
HOW “DEVELOPER STORIES” IMPROVES ARCHITECTURE
Facilitating Knowledge Sharing and Embodiment, and Making Architectural

Changes Visible

Rolf Njor Jensen, Niels Platz and Gitte Tjørnehøj
Institute of Computer Science, Aalborg University, Fredrik Bajersvej 7E,Aalborg, Denmark

Keywords: eXtreme Programming, Architecture, Design, Agile Development, Methodology, Practice, Systems Develop-
ment, Software Quality, Developer Stories.

Abstract: Within the field of Software Engineering emergence of agile methods has been a hot topic since the late
90s. eXtreme Programming (XP) (Beck, 1999) was one of the first agile methods and is one of the most
well-known. However research has pointed to weaknesses in XP regarding supporting development of viable
architectures. To strengthen XP in this regard a new practice: Developer Stories (Jensen et al., 2006) was
introduced last year mainly based on a theoretical argumentation.
This paper reports from extensive experimentation with, and elaboration of the new practice. Results from
this experimentation shows that using Developer Stories increases the likelihood of developing a viable ar-
chitecture through a series of deliberate choices, through creating disciplined and recurring activities that:
1) Facilitate sharing and embodying of knowledge about architectural issues, and 2) heighten visibility of
refactorings for both customers and developers.

1 INTRODUCTION

Agile methods has been a hot topic since the late
90’s (Beck et al., 2001), shifting system develop-
ments focus from processes and tools to individu-
als and interactions, from documentation to working
software, from contract negotiation to customer col-
laboration, from following a plan to responding to
change. eXtreme Programming (Beck, 1999; Beck,
2000; Beck, 2004) was one of the first methods within
this paradigm and has become very popular within
both research and industry. However XP has also
been critiqued for not supporting the development of a
viable architecture and hereby jeopardizing the qual-
ity of the developed systems.

What is design and what is architecture? No clear
distinction can be made between the two in general,
and in the case of XP, the two terms are frequently
overlapping - i.e. both in terms of intention and scope.
Architectural issues are dealt with through Enough
Design Up Front combined with constantly designing
and refactoring entailing that the architecture keeps
improving but only on demand. The prevalent princi-

ple presented by XP to guide development of the ar-
chitecture is “Simplicity”, subject to the criteria: “Ap-
propriate for the intended audience”, “Communica-
tive”, “Factored” and “Minimal”.

Does XP deliver a viable architecture? Embrac-
ing the values of XP, and following the practices in a
disciplined manner in accordance with the principles,
will lead to a sufficient and viable architecture (Beck,
2004).

However, discourses in literature and conference
proceedings show that supporting development of a
viable architecture still is a subject in XP. Some ex-
amples of the discourses are:
• The “Metaphor” practice that in the first book on

XP (Beck, 1999) explicitly guided architecture,
points to the need of focusing on a shared under-
standing of the system. The practice was found
difficult to operationalize (Fowler, 2001) and was
therefore removed (Beck, 2004), but soon it was
missed (Lippert et al., 2003; West and Solano,
2005) and hints for operationalization was sug-
gested.

• Several have proposed an introduction of some

56 Njor Jensen R., Platz N. and Tjørnehøj G. (2007).
HOW “DEVELOPER STORIES” IMPROVES ARCHITECTURE - Facilitating Knowledge Sharing and Embodiment, and Making Architectural Changes
Visible.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 56-64
DOI: 10.5220/0001338900560064
Copyright c© SciTePress



kind of requirements management into XP (Eber-
lein and do Prato Leite, 2002; Paetsch et al., 2003)
when quality of the system under development is
a concern.

• Reports of problems trying to integrate large-scale
refactorings into the everyday work of XP projects
(Lippert, 2004). The quote “. . . aggressive refac-
toring probably will remain the most difficult,
because it requires consistency, energy, and
courage, and no mechanisms in the methodology
reinforce it.” (Cockburn, 2006), brings the defi-
ciency of XP into focus, offering an explanation
of the many attempts at amending XP.

Developer Stories – a new agile practice – was intro-
duced to address the deficiency of XP concerning ar-
chitecture and design (Jensen et al., 2006). The new
practice was inspired by the explicit focus on archi-
tecture in more traditional methods, but designed to fit
perfectly in tune with the practices, principles and val-
ues of XP. Developer Stories manage non-functional
and other architectural requirements for systems - in
parallel with the feature-oriented user stories (effec-
tively addressing functional requirements). The pro-
posed practice was argued through a literature-based
analysis (Jensen et al., 2006).

