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Abstract: Tile logic, an extension of rewriting logic, where synchronization, coordination and interaction can be 
naturally expressed, is showed to be an appropriate formal semantic framework for software architecture 
specification. Based on this logic, we define a notion of dynamic connection between software components. 
Then, individual components are viewed as entirely independent elements and free from any static 
interconnection constraints. We also fill out the usual component description, expressed in terms of 
Provided/Required services, with functionalities specification of such services. Starting from 
State/Transition UML diagrams, representing requirements of the underlying distributed system, our 
objective consists of offering a common semantic framework for architectural description as well as 
behavioural specification of that system. Direct consequences of the proposed approach are dynamic 
reconfiguration and components mobility which become straightforward aspects. A simple, but 
comprehensive, case study, the collaborative application session, is used to illustrate all stages of our 
proposed approach. 

1 INTRODUCTION 

With computer science revolution, software 
applications become more complex and constantly 
evolving, their development requires more labour 
and needs increasing cost. The main difficulty in 
specifying distributed software systems is due either 
to the great number of entities composing it or to the 
difficulty in specifying interactions, coordination 
and synchronization among parts of the system. A 
direct consequence is that system global structure, 
its software architecture, became a central problem 
of conception.  

The system software architecture is a form of 
contract showing the intended correspondence 
between system requirements and components of the 
designed system. It may be ensured all over the 
ongoing stages of software engineering. 
Consequently, a system specification may be viewed 
as a sequence of refinements starting from its 

abstract software architecture, defined as a set of 
communicating black boxes, until obtaining the 
more detailed behaviour of each component.  

One challenging approach is to specify an ADL 
semantics allowing system architecture description 
as a set of black boxes related via an interconnection 
topology and offering necessary tools to obtain 
transparent boxes where internal behaviours can be 
specified. 

In this work, we use Tile logic (Bruni, 1999), an 
extension of rewriting logic (Meseguer, 1992), as a 
common semantic framework to define abstract 
software architectures and their behaviours.  

Our contribution consists of providing a tile 
logic based architecture description model for 
distributed application. Such architecture is defined 
as a set of independently executing components with 
a dynamic interconnection topology. Each 
component is defined as a set of external ports, to 
ensure interactions with the environment, and an 
internal behaviour operating on its basic structure. 
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Thus, two views are considered for each component: 
black view defines its observable behaviour in terms 
of interactions, while transparent view specifies its 
detailed behaviour.  

Based on  state/ transition UML diagram, a tile 
system is generated for each component, transparent 
view, to describe both internal structure and 
behaviour. At higher description level, composition 
of all component tile systems is enriched with a set 
of synchronization tiles to define all possible 
dynamic connections while considering each 
component as a black box. Dynamic connection is 
ensured by a unique   generic synchronization tile 
which: (1) creates a connection between the sender 
component and the receiver one by duplicating the 
output port of the former, (2) transfers port content 
by swapping one copy of the output port of the 
sender and the input port of the receiver, and (3) 
ends the interaction by destroying (discharging) the 
empty port.  

The remainder of the paper is organized as 
follows. Section 2 compares the proposed approach 
to other existing ADLs. Section 3 presents the basic 
semantic aspects of Tile Logic. Section 4 is devoted 
to our proposal. It presents main ideas introduced on 
software architectures description, while section 5 
illustrates them via a collaborative session case 
study. Discussion and conclusions round out the 
paper. 

2 RELATED WORKS 

A great number of ADLs have been proposed in the 
literature. However, most of them: Wright (Allen, 
1997), Rapide (Luckham, 1995), Darwin (Magee, 
1995), etc., focus on the software architecture 
description where component semantics is in part 
expressed by its interface, and system behaviour is 
not completely defined (Megzari, 2004). Therefore, 
software architecture concepts need to be associated 
to formal theories, clarifying these concepts or 
providing rules to determine whether a given 
architecture is well-formed.  

