
A PATTERN FOR STATIC REFLECTION ON FIELDS
Sharing Internal Representations in Indexed Family Containers

Andreas P. Priesnitz and Sibylle Schupp
Department of Computer Science & Engineering, Chalmers Technical University, G̈oteborg, Sweden

Keywords: Static Reflection, Serialization, Container, Generative Programming, High Performance.

Abstract: Reflection allows defining generic operations in terms of the constituents of objects. These definitions incur
overhead if reflection takes place at run time, which is the common case in popular languages. If performance
matters, some compile-time means of reflection is desired to obviate that penalty. Furthermore, the information
provided by static reflection can be utilised for class generation, e.g., to optimize internal representation.
We demonstrate how to provide static reflection on class field properties by means of generic components in an
OO language with static meta-programming facilities. Surprisingly, a major part of the solution is not specific
to the particular task of providing reflection. We define the internal representation of classes by a reworked
implementation of a generic container that models the concept of a statically indexed family. The proposed
features of this implementation are also beneficial to its use as a common container.

1 INTRODUCTION

Reflection provides access to internal representation
details of the class of some given object. We consider
reflection on the fields of objects, which is essential
for generic implementations of low-level tasks. For
instance, we are interested in tasks like serializations
and optimizing transformations. Many applications of
that kind are performance-critical, whereas reflection
usually implies some overhead if it is performed at
run time. Our goal is to be able to implement those
tasks both generically and efficiently.

To avoid performance penalties, we want to apply
reflection statically. Common languages do not pro-
vide corresponding means. But as some languages of-
fer static meta-programming facilities, we can specify
generic components that achieve the desired effect,
thus serve as a portable language extension.

Our design relies on sharing the provision of fields
for class implementations in a generic component.
This component is supposed to manage a collection
of objects of different types, thus it forms a het-
erogeneous container. We want to access those ob-
jects in terms of some label, thus the container must
model the concept of an indexed family. By sep-

arating the aspects of internal class representation,
the container becomes a stand-alone generic compo-
nent, and the task-specific part of our design turns out
rather lightweight. Existing implementations of in-
dexed families do not provide all features necessary
to use them as internal representations of class fields.
Thus, we present an enhanced solution that general-
izes the applicability of the container.

The outline of this article is as follows: In Sect. 2,
we discuss and specify the applications of reflection
that we are particularly interested in. In Sect. 3, we
lay out the principal components that constitute our
solution. Their heart is the statically indexed fam-
ily container, whose implementation is in the center
of the further discussion. In Sect. 4, we present in
general terms the conventional implementation. In
Sect. 5, we motivate and describe in more detail nec-
essary extensions to that approach. In Sect. 6, we
put the parts together, we show how to ease this step,
and we discuss some consequences of that design. In
Sect. 7, we compare our approach with previous work
in related domains, and in Sect. 8, we give an evalua-
tion of our results and some concluding remarks.

We choseC++ as language of our implementation
and of our examples and discuss this choice in Sect. 5.

30
P. Priesnitz A. and Schupp S. (2007).
A PATTERN FOR STATIC REFLECTION ON FIELDS - Sharing Internal Representations in Indexed Family Containers.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 30-37
DOI: 10.5220/0001336300300037
Copyright c© SciTePress



2 WHY STATIC REFLECTION?

The termreflectionencompasses all kinds of access to
software meta-information from within the software
itself. We restrict our considerations to accessing the
instance fields of a given object. Furthermore, we ex-
clude alteration, i.e., the modification of that set of
fields. In this section, we exemplify two classes of ap-
plications that justify to perform reflection statically.

2.1 Example: Serialization

Algorithms whose effect on an object reduces to in-
specting its instance fields limit the role of the object
to that of a mere record. In other words, these al-
gorithms do not involve knowledge of the particular
semantics of the inspected object. A popular example
of such applications isserialization, i.e., a mapping of
objects to some linear representation. Common cases
of such representations are binary encodings,XML ob-
jects, or formatted output.