Investigating how Developer Stories works in a
concrete development project is the subject of this pa-
per. Analyzing Developer Stories, we propose a hy-
pothesis: Developer Stories essentially contributes to
the development process by two means: 1) facilitat-
ing sharing and embodiment of knowledge concern-
ing architectural issues, and 2) improving visibility of
architectural changes – thereby giving the customer
more leverage to steer the development process. This
paper presents the results of an experiment with De-
veloper Stories, which sets out to validate this hypoth-
esis, providing evidence that these two means are in
fact present. The experiment is designed as a com-
bination of a field- and laboratory experiment, and
evolves around an XP project of 3 iterations with 6 de-
velopers, a coach and an on-site customer. Conclud-
ing upon the experiment, we find that our hypothe-
sis is true, and that Developer Stories improve knowl-
edge sharing and heighten visibility by creating reoc-
curring, disciplined activities for exploring and pro-
cessing possible architectural issues.

The remainder of this paper is organized as fol-
lows: Section 2 presents the new practice Developer
Stories in some detail (more arguments can be seen
in (Jensen et al., 2006)). Section 3 presents the ex-
periment settings, data collection and analysis, while
section 4 lists the findings from the experiment. Re-
sults are summarized in section 5, and then discussed
in section 6. Finally we draw our conclusions in sec-

tion 7, and hint possible future work in section 8.

2 DEVELOPER STORIES

In the following we present in some detail the practice
Developer Stories based on the original description of
Developer Stories (Jensen et al., 2006). For practical
purposes some aspects were clarified before the ex-
periment, but in all important aspects the practice has
remained as the former proposition.

The overall goal of Developer Stories is to pro-
vide the development team with the opportunity and
means to improve the architecture of systems in devel-
opment, accomplishing greater business value, and a
viable architecture.

The Developer Story practice is designed to fit
into the synergetic mesh of XP’s practices. It takes its
place in the symbiotical relationships of the practices,
relating to i.e. pair programming, incremental design,
test-first programming and user stories (for clarifica-
tion of this see (Jensen et al., 2006)), It is designed
to both support and be supported by the values of XP,
and in general follow the look and feel of XP.

2.1 The Artifact: A Developer Story

Developer Stories as a practice consists of a process –
a number of activities, and artifacts. The artifacts are
the developer stories, defined as such:

The developer stories describe (changes to)
units of developer-visible properties of the
software. In contrast, user stories describe
units of user-visible functionality of the soft-
ware. The physical representation of a devel-
oper story is an index card, which may have
another color than user stories, making it easy
to distinguish them from each other.(Jensen
et al., 2006)

In essence, a developer story is much like a user story
- but where a user story describes features of the sys-
tem and is written by the user, a developer story de-
scribes changes to the system that are often not visible
to the user, but highly visible to the developers – and
is therefore written by the developers.

Figure 1 depicts a developer story from the con-
ducted experiment. The layout of a developer story is
an index card, and the form of the content is not bound
by any formalism. The extent of the content is at the
leisure of the developers. Whether it should contain a
description of the problem, solution, tests, tasks and
estimate, or whether it (as is the case of our example
from the experiment, Figure 1) only needs two lines
of description.

HOW “DEVELOPER STORIES” IMPROVES ARCHITECTURE - Facilitating Knowledge Sharing and Embodiment,
and Making Architectural Changes Visible

57



Figure 1: Example of a developer story.

2.2 The process

The activities that constitute the rest of the practice
is interwoven into the other activities of development
work, especially the discovery of potential devel-
oper stories and implementation of the chosen stories.
However the exploration of the architectural issues,
the writing of the stories and the costumer choosing
which to implement is organized as an autonomous
activity; The Architectural Game.

2.2.1 Acknowledging Architectural Issues

Integrated in the day-to-day activities of an iteration
the developers acknowledge architectural issues that
they experience. They either make a mental note, or
preserve some artifact – a drawing on a flip-chart, a
sticky-note or otherwise. Acknowledgement happens
during pair-programming, shared discussions, lunch-
breaks, etc., and serve as inspiration or reminders at
the following Architectural Game.