In our proposal, a software architecture, 
designed to facilitate designers job, is systematically 
transformed to a formal theory specification, which 
can be prototyped or model checked. This facilitates 
the integration of formal specifications in the 
traditional life-cycle of an application development. 
We present an interesting combination of Tile logic, 
an extension of rewriting logic, and Software 
Architectures. Some works were already done in this 
direction. In (Clavel, 1999), authors specify the 
semantics of several typical architectural patterns in 
rewriting logic. In (Bragal, 2003), authors provide a 

mapping of Cbabel ADL concepts in rewriting logic. 
CommUnity (Bruni, 2004) is another ADL whose 
semantics was defined in Tile Logic (Bruni, 1999).  
Authors’ objective was to show how these two 
models (Tile logic and CommUnity) contribute to 
characterize software architectures. They define a 
mapping of CommUnity programs into Tile Logic. 
Their work gives rise to some complexity 
particularly during the decomposition phase of a 
CommUnity program. Our approach is 
complementary to all these researches since it 
defines a Tile logic based model of ADLs. It 
considers system software architecture as a set of 
black boxes interconnected via a dynamic 
interconnection topology. It also allows defining 
alternative transparent boxes where internal 
behaviours can be formally specified. 

3 TILE LOGIC 

Tile logic (Bruni, 1999) is an extension of rewriting 
logic (in the unconditional case) taking into account 
rewriting with side effects and rewriting 
synchronization. Ordinary rewrite rules format 
expressing naturally state changes and concurrent 
calculus. However, they lack tools to express 
interactions with the environment; they can be freely 
instantiated with any term in any context. The main 
idea of Tile Logic is to impose dynamic restraints on 
terms to which a rule may be applied by decorating  
rewrite rules with observations ensuring 
synchronizations and describing interactions. The 
resulting rewrite rule is called a tile. 

A tile α has the graphical representation in figure 
1, also written s b

a⎯⎯→  t, stating that the initial 
configuration s can evolve to the final configuration 
t via α, producing the effect b, which can be 
observed by the environment. Such step is allowed 
only if the arguments (subcomponents) of s can 
contribute by producing a, which acts as a trigger of 
α. Triggers and effects are called observations; tile 
vertices are called interfaces (Gadducci, 1997). 
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Figure 1: Graphical Representation of a Tile. 

A set of tiles is defined to describe the behaviour 
of partially specified components (i.e., containing 
variables) called configurations.  
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A configuration is expressed only in terms of 
possible interactions with the inside and outside 
environment and system behaviour is viewed as a 
coordinated evolution of its local configurations.  

Definition (Bruni 99): A tile system is a 4-tuple 
R = (H, V, N, R) where H, V are monoïdal categories 
with the same set of objects OH = OV, N being a set 
of rule names  and  R: N→ H x V x V x H a function 
where for each α in N, if R(α) = (s,a,b,t), then 
s:x→y, a: x→ z, b:y→ w and  t: z→ w, for suitable 
objects x, y, z and w,  x and z are the input interfaces. 
While, y and w are the output interfaces.  

Arrows of H and V are called configurations and  
observations respectively while their objects are 
called interfaces.  
R is a set of tiles expressing all basic local changes 
on configurations according to the occurrence of 
some observations. It defines local possible 
evolutions of the system. 

Tile logic exploits a three-dimensional view of 
concurrent systems: horizontal dimension (space) 
models coordination of components according to the 
structure of the system, vertical dimension (time) 
models state evolutions according to computation 
flows, while the third dimension (parallel) models 
distribution of activities and resources. 
Configurations and observations are algebraic 
structures equipped with parallel and sequential 
operators (⊗ and ; operators respectively) to allow 
building of larger components. 

A standard set of deduction rules indicates how 
to build up larger steps, starting from basic tiles of 
the system, via horizontal, vertical and parallel 
compositions (see Figure 2).  

Rules generating the basic tiles: 
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Figure 2: Deduction Rules of Tile Logic. 

If some interface rearrangements (duplications, 
projections, swaps) are necessary, auxiliary tiles can 
be added to the system and composed with the 
identity and basic tiles. 

