S,γ) :
{Outputs a pair, in which the first element is a set of
paths and the second a real value indicating the impor-
tance of the set of paths for the generation of interesting
schemata}
First phase: Compute the importance of the current clus-
tering
ve= ∑Si∈Simp(Si), where

imp(Si) =

{

1, if |Si | > α
1−|Si |/α, otherwise

Second phase: Retrieve the subsets with highest informa-
tion gains
if |S| = 1 then

Output (/0,ve)
else

SP= /0
Compute information gain,G, for each destination
conceptPathsC according to the classification inS
Let {path1, ..., pathm} be the set of paths which allow
a high discrimination between objects ordered accord-
ing to the gain value:G(path1) ≥ ... ≥ G(pathn) >
γ and Ck the destination concept associated to path
pathk, k∈ {1, ...,m}.
for all k∈ {1, ...,m} do

CD = {C′|C′ ⊑Ck}
for all C′ ∈CD do

S= {SClC′ = {a∈CI
i |Ci ∈ {1, ...,n},C⊑Ci ; a is

related to some datad according topathi ∧d ∈
C′I}}
SP= SP∪(sp,v)∈ComputePseudoSchemata(PathsC−{pathi},S,γ)
{〈Ci ∪sp,v+ve〉}

OutputSP

in other more complex insights about the behavior of
her data. Various pattern analysis tools have been de-
scribed in the literature, especially with the develop-
ment of data mining research. It is thus plausible to
create new algorithms for the extraction of interest-
ing patterns in the multidimensional conceptual envi-
ronment (Han and Kamber, 2001). Some of the most
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interesting patterns to extract are:

• of characterization: they represent rules for char-
acterizing a class of objects according to the val-
ues of a subset of its dimensions. They can be ex-
pressed by:class X⇒Condition[pc], wherepc =
100×count(Condition)

n , which means that, in classX,
Conditionoccurs in apc percentage of the cases,
Count is a function that counts the number of
times in which a certain condition occurs, andn
is the total numbers of analyzed objects.pc is
known as characterization coefficient.

• of discrimination: they represent rules for char-
acterizing a class of objects for which a given
pattern is not observable with a certain fre-
quency in any other class. They can be ex-
pressed by:class X⇐Condition[pd], wherepd =
100×count(Condition∧classX)

count(Condition) . pd is known as discrim-
ination coefficient.

• association rules at different levels: they represent
rules for characterizing a class of objects in which
co-occurrence relations can be found in the at-
tributes of the multidimensional space. They can
be expressed by:Condition1 ⇒ Condition2[s,c],

where s = 100×count(Condition1∧Condition2)
n ,c =

100×count(Condition1)
count(Condition1∧Condition2)

, which means that in a
s% of the objects bothCondition1 andCondition2
are observed and thatc% of objects satisfying
Condition1 also satisfyCondition2. s is known as
the support of the rule andc as its confidence.

In order to customize these results to the model
we presented, the multidimensional conceptual model
must take into account how many objects in the con-
crete ontology are characterized by the description of
each cell.

7 CONCLUSION

The proposal of this paper is the formalization of a
data warehouse tool for the Semantic Web. The tool
is based on the theoretical foundations of Description
Logic and on the current developments of information
data generalization. Besides, an algorithm to gener-
ate interesting conceptual spaces according to the data
distribution is proposed. Ideas for adapting Data Min-
ing techniques in order to allow users a better knowl-
edge discovering from the Semantic Web have also
been exposed. Implementation of the proposal frame-
work, on which we are now working, consists of two
main components: 1) a reasoner (which works in an
off-line way) that retrieve instance models and ab-
straction functions from an ontology; and 2) a data

warehouse processor that use such models and func-
tions in order to perform all the necessary generaliza-
tions. This second module has been optimized con-
sidering some of the OLAP solutions.

ACKNOWLEDGEMENTS

This research has been partially supported by the
project TIN2005-09098-C05-04 (2006-2008).

REFERENCES
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