2.2.2 The Architectural Game

The Architectural Game (see Figure 2) is a two-hour
meeting that occurs once every iteration just before
or after the weekly planning meeting (Beck, 2004)
(formerly known as the planning game (Beck, 2000))
and may well be performed as a stand-up activity.
The purpose of the game is to explicate and visual-
ize refactoring needs as stories.

As shown in Figure 2 the game is based on expe-
riences (including the notes and artifacts mentioned
above) from the past iteration(s). First the develop-
ers collaboratively explore and elaborate architectural
issues and eventually write developer stories express-
ing refactoring needs. Then they estimate the stories
and may prioritize them. The customer is optimally
present at this part of the Architectural Game as by-
stander. The participants shift rapidly, fluent and im-
perceptibly between activities.

When the developers have expressed the refactor-
ing needs that they have found in terms of developer

Explore and Elaborate

Estimate

Developer stories

Experience from past iteration

Chosen developer stories

Elaborate

Present

Assess business value

Write developer stories

D
eveloper driven, collaborative

C
ustom

er driven

Choose

Prioritize

Figure 2: The Architectural Game.

stories, the stories are presented to the customer to
choose from. He is responsible for gaining insight in
the developer stories, so that he can assess the busi-
ness value of the stories, based on his detailed busi-
ness knowledge. This might require more elaboration
or further explanations in non-technical terms by the
developers.

2.2.3 Implementing Developer Stories

The chosen developer stories are handled similarly to
the chosen user stories during the following iteration,
e.g. developer stories are implemented and tested
analogously to user stories. New unit tests are added
and existing unit tests modified. Just like acceptance

ICSOFT 2007 - International Conference on Software and Data Technologies

58



tests for user stories, acceptance tests for developer
stories are written prior to implementation by the cus-
tomer, though supported by the developers – to up-
hold the double checking principle (Beck, 2004).

3 EXPERIMENT

The overall aim of the performed experiment was to
gain insight into the workings of Developer Stories, to
understand how and why they possibly accommodate
architectural improvement.

3.1 Hypothesis

We regard the architecture of a system, as something
that at any given time can change in several differ-
ent ways. Choosing which changes to implement, is
a matter of assessing which changes (if any) that will
provide the largest increase in the value of the system.
But how do we determine which changes are possible
and which are feasible? And when a set of potential
changes is identified, who then chooses which to im-
plement? These two questions forms the basis from
which our hypothesis is formed.

Finding Feasible ChangesCreating the architecture
of a system can involve many different stakehold-
ers, but it is the developers that have detailed
knowledge of the design and architecture of the
implementation. With this in mind, the different
developers are all potential changers of architec-
ture, and as such the root to uniformity or chaos.
Fowler promotes an unorthodox definition of ar-
chitecture:

In most successful software projects, the ex-
pert developers working on that project have
a shared understanding of the system design.
This shared understanding is called architec-
ture.(Fowler, 2003)

Following this definition, and the previously
stated premises, it is necessary to build and main-
tain a shared, uniform understanding of the ex-
isting architecture, in order to identify which
changes to the architecture may feasibly be im-
plemented. Hereby it becomes imperative that any
practice aiming to improve architecture facilitates
knowledge sharing and embodiment.

Choosing Which Changes to ImplementWhile
the developers (may) have an understanding of
the architecture and possible changes, they do
not posses all knowledge required to determine
the change of value of the system entailed by
effectuating a change. The missing knowledge

is possessed by other stakeholders, which in
XP are represented by the on-site customer.
The required knowledge is i.a. the context in
which the system is to be deployed, the context
to which the system is developed, etc. If this
knowledge is to be employed, the customer must
be in a position to execute influence on which
changes are implemented, and it follows that a
practice aiming to improve the architecture must
provide the customer with visibility of possible
architectural changes.

In short, our hypothesis is that Developer Stories
contribute to the development process with knowl-
edge sharing and embodiment of architectural issues
among the developers, and gives the customer visibil-
ity of the possible architectural changes.

3.2 Experiment Setting

The experiment was a full scale XP-development
project integrated with the Developer Story practice.
It was conducted in a laboratory but striving to share
as many aspects as possible with a field experiment
(Galliers and Land, 1987).

The field aspects were: 1) The laboratory was
physically set up as a real XP room. 2) 11 out of
13 primary practices, and some secondary practices
were employed in the software development process.
3) The development task was an industry request and
the on-site customer was employed at the requesting
company. 4) There were six developers, which is a
normal size project. 5) We followed three one-week
iterations, which is adequate embody both ordinary as
well as the new practice of XP and thus to study the
effect. 6) The implemented software was real-world:
a rather complex client- and server system applying
new technology used to scan barcodes on parcels in
a freight registration system for a truck fleet operator.
7) After the experiment the IT-system was actually
implemented at the requesting firm.