Tile logic offers a flexible formal framework 
(meta-formalism) to specify rule-based 
computational systems behaviour like reactive 
systems, open systems, coordination languages, 
concurrent systems, mobile calculi (Bruni, 2003), 
(Ferrari, 2000). In addition, tile logic benefits on all 
software tools (Maude environment) (Clavel, 2003) 
offered by rewriting logic to obtain executable 
specifications. 

4 MAIN CONTRIBUTION 

A reactive view of concurrent systems is possible in 
tile logic, since components can be conceived 
separately and then composed via their behaviours. 
Such a view corresponds to a software architecture 
view of a distributed system very loosely. Therefore, 
we propose a novel view of software architecture, 
independent from the interconnection topology. 
Moreover, components are viewed as floating 
elements since a static interconnection topology 
definition, like in most of existing ADLs, is 
completely absent. We also fill out the usual 
component description, expressed in terms of 
Provided/Required services, with functionalities 
specification of such services. Hence, each 
component will be described by a set of external 
ports, ensuring interactions with the  
environment, and an internal behaviour, specified by 
a tile system, to deliver system functionalities. We 
can obtain similar results in rewriting logic. 
However, rewriting logic lacks tools to express 
synchronization aspects. Tile logic main 
contribution is a formal specification of possible 
synchronizations between components. 
Traditionally, this kind of synchronization is defined 
by static connectors. In our work, we propose a tile 
based dynamic connector.  

Concretely, the dynamic connection depends on 
the contribution of two components to execute a 
shared action (synchronization), expressed by a tile. 
When a send action (trigger of the tile) is initiated by 
the sender, the synchronization tile takes place and 
plays the role of a dynamic connection. 
 
Synchronazation: 

 

( ) ( ) ( )

( ) ( ) ( ) '( ), ( ) ( ) ( ) '( )

( ( )) ;
; ; !( ) ( ) ( ) '( )in y C x C y

out x in y out x in y in y out x in y in y

Send out x id id id
id id id idC x C y c x c yγ

⊗ ⊗
∇ ⊗ ⊗ ⊗ ⊗⊗ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ⊗

Figure 3: Dynamic Connection Tile. 
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Synchronization tile is parameterized by C(x) 
and C(y), which are the sender (x) and receiver (y) 
configurations. out(x) and in(y) are output and input 
ports of the sender component and receiver one 
respectively. Message receipt by y changes its 
configuration to C’(y), since in(x) object value has 
been modified. Synchronization tile is triggered by a 
send action. It starts by preparing interaction 
necessary interfaces (isolates out(x) and in(y) thanks 
to parallel composition of horizontal identities idC(x) 
and idC(y)). Synchronization tile effect is the 
following sequence: A connection Creation (∇ 
operator) between the sender component and the 
receiver one. A transfer of out(x) port contents by 
swapping (γ operator) one output port copy of the 
sender and the receiver input port. Then, interaction 
end by discharging (! operator) the empty port. We 
notice that, duplicator operator ∇ creates a copy of 
the sender output port and renames it as in’(y).  

5 CASE STUDY 

Distributed collaborative applications are 
characterized by supporting groups’ collaborative 
activities. This kind of applications is branded by 
physically distributed user groups, who cooperate by 
interactions and are gathered in work sessions 
(Molina, 2003). The effective result of collaboration 
in a session is a production of simultaneous and 
concurrent actions. Interactions are fundamental 
actions of a collaborative session and require being 
coordinated (synchronized) to avoid inconsistencies. 
We consider a simplified version of collaborative 
session where session management is not treated 
since we are more interested on synchronization 
aspects and their definition in tile logic. 

5.1 Software Architecture of the 
Collaborative Application 

Software architecture of a collaborative session is 
composed of one president and several instances of 
participant component (see Figure 4).  

Port 1 

President 

 : Dynamic Connection 

Port n 

Port 2 

Port  Participant 1

Port  Participant 2

Port  Participant n  : A pair of (in/out) 
ports  

Figure 4: Software Architecture of a collaborative Session. 

