
TURNING CONCEPTS INTO REALITY
Bridging Requirement Engineering and Model-Driven Generation of Web

Applications

Xufeng (Danny) Liang, Christian Kop
School of Computing and Mathematics, University of Western Sydney, Sydney, Australia

Alpen-Adria-Universitaet Klagenfurt, Klagenfurt, Austria

Athula Ginige, Heinrich C. Mayr
School of Computing and Mathematics, University of Western Sydney, Sydney, Australia

Alpen-Adria-Universitaet Klagenfurt, Klagenfurt, Austria

Keywords: Requirements engineering, web engineering, conceptual modeling, rapid development, model driven software
development.

Abstract: Today web application development is under the pressure of evolving business needs, compressed timelines,
and limited resources. These dynamics demand a streamlined set of tools that turns concepts into reality and
minimises the gap between the original business requirements and the final physical implementation of the web
application. This paper will demonstrate how this gap can be reduced by the integration of two techniques,
KCPM (Klagenfurt Predesign Conceptual Model) and SBO (Smart Business Object), allowing fully functional
web applications to be auto-generated from a set of glossaries.

1 INTRODUCTION

One of the major challenges in developing web ap-
plications is to minimise the requirement and time
gap between the development domain and the actual
problem domain. End users tend to express their re-
quirements using natural language. They are neither
capable nor willing to understand conceptual models
that reflect the vocabulary of concepts of the comput-
ing domain within which the solution needs to be pro-
vided. On the other hand, system designers can easily
understand the requirements as well as to identify any
missing requirements by looking at conceptual mod-
els. In the absence of a coherent conceptual model,
i.e. a way for system designers to express the con-
cepts that end users could also understand, the first
opportunity end users get to verify whether their re-
quirements have been properly understood by the de-
signers and the developers is when they see the imple-
mented system.

Several methodologies have been developed so
far which focus on different concepts and techniques
to improve the communication and to automate the
web application development. Some of these are goal
modeling (Mylopoulos et al., 1999) , scenario based
approaches (Sutcliffe et al., 1998; Rolland et al.,

1998; Diaz et al., 2005), story boarding (Schewe
et al., 2004), tasks (Valderas et al., 2005), template
based approaches, navigation approaches (Escalona
et al., 2004), specific use cases for web development
(Koch et al., 2006; Koch, 2006), as well as user ser-
vices approaches (de Castro et al., 2004). Further-
more the need for a controlled natural language is pro-
posed in (Hoppenbrouwers et al., 2005) as a meeting
point between natural and formal languages.

Between the original concepts and the final phys-
ical implementation, often there is a requirement gap
and a time gap. A requirement gap can arise due to
different levels of communication loss, for example,
between end users and designers, or between design-
ers and developers. It also can arise due to end users
not being able to identify all the requirements at the
beginning. There is also a time gap, which is the
time required to turn the original concept into the final
physical implementation. Minimising the time gap
can effectively reduce the requirement gap, since end
users can quickly experience the system, identify any
gaps (missing information) in relation to their require-
ments, and request necessary changes. Therefore, in
this paper, we propose an approach that minimises
these gaps by integrating Klagenfurt Predesign Con-
ceptual Model (KCPM) (Mayr and Kop, 2002) and

109
(Danny) Liang X., Kop C., Ginige A. and C. Mayr H. (2007).
TURNING CONCEPTS INTO REALITY - Bridging Requirement Engineering and Model-Driven Generation of Web Applications.
In Proceedings of the Second International Conference on Software and Data Technologies - Volume ISDM/WsEHST/DC, pages 109-116
DOI: 10.5220/0001333601090116
Copyright c© SciTePress



Smart Business Objects (SBO) (Liang and Ginige,
2006).

KCPM is aimed to minimise the requirement gap.
It provides a glossary representation of the natu-
ral language requirements that can be directly used
to verify with end users and to identify any miss-
ing information immediately. In last year’s ICSOFT
conference, we have proposed the SBO concept to
effortlessly generate web applications by modeling
business objects using high level modeling language
called SBOML (Smart Business Object Modelling
Language) (Liang and Ginige, 2006). By encap-
sulating common web behaviors and characteristics,
SBO understands high-level concepts, such as email,
photo, URL, document, video etc. Consequently,
SBO is capable of directly generating a rich set of
ready-to-use web views (user interfaces) for the mod-
eled business objects, allowing web applications to be
developed within an extremely condensed timeframe.
In this paper, we further reduce the requirement gap
and the time gap by introducing a rule-based engine
to automate the process of converting the KCPM glos-
saries into a conceptual model of the business objects
in SBOML.