The laboratory aspects of the experiment were: 1)
The developers were fifth semester computer science
students with some experience in developing systems,
but unskilled in XP. 2) The researchers played the role
of coach and one on-site customer and the project was
conducted at the university – not in an industry set-
ting.

3.3 Preparing the Experiment

Preparation for the experiment was done through
three activities: Teaching the to-be XP developers XP,
arranging for a laboratory in which to conduct devel-

HOW “DEVELOPER STORIES” IMPROVES ARCHITECTURE - Facilitating Knowledge Sharing and Embodiment,
and Making Architectural Changes Visible

59



Figure 3: Configuration of the development room.

opment, and finally giving the developers insight into
the product domain.

The developers were taught XP from scratch dur-
ing a 20 hour course over a period of 5 days starting
with and emphasizing the values of XP, later adding
the principles, practices, and other features of XP.

The laboratory was set up as sketched in Figure 3
with one end occupied by three pair programming sta-
tions facing each other and the other end empty except
from the information radiators – blackboards, bulletin
boards (storywall, etc.), and a flip chart. This area also
served as stand-up area. Finally a chair for the on-site
customer was added. Compared to the recommended
setup (Beck, 2004), denoted as “caves and common”
(Cockburn, 2006) there is no private space for the de-
velopers to do solitary work. The need for caves was
met by another room just down the corridor in which
the developers also worked off-project hours.

3.4 Executing the Experiment

The experiment was conducted from mid-October to
end-November. In total, three one-week iterations
where completed. Development time was scattered
throughout this period, concentrating more and more
towards the end. The customer in cooperation with
the researchers wrote the user stories for the project.
The developers were enthusiastic about both XP and
the product. The first iteration was a learning iter-
ation with heavy involvement of the coach, but al-
ready in the second iteration the team, to a large de-
gree, worked independently of the coach. The project
was halted after the third iteration as planned only be-
cause the students had to refocus on other parts of
their study. The product was however ready to be im-
plemented and used by the requesting firm.

3.5 Collecting Data

We used four main sources for collecting data.

• A research log kept daily by the researchers fo-
cused on the themes from the hypothesis of the ex-

periment, including observations and reflections
of the ongoing development process.

• A questionnaire, that each developer answered
three times per iteration (start, middle, end), 41
questionnaires in total. The questionnaire pro-
vided evidence on: A) How much Developer Sto-
ries relatively to the other practices contributed to
each developers knowledge of the system, and B)
Whether the systems architecture was perceived
similarly by the developers, and how this percep-
tion evolved.

• The Architectural game was video taped along
with the weekly meetings.

• As the development team employed a source re-
vision control system, the source code at different
revisions constituted the final data source.

The researchers were present during all work
hours, taking actively part in the project, which con-
stitutes a source of rich but informal data.

3.6 Analyzing Data

We analyzed data looking for support of the hypothe-
sis (knowledge sharing and embodiment, and visibil-
ity of refactorings).

To provide a historical reference to the remainder
of the analysis, we created a timeline using the log-
book, and the artifacts produced throughout the devel-
opment process (story index cards, flip charts, etc.).

We then reviewed the logbook and video record-
ings, mapping evidence to the main themes of the
hypothesis; interactions between developers (sharing
and embodiment of knowledge), interactions between
developers and the customer (visibility of refactor-
ings), and signs of architectural change (Developer
Stories).

On the flip side of the questionnaire, the develop-
ers depicted their current perception of the architec-
ture. We used these drawings to analyze how the per-
ceptions evolved over time and how they converged
or diverged between developers.

We analyzed the developers own subjective and
relative rating of the contribution to their understand-
ing of the system from Developer Stories, compared
to other practices.

We even analyzed the different builds of the sys-
tem with a code analysis tool (Structure101 (Soft-
ware, 2006)) to see if refactorings due to developer
stories had effect on the actual architecture.

The data analysis was iterative going through sev-
eral of the data sources more than once in the light of
the findings from the other sources.

ICSOFT 2007 - International Conference on Software and Data Technologies

60



4 FINDINGS

Presented below is the most significant findings
grouped into four categories – three relating to differ-
ent parts of the Developer Stories process (see Sec-
tions 2.2.1, 2.2.2 and 2.2.3), and one with findings
applicable to all parts.