President component interact with each 
participant component via a pair of (in/out) ports. A 
connection (dashed line) between (in/out) port of the 
president and (out/in) port of a participant is 
established dynamically if needed.  

5.2 Components Tile Systems 

Figure 5 illustrates a president and any participant 
behaviour. To open a session, the president begins 
by announcing it. He prepares an invite message and 
broadcasts it all participants. The session is opened 
by the president when at least a positive response 
(accept to participate) is received. Participants are 
then informed by an open message. Managing 
session consists of realizing the collaborative task 
with contribution of all session members. When the 
collaborative task is terminated, the president closes 
the corresponding session by sending a close 
message to all participants.  
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Response 
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(a) President Diagram 

Reject 

Receive-Close 

Disconnected Expected 

Connected 

Receive-Invite Par-Ready Invited 

Accept 

 
(b) Participant Diagram 

Figure 5: State / Transition diagrams. 

5.2.1 Horizontal and Vertical Categories 

Objects of the two categories define component 
internal structure. Vertical category (observations) 
of a component defines its possible actions, i.e., 
provided services of the component. Morphismes of 
the vertical category specify possible actions on 
objects. Horizontal category (configurations) of a 
component defines component possible states. 
Gathered together via a set of tiles, horizontal and 
vertical categories define the expected behaviour of 
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the underlying component. Based on diagrams 
presented below, one can identify configurations 
(states) and observations (actions) of each 
component. In what follows, we will present tile 
system associated to the president only. In a similar 
way, tile system associated to a participant 
component can be generated. Due to  space 
limitation reasons, it is omitted. 

 
1) Objects: Identified objects for the president 

are: 
    - Port: we associate a port to each participant 

communicating with the president, 
    - Participant-List: each entry in the list 

corresponds to a participant and indicates its state  
(Connected/Disconnected), 
    - Buffer: contains received messages, 
    - Msg: a message to send. 
 
2) Configurations: Corresponds to the identified 

states of the president component in Figure 5(a). 
Each configuration is a 4-uplet (ports, l, b, m), 
where: 
Ports is a n-uplet of pairs (in/out) of ports with n is 
the number of participants, l is of sort Participant-
List, b is a buffer and m is of sort Msg. 
For simplicity reasons, we use the following 
notations: 
-Empty =

1

( ,
n

i

)Empty Empty
=
∏ : to denote that all 

(in/out)ports are empty, 
- Outs = : an n-uplet of all output of the 

president, 
1

( ( ( ))
n

i

out port i
=
∏

-full-in(i,m)= : 

indicates a message deposit on the i

1

1 1

( ( ), ( )), ( , ( )), ( ( ), ( ))
i n

j k i

in j out j m out i in k out k
−

= = +
∏ ∏

th (in)port, 
-empty-in(i)= : 

expresses that a the i

1

1 1

( ( ), ( )), (0, ( )), ( ( ), ( ))
i n

j k i

in j out j out i in k out k
−

= = +
∏ ∏

th (in)port is empty,  
-full-outs(m)=

1

: a massage deposit on all 

participants (out)ports, 

( ( ), )
n

i

in i m
=
∏

- init-list :  generates an empty list. 
Basic configurations correspond to the president 

diagram states. Starting from the initial 
configuration Pr-Ready, which corresponds to the 4-
uplet (empty, init-list, empty, empty), the president 
can evolve to the following configurations: 
- Wait-Response = (Outs, init-list, empty, msg-
invite): the president has sent an msg-invite and is 
waiting for a response, 

- Open-Session = (Outs, l, empty, msg-open) : 
the president has sent an msg-open message to all 
participants (Outs term of the configuration),  
- Session-Management = (ports, l, b, m): the 
president is realising the collaborative task with the 
n participants, 
- End-Session = (Outs, l, b, msg-close): a msg-close 
is broadcasted to all participants. 

 
3) Observations: We present a subset of 

observations sufficient to explain our approach: 

- deposit(x:Msg) = full-outs(x) : deposit a message 
on a all its (out)ports,  

- send(x:port) : sends an out(port) content,   

- : 

corresponds to a broadcast action of the deposited 
message to all participants. 