T1

2T 2T 2T

T3

Figure 1: Exemplary internal representation.

In Figure 1, we depict an object that contains

• a reference to a collection of objects of typeT2,

• information on the number of objects in the col-
lection as an object of typeT1, and

• associated information as an object of typeT3.

Consider, for instance, the collection to be a subrange
of a text of characters, not owned by the object, and
the associated information to be the most frequent
character in that text snippet.

We might think of a serialization of that object as
resulting in a representation as in Figure 2. Each field
is transformed to its corresponding representation, as
symbolized by dashed lines, and these individual rep-
resentations are concatenated. The meaning of con-
catenation depends on the representation.

2T 2T 2TT1 T3

Figure 2: Schematic serial representation.

But a second thought reveals that this example is
rather a counter-example: In order to serialize the text
snippet, we need to know its length, thus we have to
inspect the first field to deal with the second, and we
rely on a semantical linkage between both. Thus, a
“true” serialization could either create a representa-
tion of the reference as such, or treat it as being trans-
parent and represent the (first) referenced object. To
produce the outcome in Figure 2, though, we have to
specialize the serialization for this type of object.

Some languages provide implementations of cer-
tain serialization methods. To define other methods,
we need to be able to traverse the fields of objects.
Considering common application cases and our pre-
vious observation on the example, we restrict these
traversals to be

linear: Each field is mapped at most once. The out-
put of the mapping is valid input to a stream.

reversible: Each field is mapped at least once. It is
possible to create representations that can bede-
serializedto an object that is equal to the original.

order-independent: The operation does not depend
on a particular order of field access. The contrary
would require to consider composition informa-
tion, which we want to exclude.

deterministic: The access order is not random,
though. Otherwise, we were forced to add an-
notations to element representations to facilitate
deserialization.

If we lacks means of reflection, we have to define field
traversal for each class of interest—in practice, to the
majority or entirety of classes.

Like other polymorphic functionalities, reflection
usually is a dynamic feature. It causes constant per-
object space overhead due to a hidden reference, and
a per-reflection time overhead due to an indirect func-
tion call. The latter costs are dominated by the im-
possibility of inlining such calls, and of then applying
further optimizations. These costs are insignificant if
objects are large and if reflection occurs seldom. Oth-
erwise, the costs of algorithms that make heavy use of
reflection may turn out prohibitive, forcing developers
again to provide per-class specializations.

This dilemma is avoided if reflection is per-
formed at compile time, abolishing run-time costs in
time and space. Run-time reflection is provided by
many object-oriented programming languages, e.g.,
SmallTalk, CLOS, or Java, whereas compile-time re-
flection is supported only for particular tasks like
aspect-oriented programming, if at all.

A PATTERN FOR STATIC REFLECTION ON FIELDS - Sharing Internal Representations in Indexed Family Containers

31



2.2 Example: Memory Layout

Another kind of operations on the fields of a class
are optimizing transformations. Usually, only the
compiler is responsible for performing optimizations
of the internal representation of objects, in terms of
space, place, alignment, or accessibility of their allo-
cation. Given adequate means of static reflection and
of static meta-programming, one can perform simi-
lar transformations within the code. In contrast to the
compiler, the developer usually has some high-level
knowledge about objects beyond the information ex-
pressible in terms of the language. Optimizations that
depend on such knowledge complement and support
optimizing facilities of the compiler.

As an example, consider the rule-of-thumb of or-
dering the fields of a class in memory by decreasing
size, given that our language allows us to influence
that order. The effect of this rule is depicted in Fig-
ure 3 for a 2-byte representation of the number of
characters. Fields of less than word size may share
a word instead of being aligned at word addresses. If
we order the fields in such a way that small fields are
adjacent, the compiler is more likely to perform that
optimization, reducing the object size in the example
from 3 to 2 words.