Web applications can be developed in several
ways, such as by navigation, tasks (Liang and Ginige,
2006), or user services (Koch, 2006; de Castro et al.,
2004). In order to fully understand the requirements
of the required application, a business analyst needs
to understand the terms and concepts in the target do-
main and the relationships among them. A glossary
is commonly used to maintain a list of the terms as
well as their meanings. Thus, in practice, business
analysts do not always follow the rule tasks first in
requirement analysis, apart from the initial tasks to
obtain a broad, high-level understanding what the in-
tended application should do. Since it is natural for
end users to use jargon to express concepts in their
domain (e.g. customer, product, icd10), business an-
alysts will soon confront the underlying data model
of the intended application during a detailed analy-
sis. From this point on, in practice, domain analysis,
or the analysis of the underlying end users ontology,
must go hand in hand with task analysis.

Existing approaches in deriving the data model
(i.e. the conceptual modeling of data) from user re-
quirements, such as the template mechanism used in
(Koch et al., 2006; Escalona et al., 2004), requires
business analysts to make decisions for the structure
of the required data model (such as which concepts
should become classes or attributes) at a very early
stage of the development process. On the contrary,
since KCPM is capable of using a rule-based engine
(explained in section 5) to systematically derive the

required data model based on the terms and relation-
ships stored in its glossaries (explained in section 2),
the laborious work of manually constructing the data
model is alleviated from business analysts or system
designers. Additionally, KCPM has an extensible
structure to support the need for collecting additional
information about the domain specific concepts.

The integration of KCPM and SBO leads to an ap-
proach where functional web applications can be gen-
erated purely by collecting information about data.
This is a data-driven approach to develop web appli-
cations. Existing web modeling techniques, such as
WebML (Ceri et al., 2000) and OOHDM (Rossi et al.,
2000), use a similar data-driven approach. However,
the starting point of existing data-driven approaches is
the conceptual modeling of data (using ER diagrams
or UML class diagrams), from which web applica-
tions can be generated or developed. The integra-
tion of KCPM and SBO allows us take a step further.
We take user requirements (domain specific terms and
concepts) in the form of KCPM glossaries as our start-
ing point, where the conceptual model can be derived
automatically and web applications can be then gen-
erated.

The paper is structured as follows: We will intro-
duce the concept of KCPM and SBO in sections 2 and
3 respectively. In section 4, we will explain our data-
driven approach to generate web applications from re-
quirements. Section 5 explains how the KCPM glos-
saries are mapped to SBOML expressions. We will
then demonstrate the tools we have developed to fa-
cilitate the generation process in section 6. Section 7
describes the future directions.

2 KCPM

An important aim for the development of KCPM was
to provide both developers and end users with an in-
terface for their mutual understanding. The most im-
portant modeling notions for modeling the structural
(data) aspects of a software system are: thing-type,
connection-type and perspective. In this section, we
will explain, via examples, these notions and their as-
sociated meta-attributes in the glossaries.

A thing-type is a generalisation of conceptual no-
tion classes (entity type or entity set, respectively) and
attributes. Thus, typical things (instances of thing-
types) are:

• Natural or juridical persons (e.g. author),

• Material or immaterial objects (e.g. book, prod-
uct, idea),

• Abstract notions (e.g. contract), as well as,

ICSOFT 2007 - International Conference on Software and Data Technologies

110



• Descriptive characteristics of the abovementioned
examples (e.g. a customer name, a product num-
ber, a product description)

It is insufficient to collect only the names of the thing-
types, such as author, ISBN, book, etc. KCPM also
use a set of meta-attributes to define thing-types:

• Description - a semantic description of the thing-
type

• Examples- a list of examples for the specific
thing-type.

• Synonyms - a list of alternative names to describe
the same thing-type

• Value Constraint - a description about the con-
straints of a value (e.g. the value should be be-
tween 4 and 10)

• Format Constraint - a description for the format of
the value (e.g. YYYY-MM-DD).

• Quantity Description - a description for the possi-
ble amount of instances of a particular thing-type
(e.g. 1000 customers, 3 colors)

• Requirement Source - the references to the
sources (documents) from which the particular
thing-type was derived.