4.1 Acknowledging Architectural Issues

We found that knowledge of implementation chal-
lenges, design problems and refactorings was shared
through osmotic communication (Cockburn, 2006),
and the use of the flip chart and blackboards. Typ-
ically a discussion about these architectural issues
would evolve rapidly from involving one pair to en-
gaging one or more persons from the other pairs, and
at some point two or three people would move to the
stand-up area and employ either the blackboard or the
flip chart.

Considering the whole span of development, the
discussions were spread evenly throughout the iter-
ations, and all developers were found to engage ac-
tively in this sharing of knowledge.

The on-site customer, being present in the room,
observed the discussions about architectural issues
when they took place in the stand-up area, and oc-
casionally was able to contribute some knowledge.

There were instances of the customer instigating
a discussion of architectural issues among the devel-
opers, when some functionality was demoed to the
customer, and the customer asked for a change in e.g.
user interface design, functionality or otherwise.

4.2 The Architectural Game

The developers all engaged actively in discussions
about architectural issues experienced in the previous
iteration.

The flip charts and other artifacts that were created
during the iteration leading up to a particular architec-
tural game were used by the developers as reminders
of the experienced architectural issues.

The first architectural game was guided by the
coach, and we observed how the developers quickly
and actively engaged in the process, effectively act-
ing as a self-organizing team.

Video recordings from the architectural games
showed a noticeably quick creation of a common and
high level of understanding of the current system dur-
ing the review of the flip chart. The developers ob-
tained this understanding by actively seeking knowl-
edge from each other about aspects of the system that
were currently unclear to them.

Figure 4: Drawings of the system architecture hung on a
wall. Each row corresponds to a developer, time increasing
from left to right.

Frequently we also observed developers feed the
discussion with personal knowledge about i.a. a de-
sign pattern that had not been previously considered.

We observed the developers changing rapidly be-
tween different levels of abstraction – ranging from
overall architectural patterns to implementation de-
tails.

We observed the customer choosing between the
presented developer stories. When he was not im-
mediately able to assess the business value, he chal-
lenged the developers, who where able to present the
developer stories in terms that the customer could
translate into business value.

4.3 Implementing Developer Stories

We found the knowledge of an architectural change
happening due to a developer story spread very
quickly among the developers. The black markings
in Figure 4 shows how the knowledge of a partic-
ular architectural pattern described in a developer
story spreads among the developers. On the 22nd of
November two developers had acknowledged and de-
picted the architectural change. The 28th of Novem-
ber (one working day later), five developers had ac-
knowledged the change. While the developers ro-
tated in pairs frequently, not all the developers that
acknowledged the architectural change had actually
worked on that particular piece of code.

We found several situations where the customer
was involved in the implementation of developer sto-
ries, just like user stories, either through discussions
or direct questions concerning uncertain matters.

HOW “DEVELOPER STORIES” IMPROVES ARCHITECTURE - Facilitating Knowledge Sharing and Embodiment,
and Making Architectural Changes Visible

61



We analyzed a particular subset of the developed
code in two different versions, and found a significant
reduction of coupling and an enhancement of cohe-
sion as an effect of a major refactoring in the third iter-
ation. We see this as a sign of improvement of the ar-
chitecture, according to the definition of architecture
by the traditional quality criteria (Jensen et al., 2006).
The cause of the refactoring was clearly traceable to
the implementation of a specific developer story.

4.4 Generally Applicable Findings

From the questionnaires, we found that the develop-
ers themselves subjectively rated the Developer Sto-
ries practice relatively higher than other XP-practices,
as a mean to increase their personal knowledge of the
system, and more so more and more over the itera-
tions.

5 RESULTS

Reflecting upon our findings, the following section
summarizes the results of the experiment with regards
to the hypothesis: “That Developer Stories contribute
to the development process with knowledge sharing
and embodiment of architectural issues among the de-
velopers, and gives the customer visibility of the pos-
sible architectural changes”.

5.1 Knowledge Sharing and
Embodiment

There is widespread evidence that the practice Devel-
oper Stories did heighten the knowledge sharing and
embodiment throughout the whole project by provid-
ing occasion and tools for supporting and informally
documenting the discussions. Even the developers
themselves considered Developer Stories as a prac-
tice that contributed to their knowledge of the system,
to a larger extent than other XP practices.