T1 T3

T1 T3

Figure 3: Differences in memory layout.

Note that we do not attempt to be smarter than the
compiler: We can not and do not force it to perform
that reduction. The compiler may still decide that it
is beneficial to stick to word alignment, e.g., in favor
of speed of field access, or even to reorder the fields,
if allowed. But vice versa, the compiler might not be
allowed or clever enough to perform that optimiza-
tion itself unless the proposed order of fields offers or
suggests to do so.1 Thus, our strategy is to supply the
compiler with as much useful information as possible.

Given static reflection, we can inspect the fields of
a class and create a new class that contains the fields
ordered by size. This effect could not be achieved by a
hand-coded alternative, as the size of fields may differ
on different hardware. A fixed order that suits some
hardware can turn out inappropriate on another.

1In fact,GCC has this behavior.

3 COMPONENT-BASED STATIC
REFLECTION

We have learned that it is desirable to have static
reflection on class fields at our disposal. Thus, we
would like to provide this feature ourselves if the lan-
guage we use does not offer it. In this section, we de-
velop the general outline of our approach to achieve
this goal. The individual steps will be discussed in
more detail in Sects. 4–6.

3.1 Sharing Internal Representation

In order to share means and applications of static
reflection by all class implementations, we provide
them within a common generic component. As that
component shall be in charge of all matters of (here,
static) object composition, it has to be shared by in-
heritance. Classes have to inherit the component pri-
vately to inhibit that unauthorized access is obtained
by slicing an object to the component type. To grant
public access to functionalities provided by the com-
ponent, we therefore have to redefine them in class
definitions.

3.2 Field Access

Access to fields of an object corresponds to an in-
jective mapping from identifying labels to the fields.
To allow for evaluating that mapping at compile-
time, reflection support has to be provided by a
component that models astatically indexed family
of fields of different types. Because we required
order-independence in Sect. 2, that container does not
model a tuple. Due to the expected deterministic ac-
cess order, though, we require that the container is an
ordered indexed family, where we adopt the order of
labels from the definition of the container.

In common statically typed languages, labels are
lexical entities on which we cannot operate by type
meta-programming. Thus, we express labels by
empty classes, which do not serve any other purpose
than static identification.

3.3 Field Specification

In order to delegate field definition, creation, deletion,
access, and further fundamental methods to the fam-
ily component, we have to statically parameterize it
by a collection of field specifications that supply the
necessary information. Besides the obviously needed
labels and types, one has to specify:

• how to initialize fields, depending on the kind of
constructor called for the component, and

ICSOFT 2007 - International Conference on Software and Data Technologies

32



• how to deletefield contents in the destructor or
when overwriting fields by assignment.

The family has to be self-contained, i.e., able to effect
those functionalities for any kind of field types with-
out further support. At the same time, it may not be
restrictive; the class developer has to be able to make
a choice wherever alternatives of execution exist.

3.4 Separation of Concerns

Not all aspects of reflection on fields can be covered
by a general implementation of an indexed family. In
order to allow for stand-alone usage of the container,
classes do not inherit from the family directly. In-
stead, a wrapper calledRecord is inherited, which
complements the container features by particular sup-
port for reflection. In general, that wrapper serves as
a place to specify features that apply to all objects.

Figure 4 depicts the inheritance relationship be-
tween the essential components in our design.

Class definition

Record

Indexed Family

Figure 4: Principal component hierarchy.

4 IMPLEMENTING
HETEROGENEOUS FAMILIES

Statically polymorphic containers store objects of dif-
ferent types. They are common in generic models
and provided by several, mostly functional languages.
We describe an established approach to defining such
containers by user-defined constructs. Our language
has to allow expressinggenerativeconstructs, as dif-
ferent container types must be created for different
sets of element types.Java, for example, is not suit-
able: It performstype erasureon instances of generic
types, instead of creating new types. More generally,
our language has to allow conditional type generation,
i.e., static meta-programming(SMP). Candidates are
MetaML, MetaOCaml, Template Haskell, or C++.