All these information can be derived by analysing
the textual requirements or by asking the end users
(Figure 1). The advantage of this approach is that sys-
tem designers can immediately identify any inconsis-
tent or missing information, for example, if end users
have specified two different format constraints, “YY-
MM-DD” and “DD-MM-YYYY”, for the same thing
type.

Figure 1: Completing the Glossary.

Things in the real world are related. To capture
the relationships between things, KCPM also intro-
duces the notion of connection-type. Two or more
thing-types can be connected via a connection-type.
To completely define a connection-type, we must
specify the viewpoint (perspective) of all of the in-
volved thing-types. This corresponds to the NIAM
Object/Role Model (Nijssen and Halpin, 1989). It is
possible to specify the cardinalities of a connection-
type within a perspective. Natural language sentences
can lead to connections (and perspectives), for exam-
ple:

• “An Author writes many books.” - from the per-
spective of an author

• “A Book is written by many authors.” - from the
perspective of a book

KCPM also allows special connection-types with spe-
cific semantic meanings to be defined. These special
connection-types can be mapped to conceptual mod-
els. Typical semantic connection-types are:
• Identification - specifies that the instances of

a thing-type identifies the instances of another
thing-type (e.g.: An ISBN number identifies a
book)

• Generalisation (“is-a”) - a set inclusion on the in-
stance level

• Has Property (“has”) - a generic connection-type
can lead to different semantic relationships. In
this way, systems designer can express that a
thing-type has some “properties” without speci-
fying whether the “property” is an attribute or a
class (in OO terms). For example, an address is a
typical property of a person. However, the address
may not necessarily become an attribute of per-
son. The address itself may consist of other rela-
tionships with other information, such as city, zip
code, and street, which enforce the address to be
a class. Thus, further information about the thing-
type address is required to determine whether it
should become an attribute or not. This strategy
is based on (Storey, 1993), where the word “has”
have different semantic meanings.

There are three methods for end users to specify
connection-types in KCPM:
• Adding new connection-types directly in the glos-

saries
• Generating connection types along with their as-

sociated thing-types via a graphical editor
• Using on sentence patterns of a controlled lan-

guages (Hoppenbrouwers et al., 2005) to define
connection-types, as well as their cardinalities.
For example, “A Book is written by many author”,
“An ISBN number identifies a book”, etc.

If the third method is adopted and assuming the sen-
tences in the requirements conform to the sentence
patterns of a control language, then we can use an in-
terpreter (a tool) to translate those sentences to KCPM
connection-types.

3 SMART BUSINESS OBJECT

Smart Business Object (SBO) is built on early
work done by Reenskaug in MVC (Model-View-

TURNING CONCEPTS INTO REALITY - Bridging Requirement Engineering and Model-Driven Generation of Web
Applications

111



Controller): a modeling approach to bridge the gap
between users’ mind and computer data (Reenskaug,
1979b; Reenskaug, 1979a). The aim of SBO is to
raise the level of abstraction in modeling business ob-
jects, as well as auto-generating “web-ready” views
of the modelled business objects for web-based busi-
ness applications.

In building web-based business applications, we
need to develop web user interfaces (UIs). In order to
accelerate the development of web-based business ap-
plications, higher-level, semantic-rich Abstract Data
Types (ADTs) that embrace web characteristics and
behaviours is desirable. For example, an email data
type should be by default rendered as a mailto hy-
pertext link for view operations, while both server
side and client-side validation are enforced on update
operations. Similarly, an photo data type should be
by default rendered as an image on the web browser,
while uploading facilities are automatically provide
on update options. In other words, these Abstract
Data Types also need to be also context-aware, in
terms of the web user interfaces they are to gener-
ate for different operations (such as CRUD). We call
these Web-Oriented Abstract Data Types.

In order to represent the attributes of common
business objects, SBO is designed to support Web-
Oriented Abstract Data Types, such as email, docu-
ment, photo, video, etc. Thus SBO greatly reduce
the laborious and repetitive work in building web user
interfaces for business objects. SBO not only con-
sider the database schema level semantics (i.e. data
types in the database) for determining the most suit-
able web user interfaces, but also maintains a global
schema for representing Web-Oriented Abstract Data
Types. This schema maintains the additional aspects,
such as presentation logic, validation logic, and con-
tent handling mechanism, for customising or creating
new Web-Oriented Abstract Data Types. SBO main-
tains a global schema for defining Web-Oriented Ab-
stract Data Types.