The knowledge sharing and embodiment pro-
cesses was initiated during the iteration leading up to
the architectural games. The process occurring dur-
ing the iteration was characterized by being problem
oriented, and not necessarily involving all developers.
When the process continued in the architectural game,
focus gradually shifted to become more solution ori-
ented, and being communal, involving all developers.
The rapid shifts in levels of abstraction throughout the
discussion indicates that sharing and embodiment of
knowledge was actually achieved (Guindon, 1990).

When changing the architecture by implement-
ing a developer story, the developers acknowledged

the new architecture faster than otherwise expected.
This indicates that the developers effectively embod-
ied knowledge about architectural development that
occurred due to developer stories.

The Architectural Game resulted in a shared and
deep knowledge of the constituent parts of the system.
Moreover, the developers perception of the architec-
ture was uniform. Keeping the definition of architec-
ture as a common understanding of the most impor-
tant elements in mind, this means that the developers
where in fact able to communicate about the same ar-
chitecture, enabling them to make a uniform, disci-
plined and deliberate change of the architecture.

5.2 Visibility of Refactorings

The customer participated, through observation, in-
stigation, control and sparring in all three parts of the
Developer Stories process. This working pattern gave
the customer an influence on both choice and imple-
mentation of developer stories equal to that of user
stories, and some insight into the creation process.

The participation provided the customer with the
insight needed for choosing what to include and to ex-
clude (e.g. to avoid gold-plating) in the different iter-
ations. This way the visibility combined with the cus-
tomers knowledge of the systems context enhanced
the architecture of the system, as decisions can be
fully informed.

The act of choosing which developer stories to im-
plement gave the customer a very tangible lever with
which to control the direction of development in ar-
chitectural matters.

As a positive side effect, the developers gained
knowledge of the rationale on which the choice of de-
veloper stories was made, rendering them more em-
pathetic towards the choices.

5.3 Effect of Developer Stories

When implementing developer stories, the architec-
ture was evidently improved, but while we do con-
clude that the improvement in architectural quality we
found, was due to implementing a developer story, we
are not able to state for certain that the same refactor-
ing had not happened in some other course of devel-
opment.

However, based on this finding and on our gen-
eral belief that communication raises the possibility
of informed and thus wiser decisions, we do specu-
late that implementing the Developer Stories practice
is likely to heighten quality of the architecture early
in a development process by providing occasions for
disciplined elaboration of the architecture.

ICSOFT 2007 - International Conference on Software and Data Technologies

62



6 DISCUSSION

Our results from the experiment showed that the sug-
gested practice Developer Stories had effect on how
developers worked with architectural issues of the
system and also on the architecture of the system it-
self.

We found that developer stories helped developer
and customer to focus on needed non-functional or
other architectural requirements in a consistent (reoc-
curring once every iteration), disciplined and struc-
tured (in terms of developer stories) manner balanced
with the rest of the practices in XP. Based on this we
argue that Developer Stories can strengthen XP, effec-
tively accommodating the critique of the aggressive
refactoring (Cockburn, 2006) and providing a more
disciplined approach to design activities as suggested
(Fowler, 2004) while not jeopardizing the symbioses
of the existing practices of XP.

From the suggested practice follows a high degree
of visibility of needed refactoring tasks, of their value
for the customer, of their cost (estimated) and of the
customers eventual choice of stories. This visibil-
ity secures highly informed decisions on functional-
ity and architecture and is thus likely to add greatly to
the overall value of the system. Being continuous it
could play some role of bounded requirements man-
agement, since all stories are known to the decision
maker and he in turn is actively consulting and con-
sulted by the developers.

We also found that Developer Stories affected
knowledge sharing amongst the developer group and
with the customer as well, due to his presence through
the Architectural Game. Building and maintaining a
uniform perception of the architecture is a prerequi-
site for making meaningful and consistent architec-
tural changes. We also think this practice through
supporting building of shared abstract common un-
derstanding of the system can add what was lost when
the Metaphor practice was excluded from XP.

We can however not conclude anything regarding
the actual quality of the architecture according to the
classic criteria (Jensen et al., 2006). Securing quality
is not guaranteed by following the practice as such,
but the practice makes it possible and maybe even
more likely.