Compile-Time Lists. Given SMP, we can define
lists of types by a binarily parameterized typeCons
and a typeNil in the same style as lists are defined in
LISP (Czarnecki and Eisenecker, 2000). Similarly, a

list algorithm is implemented as a type that is param-
eterized by a type list and that provides the result as
an associated type.

Mixins. In order to influence class composition, our
language has to allowparameterized inheritance, i.e.,
inheriting from a base class that is given as a type pa-
rameter. The subclass is then called amixin (Bracha
and Cook, 1990) and generically extends the base
class. We are interested in mixins that add a sin-
gle field and corresponding functionalities to the base
class. A particular problem is to provide practicable
mixin constructors that call the base class constructors
properly (Eisenecker et al., 2000).

Tuples. Combining the previous idioms, tuples of
objects of different types can be defined recursively
(Järvi, 1999; J̈arvi, 2001):Cons becomes a mixin that
inherits the list tail and that provides a field of the
head type.Nil is an empty class.

Elements are accessed by a static natural index.
If the number is nonzero, the mixin forwards the ac-
cess request with the index’ precessor statically to the
base. If it is zero, the field in the mixin is returned.
This static recursion causes no run-time overhead.

The tuple class implementation is straightforward.
But its constructors are tricky to define, as they
need to handle arbitrary numbers2 of initializing ar-
guments. Furthermore, the creation of temporaries
has to be avoided when passing arguments on from
a mixin constructor to a base constructor.

Families. An arbitrarily, yet statically indexed fam-
ily is implemented analogously to a tuple (Winch,
2001; Weiss and Simonis, 2003): The mixin class is
parameterized by a list—assumed to represent a set—
of type pairsEntry<Label,Type>. The second type
indicates a field type, whereas the first type is an iden-
tifying label to be matched, instead of an index, when
accessing the field. The list of field specifiers does not
necessarily determine the order in which the mixins
are composed. Thus, we may reorder that list before
creating the family, e.g., in decreasing order of field
type size.

Constructor implementations differ from those for
a tuple, but are similarly intricate. We are not tied
anymore to a certain order of arguments nor forced
to provide all of them. Instead, constructors take as
initializers a set of label-value pairs that need to be
searched for a matching label.

Figure 5 illustrates the general layout of our pro-
posed family implementation. In the following, we

2possibly up to a sufficiently large limit

A PATTERN FOR STATIC REFLECTION ON FIELDS - Sharing Internal Representations in Indexed Family Containers

33



will justify the individual components and discuss
their relevant features.

EntryMixin

EntryMixin

FieldMixin

EntryMixin

FieldMixin

...

Family

Empty

Cons<Entry<Label ,Type >,...>N N

Type ,...N

Cons<Entry<Label ,Type >,Empty>1 1

Type ,Empty1

Cons<Entry<Label ,Type >,...>N N

Figure 5: Family implementation.

5 INCREASING GENERICITY

The semantics of statically indexed families have to
be refined in order to serve the internal representation
of objects. The principal reason is that any possible
field type has to be supported, even types that hardly
occur as container element types. Moreover, for each
of the fields individual behavior, e.g., that of construc-
tors, may have to be specified.

In this section, we discuss how to deal with differ-
ent aspects of those problems. We avoid discussing
language-specific details and focus on conceptual is-
sues. Our actual implementation, though, was ef-
fected inC++. Of the languages that allow static meta-
programming (see Sect. 4),C++ is the most spread and
the most capable of modeling low-level performance-
critical details.

5.1 Arbitrary Kinds of Element

To allow for any type of elements in the family, we
have to provide support for even those types that are
not or only partially covered by common implemen-
tations of generic containers, e.g., arrays or references
in C++. Therefore, each mixin in the original design
is replaced by a pair of mixins: We extract the ac-
tual field definition from the mixin class to another
mixin class that serves as its base. In the remainder of
the original mixin we dispatch upon the field type to
choose that base mixin appropriately.