The direct support for Web-Oriented Abstract
Data Types in SBO enables the construction of a for-
mal modeling language for modeling business object
at a very high level of abstraction. The proposed mod-
eling language is called Smart Business Object Mod-
eling Language (SBOML). The syntax keywords of
SBOML are based on the English lexicon, allowing
users to model their domain specific business object
using near-natural language syntax. A detailed expla-
nation of the SBOML syntax can be found in (Liang
and Ginige, 2006).

An example would be the use of the “has” and
the “many” keyword. According to Storey (Storey,
1993), the word “has” can be used to describe sev-

eral types of semantic relationships, including “one
thing connected to another” and “a property or char-
acteristic of something”. In order to make the syn-
tax more generic, SBOML use the “has” keyword for
defining both “object-object” relationships (composi-
tion) and “object-attribute” relationships. For exam-
ple, the expression “employee has position” implies
an “object-attribute” relationship if “position” is not
a known business object. Otherwise, the same ex-
pression will be considered as an establishment of
a composition relationship between the “employee”
and the “position” business object. To specify the
cardinality in relationships between business objects,
SBOML uses the “many” keyword in combination
with the “has” keyword. For example, assuming that
“car” is a known business object, then the expression
“employee has many car” will imply a cardinality of
[1..*]. SBO is also capable of making logical in-
ferences about the attribute types of business objects
based on a set of rules. This eliminated the need for
explicitly specifying the Web-Oriented Abstract Data
Types for attributes when defining business objects,
allowing the SBOML syntax to be closer to the natu-
ral language.

Following is an example using SBOML to model
business objects:
in organisation, employee has first name,
last name, gender, date of birth, photo,
email address, home phone, hobby (which
could be reading and skiing and coding),
position (has title, description)

The above expression literally defined an “employee”
business object and a “position” business object in the
“organisation” namespace, where “employee” has a
“position” (establishing a composition relationship).
This expression is sufficient for SBO to automati-
cally generate the necessary physical implementation
to represent the two business objects to the web. In
other words, we can directly generate the necessary
web user interfaces (views) for the “employee” busi-
ness object, such as web forms for adding new em-
ployees or listing all the existing employees in web
tables.

SBO embraces a rich set of rendering APIs for
generating commonly used web user interfaces in
business web applications, such as tables, forms,
charts, and menus. Thus, by modeling business ob-
jects using SBOML and using the SBO toolkit (illus-
trated in section 6), we can effortlessly generate fully
functional web applications without any coding.

Figure 2 is an example of rendering the both the
“employee” and the “position” business objects as
web tables within a tab menu. According to the defini-
tions of the Web-Oriented Abstract Data Types stored
in the SBO global schema, in the generated web user

ICSOFT 2007 - International Conference on Software and Data Technologies

112



interface automatically:

• Displays Photos as images,

• Formats Email addresses as email hypertext links,

• Utilises Google maps to show the location of the
Addresses,

• Presents Date of Births in a format based on the
users’ locale.

Figure 2: Example of an Auto-Generated Web User Inter-
face.

The auto-generated user interfaces implies an im-
plicit navigation model for performing various opera-
tions to the business object. For instance, in Figure 2,
once the user clicks on the “Add Employee” link, the
web table will hide and a form is then shown. There
are different methods to customise or enhance the de-
fault navigation behaviours:

• By customising the parameters passed to the cor-
responding rendering API to make fine adjust-
ments, such as whether to hide or show a web
form on certain events,

• By specifying custom web templates to the corre-
sponding rendering API to incorporate additional
navigation paths, or

• By defining custom controllers (refers to the con-
trollers in MVC architecture) in the current user
interface to trigger the rendering of another user
interface, and thus, different user interfaces are se-
quenced.

Due to the scope of this paper, we will not focus on the
details of customising the implicit navigation model
of the rendering APIs.

To generate web applications using SBO, how-
ever, requires a middle person, usually system de-
signers, to manually interpret the end user require-
ments and manually construct the SBOML expres-
sions (i.e. conceptual modeling). As previously men-
tioned, end users are neither capable nor willing to
understand conceptual models. Despite the fact that

SBOML has a near-natural syntax, it still assumes the
understanding of prerequisite Object Oriented con-
cepts, for example, the differences between objects-
attribute relationships and object-object relationships,
as well as their implications to the final implemen-
tation. These OO concepts are beyond the capabil-
ity of normal end users. Since KCPM is capable of
automatically deriving objects-attribute relationships
and object-object relationships between thing-types,
integrating KCPM and SBO is a plausible approach
to even eliminate the manual process of conceptual
modeling using SBOML expression.