A consideration regarding the experiment setup is,
that the on-site customer was technically knowledge-
able. As such, we do acknowledge that communicat-
ing developer stories in terms that the customer may
translate to business value is a major challenge for the
involved parties. Considering the course of events
during the experiment, we do however believe that
this communication can be mastered by both devel-

opers and customer after a period of practice.
It should be recognized that a control group might

have been employed to compare the performance of
Developer Stories. Such a control group was not how-
ever within the scope of the research project. We do
still consider the results of the experiment valid, due
to the fact that we do only conclude upon the presence
of knowledge sharing and embodiment, and visibility,
not upon general positive or negative affects on the ar-
chitecture when using Developer Stories.

7 CONCLUSION

We have experimented with integrating the practice
of Developer Stories into XP to investigate the ef-
fect. The experiment was a full-scale XP develop-
ment project of 3 iterations, 6 developers, one on-site
customer and a coach, working on at real industry re-
quest. The product is now being implemented in the
requesting firm. From the experiment we found that
the practice Developer Stories contributes to the de-
velopment process by: 1) Heightening visibility of
refactorings for both customers and Developers, 2) fa-
cilitating sharing and embodying of knowledge about
architectural issues and 3) creating occasions for a
disciplined elaboration of the architecture. We spec-
ulate that by this contribution, Developer Stories give
development teams better means for achieving viable
architectures in developed systems.

8 FUTURE WORK

Investigating how Developer Stories may be used in
agile development methodologies other than XP is an
open question, and subject to ongoing work.

Gaining further insight into the effect of De-
veloper Stories may be carried out by using De-
veloper Stories in real-world projects. Experiences
from any such activity would be very interesting,
and may well be reported communally onwww.
developerstories.org.

REFERENCES

Beck, K. (1999). Embracing change with extreme program-
ming. Computer, 32(10):70–77.

Beck, K. (2000). Extreme Programming Explained: Em-
brace Change. Addison-Wesley.

Beck, K. (2004). Extreme Programming Explained: Em-
brace Change. Addison-Wesley, 2 edition.

HOW “DEVELOPER STORIES” IMPROVES ARCHITECTURE - Facilitating Knowledge Sharing and Embodiment,
and Making Architectural Changes Visible

63



Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., High-
smith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B.,
Martin, R. C., Mellor, S., Schwaber, K., Sutherland,
J., and Thomas, D. (2001). Manifesto for agile soft-
ware development.http://agilemanifesto.org.

Cockburn, A. (2006).Agile Software Development, The Co-
operative Game. Pearson Education, Inc.

Eberlein, A. and do Prato Leite, J. C. S. (2002). Ag-
ile requirements definition: A view from require-
ments engineering. InTCRE’02. http://www.enel.
ucalgary.ca/tcre02/.

Fowler, M. (2001). Design: Reducing coupling.IEEE Soft-
ware, 18(4):102–104.

Fowler, M. (2003). Who needs an architect?IEEE Soft-
ware, 20(5):11–13.

Fowler, M. (2004). Is design dead. http://
martinfowler.com/articles/designDead.html.

Galliers, R. D. and Land, F. F. (1987). Viewpoint - choosing
appropriate information systems research methodolo-
gies.Communications of the ACM, 30(11):900–902.

Guindon, R. (1990). Designing the design process: Ex-
ploiting opportunistic thoughts.Human-Computer In-
teraction, 5:305–344.

Jensen, R. N., Møller, T., S̈onder, P., and Tjørnehøj, G.
(2006). Architecture and Design in eXtreme Program-
ming; introducing “Developer Stories”. InLecture
Notes in Computer Science : Extreme Programming
and Agile Processes in Software Engineering, pages
133–142. Springer Berlin / Heidelberg.

Lippert, M. (2004). Towards a proper integration of large
refactorings in agile software development. InLecture
Notes in Computer Science, volume 3092, pages 113
– 122. Springer-Verlag.

Lippert, M., Axel, Schmolitzky, and Z̈ullighoven, H.
(2003). Metaphor design spaces. volume 2675 of
Lecture Notes In Computer Science, pages 33–40.
Springer-Verlag.

Paetsch, F., Eberlein, A., and Maurer, F. (2003). Re-
quirements engineering and agile software develop-
ment. InTwelfth International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enter-
prises, page 308.

Software, H. (accessed 29. december 2006). Struc-
ture101. http://www.headwaysoftware.com/
products/structure101/.

West, D. D. and Solano, M. (2005). Metaphors be with you!
In Agile2005.

ICSOFT 2007 - International Conference on Software and Data Technologies

64