5.2 Initialization

In constructors of a generic container, proper ele-
ment initialization is tedious. Not only does the ini-
tialization depend on the element type, but it may
also be necessary to treat particular elements in non-
“standard” ways. Furthermore, we need a means to
initialize in place, to avoid the creation of temporary
objects when delegating initialization by an expres-
sion. Therefore, we refer for each family element to:

• a nullary functor returning the initializer to be
used by the default constructor,

• a generic unary functor taking a family argument
and returning the initializer to be used by copy
constructors, and

• a unary functor taking the element as argument
and returning no result, to be called by the de-
structor.

These functors are provided and possibly overwritten
in the following order:

1. Type-dependent default implementations are
given by the type-specific mixins that provide the
fields.

2. For each element of the family, the user may spec-
ify such functors in the corresponding entry in the
parameter list, additionally to the label and ele-
ment type.

3. In a constructor call, the functors to use for partic-
ular fields can be optionally specified, see below.

A family has the following constructors besides the
usual default and copy variant:

• A generic copy constructor takes a family argu-
ment. Fields are initialized by the result of apply-
ing the corresponding functor to that family.

• An initializing constructor takes as arguments an
arbitrary number of pairs of labels and nullary
functors. Fields are initialized by the result of the
functor paired with the corresponding label.

• A hybrid alternative takes as arguments a fam-
ily and an arbitrary number of initializing pairs.
Here, the second entries of the pairs are unary
functors that are applicable to the family.

Assignments are defined by default as sequential field
deletion and initialization in terms of those func-
tors. Other field-specific functions, like swapping or
cloning, expose the usual type-specific behavior.

5.3 Element Traversal

Access to family elements is provided in the con-
ventional way (see Sect. 4). For traversals over the

ICSOFT 2007 - International Conference on Software and Data Technologies

34



elements, we provide combinators likefold. But
our implementation offold differs from similar ap-
proaches (de Guzman and Marsden, 2006) in that we
fold over the labels rather than the fields, that are then
accessed in terms of the labels. This way, we can ex-
press role-specific behavior, e.g., serialization toXML.

According to the requirements in Sect. 2, the
traversal order has to be deterministic. Thus,fold
follows the order defined by the user in the specifica-
tion list parameter of the family. The actual order of
mixin composition is not regarded.

Givenfold, generic serialization is elegantly ex-
pressed along the lines of theScrap your Boilerplate
pattern (L̈ammel and Peyton Jones, 2003). Recursive
traversal over an object is expressed by applyingfold
to the object, performing on each of its fields the same
kind of traversal. Only for primitive types the serial-
ization has to be specialized appropriately.

5.4 Reflective Operations

Transformations like the memory optimization in Fig-
ure 3 need to be performed once per family type.
Therefore, the actual family is represented by a wrap-
per Family that inherits the recursive implementa-
tion, see Figure 5. The wrapper may preprocess the
parameter list, e.g., reorder it, before passing it on to
the mixin hierarchy. According to the previous dis-
cussion, traversing algorithms are not influenced by
this transformation.

6 COMPONENT ASSEMBLY

We suggested the principle of implementing classes
in terms of statically indexed families. Then, we dis-
cussed aspects of implementing such families generi-
cally. In this section, we put those parts together.

6.1 Sharing Internal Representation

The following example illustrates how to define the
text snippet class from Sect. 2. As discussed in
Sect. 3, we add fields to the class by inheriting pri-
vately from a family instanceFamily<...>. The
fields it provides are specified by its parameter, a
Cons-created list of label-type pairsEntry<...>.
The labels, likeNumber, are individual types with-
out particular semantics. The constructor takes a
string and start/end positions. To initialize the fields,
the constructor delegates label-value pairs created by
init to the constructor of the family base object. The
function most_frequent detects the most frequent
value in the given pointer range.

class Snippet
: Family<Cons<Entry<Number,short>,

Cons<Entry<Text,char const*>,
Cons<Entry<Most_Frequent,char>,
Nil> > > >

{
typedef Family<...> Base_;

public:
Snippet(char const* text,

unsigned from, unsigned to)
: Base_(init(Number(),to-from),

init(Text(),text+from),
init(Most_Frequent(),

most_frequent(text+from,
text+to)))

{}
// ...