4 A DATA-DRIVEN APPROACH

A complete web application is composed of many as-
pects, such as data (business objects), view, naviga-
tion, presentation, access control, personalisation and
so on. In business web applications, most of the other
aspects are either depended on the data or influenced
by the data. Understand data in the target domain is
indispensable for business analysts to have a better
understanding of the associated business processes or
tasks. Thus, data modeling is inevitable even if busi-
ness analysts prefer to start with task modeling in de-
veloping web applications. In developing business
web applications, we believe it is plausible to begin
with data modeling in parallel with task modeling.

Figure 3: From User Requirements to Implementations.

Figure 3 illustrates the process used in the pro-
posed approach. Natural language specifications are
first filtered and classified manually. This step is to
populate the KCPM glossaries, which contain impor-
tant domain specific terms (concepts) and the relation-
ships among them. Then system designers can use
the KCPM glossaries to verify the completeness of
the requirements with end users by iterating through
each collected term, for example, whether a particular

TURNING CONCEPTS INTO REALITY - Bridging Requirement Engineering and Model-Driven Generation of Web
Applications

113



term requires a format description (e.g. “YYYY-MM-
DD”) or a quantity description. Once this process is
completed, we can convert the terms and relationships
stored in the KCPM glossaries (using the conver-
sion mechanism is explained in section 5) to SBOML
specifications via tools, from which web applications
can be quickly generated. End users can then expe-
rience fully functional applications, allowing them to
pinpoint incorrect or missing requirements and refine
the KCPM glossaries. We can effortlessly regener-
ate the web application if necessary using the refined
KCPM glossaries until end users are satisfied. Once
end users are satisfied with the generated version of
web application, system developers can then take on
and further refine the application, allowing the appli-
cation to evolve into the final production-ready sys-
tem.

The advantage for integrating KCPM and SBO, is
that it allows end users, who are the real experts of the
problem domain, to have two checkpoints to validate
the solution in the computer domain:

• By validating the KCPM glossary, and

• By validating the generated application from
SBO.

As a result, both the requirement gap and the time gap
between the concept and the final physical implemen-
tation are minimised.

5 CONVERTING KCPM
GLOSSARIES TO SBOML

We utilise a conversion algorithm that is based on
the KCPM to UML mapping developed in (Mayr and
Kop, 2002) to convert the terms and relationships in
the KCPM glossaries into SBOML expressions. The
goal of the conversion algorithm is automate the con-
version process, i.e. the process of creating a con-
ceptual model in SBOML from user requirements in
the form of KCPM glossaries, as much as possible.
To ensure all terms and relationships are considered,
those that cannot be converted automatically using the
algorithm are forwarded to system designers for their
decisions.

The conversion algorithm uses two types of rules,
laws and proposals, to derive classes and attributes
from the terms and relationships stored in the KCPM
glossaries. The rules are orthogonal in the sense that
each rule analyses another piece of information about
a concept. When rules are applied to a term, not
only possible conversions are derived, but also con-
tradicting results are detected. While a proposal may
suggest the suitable concept that a thing-type should

be converted (mapped) to, a law will always force a
thing-type to be converted to a particular concept for
the target conceptual model. Since our target con-
ceptual model is SBOML, classes and attributes are
the two possible concepts that thing-types can be con-
verted to. Laws are here to ensure the syntactical cor-
rectness of the final conceptual model. Therefore, by
definition, laws override proposals.

Moreover, rules are also further classified as:
• Direct rules - Direct rules are rules that rely only

on existing information (terms and relationships)
in the KCPM glossaries. An example of a direct
rule would be:if two thing-types are connected
by an “is-a” relationship, then both thing-types
should be mapped (converted) to classes. This di-
rect rule is based on the fact that “is-a” relation-
ships can only exist between classes, according to
Object Oriented design principles. A similar rule
would be:if there exists a relationship between two
thing-types, X and Y, such that X “has” Y, then X
must be a class. However, using this rule alone,
we cannot make any conclusions for Y yet, until
further information is available.