1
( ) ( ( ( ))

n

i
Send all Outs send out port i

=
− = ⊗ )

- receive(i) (x:ports, y:Msg) = full-in(i,y) : indicates 
a message receipt on the ith port, 

consume(i)(x:ports,y:list)=(empty-in(i),update-
list(y,i)) a response withdrawal from port i and an 
update of participant-list.  

We note that participant component manipulates: 
a status (Disconnected, Invited, and Connected), a 
pair of ports (in/out), a buffer and message. Thus its 
configurations are 4-uplet (st, p, b, m).  

5.2.2 Tiles 

The expected behaviour of the president is specified 
with a set of tiles. We present here tiles 
corresponding to session open and session close 
only: 
Prepare:  ( , )Re id

deposit msg invite outsPr ady Inviting−− ⎯⎯⎯⎯⎯⎯⎯→

Announce: ( )
id

Send all OutsInviting Wait Response−⎯⎯⎯⎯⎯→ −  
Response-Receipt: 

 Inform: 

Close:
 

( ( ), )
( ( ( )), ); ( , )
receive port i msg Accept

consume in port i l deposit msg open outsWait Response Open session−
−− ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ −

( , )
( )

deposit msg Open outs
Send all OutsOpen session Session Management−

−− ⎯⎯⎯⎯⎯⎯⎯→ −

( , )
( )

deposit msg close Outs
Send all OutsSession Management End Session−

−− ⎯⎯⎯⎯⎯⎯⎯→ −

5.3 Synchronization between 
Components 

An interaction between the president and a 
participant component corresponds to the dynamic 
connector tile execution by instantiating C(x) and 
C(y). As an example, the president puts an msg-
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invite message in all output ports by executing its 
Prepare tile. Then, he sends the message by 
executing Announce tile. President state evolves to 
Wait-response. Announce effect is a broadcast of 
msg-Invite to all participants, which actually do 
nothing (Ready state). It triggers the synchronization 
tile. Instantiations are as follows:  

- x = the president, y = a participant,  
- C(x) ⊗ C(y) = Wait-Response ⊗ Par-Ready.  
- The resulting configuration is C(x) ⊗ C(y) = 

Wait-Response ⊗ Invited, since the input port of the 
corresponding participant contains an msg-Invite 
now. We obtain the following tile: synchronization: 

( ) ( ) ( )

( ) ( ) ( ) '( ), ( ) ( ) ( ) '( )

( ( )) ;
; ; !Wait-Response Ready Wait-Response Invitedin part C pr C part

out pr in part out pr in part in part out pr in part in part

Send out pr id id id
id id id idPar γ

⊗ ⊗
∇ ⊗ ⊗ ⊗ ⊗⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⊗ − ⊗

where pr denotes the president component and par 
denotes a participant component. 

6 CONCLUSION 

In this paper, we showed how tile logic can be used 
as a common semantic framework for architectural 
and behavioural descriptions of distributed systems. 
Starting from a Place/Transition UML diagrams, 
describing the intended behaviour of the system, we 
identify basic components and possible 
interconnections between them via (in/out) ports. It 
constitutes the architectural description phase or 
black box view of the underlying system. Such view 
is then refined by opening the black boxes and 
glancing at their internal structure and behaviour. A 
tile system is associated to each component. It 
defines inherent objects and possible actions 
(observations) on them. It also defines possible state 
evolutions of component in terms of tiles. We have 
also proposed a notion of dynamic connection in 
software architectures. Dynamic reconfiguration and 
mobility of components are straightforward 
consequences of such component freeness from 
static interconnection constraints and become 
implicit aspects.   

In our ongoing work, we plan to integrate some 
ADLs in tile logic to ensure that our current 
proposition is generic enough to cover a wide range 
of distributed systems. We will also focus on 
expressing inherent concepts of software 
architectures (dynamic reconfiguration, component 
mobility and non-functional properties of distributed 
systems). 
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