};

We have to overwrite functionalities provided by the
family if their semantics differ from the default. For
instance, assignment has to be redefined to return the
actual object instead of its family base-object. Such
boilerplate code has to be provided in each class that
makes use of a family as its field container. Hence,
we want to share that code in another component.

6.2 The Record Front-End

In order to share functionalities that are specific to
classes rather than to families, class definitions inherit
a parameterized classRecord instead of aFamily in-
stance.Record inherits the family and transforms its
container semantics into record semantics, making it
more than the sum of its parts. For instance, the wrap-
per provides reflective methods like serialization by
applying corresponding algorithms on the family.

A similar purpose ofRecord is to share general
features of objects, e.g., automatic generation of an
identifier. The implementation of some features may
require that class definitions provide additional pa-
rameters toRecord. When introducing such features,
we therefore need to upgrade existing code. The use
of an explicit construct for composition allows one to
use refactoring tools for this task.

In some sense,Record models the concept of a
common superclass, likeObject in Java. But objects
are not supposed to be used as aRecord instance. We
have to rely on coding discipline in this regard: If
Record were inherited privately, it could not provide
boilerplate methods to the class interface. In fact, we
should provide that code in a common class front-end
rather than in a base class, requiring a more exten-
sive design of class definitions. For the scope of this
discussion, we considerRecord sufficiently helpful to
accept the lack of a formal obstacle to slicing.

A PATTERN FOR STATIC REFLECTION ON FIELDS - Sharing Internal Representations in Indexed Family Containers

35



6.3 Class Composition

In its current form, our approach relies on a linear in-
heritance hierarchy and on a closed specification of all
fields of a class. We run into trouble when we define a
class not monolithically, but by inheriting some other
class. That definition bases on (at least) two fami-
lies whose features are not automatically combined.
A straightforward solution is to avoid class composi-
tion and to rely exclusively on object composition. In
fact, inheritance is hardly used in performance-critical
software where the need for static reflection arises.

But class composition from components is feasi-
ble, as long as these do not contain field definitions.
We see the mission of our approach in role-based and
generative design, where classes are assembled from
collections of components. The extraction of the re-
spective fields into a family serving as base class is
an initial step of class generation. A final step would
be the provision of the common class front-end men-
tioned before. The application to component-based
class design was a major motivation behind our re-
quirement of independence on field order in Sect. 2.

7 RELATED WORK

To our knowledge, no previous attempt has been un-
dertaken to provide static reflection on object fields or
corresponding effects by means of appropriately de-
signed generic containers.

Several publications under the labelSYB/Scrap
your Boilerplate(Lämmel and Peyton Jones, 2003)
aim at generically expressing recursive traversals of
data structures inHaskell. They rely either on con-
structs that need to be specialized per data structure,
or on appropriate language extensions. Thespine
view approach (Hinze and L̈oh, 2006) generalizes
SYB by mapping algebraic data types to recursively
defined types that expose the fields one by one. A fun-
damental difference to our approach is thatHaskell is
functional, which makes the exposition of fields un-
critical. To ensure encapsulation, our internal repre-
sentation has to be kept private, and functions like se-
rialization have to be part of the class interface.