• Indirect rules - Indirect rules are rules that require
information about thing-type(s), which have been
mapped (converted) to some concepts by apply-
ing direct rules. For example, assuming that a
thing-type A has been mapped to an attribute and
a thing-type E has been mapped to a class, both
due to some direct rules. Assuming that the tar-
get conceptual model does not support nested at-
tributes, then an indirect rule can be applied to
conclude that the thing-type D, by having relation-
ships (connection-types) to both E and A, must be
a class.

The conversion algorithm is a two-step process. The
first step is to apply all the direct rules to each thing-
type. The second step is to apply all the indirect
rules to the result (output) of the first step. Af-
ter the execution of the mapping procedure, all the
connection-types are associated with at least two or
more classes, which are derived from the correspond-
ing thing-types. Due to space limit, we are unable to
include the actual logic of the mapping procedure in
this paper.

6 GENERATING WEB
APPLICATIONS FROM
REQUIREMENTS

In this section, we will demonstrate the tools we have
developed to streamline the web application genera-

ICSOFT 2007 - International Conference on Software and Data Technologies

114



tion process from KCPM glossaries. Based on the
mechanism described in section 5, we have developed
a prototype tool called the KCPM2SBO Converter,
which can convert the terms and relationships in the
KCPM glossaries into SBOML expressions. Given
the following user requirements (in a controlled lan-
guage) to populate the KCPM glossaries:

“A book is written by many authors. An author
writes many books. A book has an ISBN number,
title, description, and price. An ISBN number iden-
tifies a book. An author has a first name, last name,
email address, photo, and a phone number.”

<sbo>
<business_objects>

<business_object>
in publisher, author has first name,
last name, photo, email, phone number

</business_object>
<business_object>
in publisher, book has ISBN number, title,
description, price

</business_object>
<business_object>
in publisher, book author has author(id),
book (id)

</business_object>
</business_objects>
<relationships>

<relationship>
publisher book has publisher author
via publisher book author

</relationship>
</relationships>

</sbo>

We can then use the XML output to generate web
applications using the SBO toolkit that we have previ-
ously developed (Liang and Ginige, 2006). The SBO
toolkit is designed to streamline the creation (mod-
eling) and consumption (execution) of SBOs for de-
veloping web applications on the CBEADS c© (Ginige
et al., 2005) web framework. CBEADS c© consists of
a user management module and an application devel-
opment module that enable developers to easily create
and manage web applications within the framework
itself. The SBO Builder allows users to model and
create SBOs and relationships among them using the
SBOML. The SBO User Interface Generator allows
users to easily create applications on the CBEADS c©

framework by rendering SBOs using the SBO render-
ing APIs.

Once the generated XML file is uploaded to the
SBO Builder (Figure 4), all the business objects
(classes) as well as the relationships among them are
generated. Based on the created business objects us-
ing the SBO Builder, we can define new UI defini-
tions using the SBO UI Generator tool shown in Fig-
ure 5. Each UI definition keep track of the business

Figure 4: Uploading SBOML Definition using SBO
Builder.

object used, the UI type (e.g. form, table, navigation
menu, etc.), and various options based on the selected
UI type (e.g. the order of the form fields). Then, we
can assign the UI definition to a CBEADS c© function
(i.e an application code file in CBEADS c©). The SBO
UI Generator will generate the necessary codes for the
appointed CBEADS c© function to render the business
object (Figure 6).

Figure 5: Creating UI Definitions.

Figure 6: The Generated Application.

TURNING CONCEPTS INTO REALITY - Bridging Requirement Engineering and Model-Driven Generation of Web
Applications

115



7 CONCLUSION AND FUTURE
WORK

In this paper, we have demonstrated how web ap-
plications can be rapidly generated from the ini-
tial concepts to the final system: first capture user
requirements using the KCPM glossaries, then use
the KCPM2SBO converter to generate a conceptual
model in SBOML specifications, from which web ap-
plications can be generated on CBEADS c© framework
via the SBO toolkit. We are currently working on the
validation of our proposed approach in several indus-
trial web application development projects.