A previous study on expressing SYB inC++
(Munkby et al., 2006) incorporated afold definition
in terms of a heterogeneous container. That container
itself was used as an object, similar in style toHaskell,
which led to conflicts between encapsulation and ap-
plicability. Our approach avoids such problems by
separating a class from its field container and encap-
sulating both the container and its field traversal func-
tions. Class definitions only expose a high-level inter-

face to methods like serialization.
The fusion library (de Guzman and Marsden,

2006) provides a rich selection of sophisticated imple-
mentations of heterogeneous containers of different
kind, including families (calledmaps) as well as the
corresponding algorithms and adaptors in the style of
theC++ STL/Standard Template Library. As for now,
there is no sufficient support for the issues addressed
in Sect. 5. Hence, these containers can not serve to
provide the fields of classes. But the differences are
slight, and the combination offusion constructs with
our approach is both feasible and promising.

As discussed in Sect. 6, our work aims at solving
common problems in component-based class design.
Research in that domain focused on splitting classes
horizontally by functionality (Czarnecki and Eise-
necker, 2000; Smaragdakis and Batory, 2000) rather
than on vertical splits by class structure. The question
of forwarding constructor calls through mixin hierar-
chies has been addressed before (Eisenecker et al.,
2000). The solution relies on wrapping constructor
arguments in a tuple, obeying the composition order.

Another paper (Attardi and Cisternino, 2001) pro-
poses to add more extensive meta-information to
C++ classes by means of preprocessor instructions
and meta-programming. On the one hand, field and
method definitions have to be given separately and are
not created by the same instructions. On the other
hand, the meta-information is provided at compile
time, but not used for class generation.

Finally, multi-stage programminglanguages like
MetaOCaml (Calcagno et al., 2003) incorporate meta-
information and code creation in the language itself.
Unfortunately, they are not very spread yet. Our ap-
proach provides a subset of such features in reusable
components. In contrast to language-based features,
library-based language extensions are portable, appli-
cable in a popular performance-oriented language like
C++, and open to high-level extensions beyond the
language’s expressiveness. We believe the combina-
tion of both approaches the key to mastering complex
and computationally expensive software.

8 CONCLUSION

We discussed how to provide generic algorithms that
rely on meta-information about their arguments’ in-
ternal representation, but to avoid the performance
penalties of dynamic reflection. Static reflection is a
rare language feature, but statically generic program-
ming allows to provide such features in reusable com-
ponents. We restricted our discussion to linear, order-
independent, but order-preserving algorithms, like se-

ICSOFT 2007 - International Conference on Software and Data Technologies

36



rializations. Our solution allows to implement gener-
ically the serialization and the optimization described
in Sect. 2, without imposing run-time overhead. Sim-
ilarly, any type-dependent operation of the specified
kind can be implemented.

We extract field information from class defini-
tions and represent it in containers that model stati-
cally indexed families. It is known how to implement
such containers, but shortcomings of conventional im-
plementations have to be resolved for our purpose.
In particular, support of unusual element types and
proper initialization need to be ensured. Linear al-
gorithms are expressed elegantly in terms of higher-
order combinators. Optimizations and other features
are beneficial for either use of the construct as generic
container or as internal class representation.

Class definitions that inherit their fields from a
container involve boilerplate code. We propose to
share that code in a wrapper that makes the container
a record. We accept a conflict with the principle of
encapsulation and leave a more complete solution to
future work on component-based class composition.

As it relies on static meta-programming, our so-
lution pays run-time efficiency by increased compi-
lation efforts. We consider these costs tolerable for
performance-critical systems, and for objects with
rather few fields. In other cases, dynamic reflection
may be more appropriate.

Our approach attempts to deal with as many as-
pects and uses of field definition and reflection as pos-
sible within the underlying container. But we do not
claim or require their complete coverage. A class def-
inition in the proposed style allows to influence or
override any behavior of the underlying family. Only
essential and invariable properties are encapsulated.

The solution is a flexibly applicable implementa-
tion pattern, sufficiently abstract to be expressed en-
tirely in terms of portable library components, and
that does not rely on compiler extensions. We can
conveniently add extensions to the components, that
automatically enrich the semantics of all classes de-
fined by that pattern. We consider these aspects sig-
nificant advantages of our solution over alternative
approaches that rely on language extensions and com-
piler facilities. These solutions are safer to use, but
harder to propagate and extend.