Data is one of the many core aspects of complex
business web application we have today. KCPM is
capable of deriving conceptual models beyond data
while SBO is architected to support complex navi-
gation, fine-grained access control mechanism, and
modern workflow engine. This integration of KCPM
and SBO is only a starting point, which primarily
focuses on generating essential web user interfaces
purely based on the conceptual modeling of data. The
automated generation of other aspects, such as com-
plex behavior and navigations, dynamic access con-
trol, and user preferences, while are not considered in
this paper, are to be explored. Our ultimate goal is to
support as much as possible the generation of com-
plete web applications from natural language spec-
ifications. This requires further work on extracting
and transforming other aspects of the web applica-
tion from the KCPM glossaries into conceptual mod-
els from which web applications can be generated.

REFERENCES

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web mod-
eling language (webml): a modeling language for de-
signing web sites. WWW9 Conference.

de Castro, V., Marcos, E., and Cáceres, P. (2004). A user
service oriented method to model web information
systems. In WISE 2004. International Conference on
Web Information Systems Engineering (WISE 2004).

Diaz, I., Moreno, L., Pastor, O., and Matteo, A. (2005).
Interaction transformation patterns based on seman-
tic roles. In NLDB 2005, pages 239–250. 10th Inter-
national Conference on Applications of Natural Lan-
guage to Information Systems (NLDB 2005).

Escalona, M., Reina, A., J.Torres, and M.Mejı́as (2004).
Ndt: a methodology to deal with the navigation as-
pect at the requirements phase. In OOPSLA 2004.
OOPSLA Workshop: Aspect-Oriented Requirements
Engineering and Architecture Design.

Ginige, J. A., Silva, B. D., and Ginige, A. (2005). Towards
end user development of web applications for smes: A

component based approach. In ICWE, Sydney, Aus-
tralia. International Conference on Web Engineering
(ICWE 2005).

Hoppenbrouwers, S., H.A, P., and van der Weide Th.P.
(2005). A fundamental view on the process of concep-
tual modeling. In ER 2005. 24th International Confer-
ence on Conceptual Modeling (ER 2005).

Koch, N. (2006). Transformation techniques in the model-
driven development process of uwe. In MDWE
2006. 2nd Model-Driven Web Engineering Workshop
(MDWE 2006).

Koch, N., Zhang, G., and Escalona, M. J. (2006). Model
transformation from requirements to web system de-
sign. In ICWE 2006, pages 281–288. 6th International
Conference on Web Engineering (ICWE 2006).

Liang, X. and Ginige, A. (2006). Smart business object - a
new approach to model business objects for web appli-
cations. In ICSOFT, volume 2, pages 30–39. Interna-
tional Conference on Software and Data Technologies
(ICSOFT 2006).

Mayr, H. C. and Kop, C. (2002). A user centered approach
to requirements modeling. In Modellierung in der
Praxis, pages 75–86.

Mylopoulos, J., Chung, L., and Yu, E. (1999). From object
oriented to goal oriented requirements analysis. Com-
munications of the ACM, 24(1).

Nijssen, G. and Halpin, T. (1989). Conceptual Schema and
Relational Database Design - A Fact Oriented Ap-
proach. Prentice Hall.

Reenskaug, T. (1979a). Models - views - controllers.

Reenskaug, T. (1979b). Thing-model-view-editor: an ex-
ample from a planning system.

Rolland, C., Souveyet, C., and Achour, C. B. (1998). Guid-
ing goal modeling using scenarios. IEEE Transaction
on Software Engineering, 24(12):1055–1071.

Rossi, G., Garrido, A., and Schwabe, D. (2000). Navigat-
ing between objects. lessons from an object-oriented
framework. ACM Computing Surveys (CSUR), 32(1).

Schewe, K., Thalheim, B., and Zlatkin, S. (2004). Mod-
elling actors and stories in web information systems.
In ISTA 2004, pages 13–23. 3rd International Confer-
ence on Information Systems Technology and ist Ap-
plications (ISTA 2004).

Storey, V. C. (1993). Understanding semantic relationships.
The VLDB Journal - The International Journal on
Very Large Data Bases, 2(4):455–488.

Sutcliffe, A., Maiden, N. A., Minocha, S., and Manuel,
D. (1998). Supporting scenario-based require-
ments. IEEE Transactions on Software Engineering,
24(12):1072–1088.

Valderas, P., Fons, J., and Pelechano, V. (2005). Transform-
ing web requirements into navigational models: An
mda based approach. In ER 2005, pages 320–336.
24th International Conference on Conceptual Model-
ing (ER 2005), Springer.

ICSOFT 2007 - International Conference on Software and Data Technologies

116