ACKNOWLEDGEMENTS

We are grateful to Gustav Munkby and Marcin Za-
lewski for inspiring discussions, to the reviewers for
useful comments, and to the Swedish Research Coun-
cil (Vetenskapsr̊adet) for supporting this work in part.

REFERENCES

Attardi, G. and Cisternino, A. (2001). Reflection Support
by Means of Template Metaprogramming. InProc.
3rd Int. Conf. on Generative and Component-Based
Software Engineering (GCSE), volume 2186 ofLNCS,
pages 118–127. Springer.

Bracha, G. and Cook, W. (1990). Mixin-Based Inheritance.
In Proc. 5th ACM Symp. on Object Oriented Program-
ming: Systems, Languages and Applications (OOP-
SLA), volume 25, number 10 ofACM SIGPLAN No-
tices, pages 303–311. ACM Press.

Calcagno, C., Taha, W., Huang, L., and Leroy, X. (2003).
Implementing Multi-Stage Languages using ASTs,
Gensym, and Reflection. InProc. 2nd Int. Conf. on
Generative Programming and Component Engineer-
ing (GPCE), volume 2830 ofLNCS, pages 57–76.
Springer.

Czarnecki, K. and Eisenecker, U. W. (2000).Genera-
tive Programming: Methods, Tools and Applications.
Addison-Wesley.

de Guzman, J. and Marsden, D. (2006). Fusion Li-
brary Homepage. http://spirit.sourceforge.
net/dl_more/fusion_v2/libs/fusion.

Eisenecker, U. W., Blinn, F., and Czarnecki, K. (2000). A
Solution to the Constructor-Problem of Mixin-Based
Programming in C++. InProc. First Workshop on
C++ Template Programming at 2nd GCSE.

Hinze, R. and L̈oh, A. (2006). “Scrap Your Boilerplate”
Revolutions. In Uustalu, T., editor,Proc. 8th Int. Conf.
on Mathematics of Program Construction (MPC), vol-
ume 4014 ofLNCS, pages 180–208. Springer.

Järvi, J. (1999). Tuples and Multiple Return Values in
C++. Technical Report 249, Turku Centre for Com-
puter Science.

Järvi, J. (2001). Boost Tuple Library Homepage.http:
//www.boost.org/libs/tuple.

Lämmel, R. and Peyton Jones, S. (2003). Scrap Your Boil-
erplate: A Practical Design Pattern for Generic Pro-
gramming. InProc. ACM SIGPLAN Int. Workshop
on Types in Language Design and Implementation
(TLDI), volume 38, number 3 ofACM SIGPLAN No-
tices, pages 26–37. ACM Press.

Munkby, G., Priesnitz, A., Schupp, S., and Zalewski, M.
(2006). Scrap++: Scrap Your Boilerplate in C++.
In Proc. 2006 ACM SIGPLAN Workshop on Generic
Programming (WGP), pages 66–75. ACM Press.

Smaragdakis, Y. and Batory, D. (2000). Mixin-Based Pro-
gramming in C++. InProc. 2nd Int. Symp. on Gen-
erative and Component-Based Software Engineer-
ing (GCSE), volume 2177 ofLNCS, pages 163–177.
Springer.

Weiss, R. and Simonis, V. (2003). Storing properties in
grouped tagged tuples. InProc. 5th Int. Conf. on Per-
spectives of Systems Informatics (PSI), volume 2890
of LNCS, pages 22–29. Springer.

Winch, E. (2001). Heterogeneous Lists of Named Ob-
jects. InProc. Second Workshop on C++ Template
Programming at 16th OOPSLA.

A PATTERN FOR STATIC REFLECTION ON FIELDS - Sharing Internal Representations in Indexed Family Containers

37


