
REGULATION MECHANISM FOR CACHING IN PORTAL
APPLICATIONS

Mehregan Mahdavi
Department of Computer Engineering, Guilan University, Rasht, Iran

John Shepherd, Boualem Benatallah
School of Computer Science and Engineering, Sydney, Australia

Keywords: Web Caching, Collaborative Caching, Portal, Regulation.

Abstract: Web portals are emerging Web-based applications that provide a single interface to access different data or
service providers. Caching data from different providers at the portal can increase the performance of the
system in terms of throughput and user-perceived delay. The portal and its providers can collaborate in order
to determine the candidate caching objects. The providers allocate a caching score to each object sent to the
portal. The decision for caching an object is made at the portal mainly based on these scores. However, the
fact that it is up to providers to calculate such caching scores may lead to inconsistencies between them. The
portal should detect these inconsistencies and regulate them in order to achieve a fair and effective caching
strategy.

1 INTRODUCTION

The World Wide Web has already changed many as-
pects of life such as communication, education, busi-
ness, shopping, and entertainment. It provides a con-
venient and inexpensive infrastructure for communi-
cating and exchanging data between users and data
sources. Users can search for information, products,
and services, to use or buy. Web sites of universi-
ties, people’s home pages, yellow and white pages,
on-line stores, flight reservation, hotel booking, and
electronic banking are just some examples. These
Web sites are referred to as providers. There are large
number of such providers that provide the same sort
of information, products, and services. Therefore, it
can be time consuming for users to navigate through
them in order to find what they need.

Web portals are emerging class of Web applica-
tions that provide a single interface for accessing dif-
ferent providers. The users only need to visit the por-
tal instead of navigating through individual providers.
In other words, they save time and efforts for users.
Portals, such asExpedia (www.expedia.com) and
Amazon (www.amazon.com) are examples of such ap-
plications.

Performance and in particular providing a fast re-

sponse time is one of the critical issues that today’s
Web applications must deal with. Previous research
has shown that abandonment of Web sites dramati-
cally increases with increase in response time (Zona
Research Inc., 2001), resulting in loss of revenue by
businesses. Nowadays, many Web sites employ dy-
namic Web pages by accessing a back-end database
and formatting the result into HTML or XML pages.
Accessing the database and assembling the final result
on the fly is an expensive process and a significant fac-
tor in the overall performance of such systems. Server
workload or failure and network traffic are other con-
tributing factors for slow response times.

With the increasing use of the Web-enabled ap-
plications there is a need for better performance.
Caching is one of the key techniques that addresses
some of the performance issues of such applications.
Caching can improve the response time. As a re-
sult, customer satisfaction is increased and better rev-
enue for the portal and the providers is generated.
In addition, network traffic and the workload on the
providers’ servers are reduced. This in turn improves
throughput and scalability and reduces hardware and
software costs.

Caching a particular object at the portal de-
pends on the available storage space, response time

152
Mahdavi M., Shepherd J. and Benatallah B. (2007).
REGULATION MECHANISM FOR CACHING IN PORTAL APPLICATIONS.
In Proceedings of the Second International Conference on Software and Data Technologies - PL/DPS/KE/WsMUSE, pages 152-157
DOI: 10.5220/0001340701520157
Copyright c© SciTePress



(QoS) requirements, access and update frequency
of objects (Kossmann and Franklin, 2000). Avail-
able caching systems enable system administrators
to specify caching policies. This is done mainly
by including or excluding objects or object groups
(e.g., objects with a common prefix in the URI) to be
cached, determining expiry date for caching objects
or object groups, and etc. Server logs (i.e., access log,
and database update log) are also used to identify ob-
jects to be cached (Oracle Corporation, 2001b; IBM
Corporation, 2006; Dynamai, 2006; Florescu et al.,
2000; Yagoub et al., 2000).

Existing caching approaches have examined
caching in a general setting and can provide some
benefit to portals. However, portals have distinctive
properties to which existing techniques cannot be eas-
ily adapted and used. Most importantly, the portal and
providers are managed by different organizations and
administrators. Therefore, the administrator of portal
does not normally have enough information to deter-
mine caching policies for individual providers. More-
over, since the portal may be dealing with a (large)
number of providers, determining the best objects for
caching manually or by processing logs is impracti-
cal. On one hand, an administrator cannot identify
candidate objects in a dynamic environment where
providers may join and leave the portal frequently. On
the other hand, keeping and processing access logs in
the portal is impractical due to high storage space and
processing time requirements. Also, database update
logs are not normally accessible by the portal.

The portal and its providers can collaborate in or-
der to provide a more effective caching strategy. A
caching score (calledcache-worthiness) is associated
to each object, determined by the provider of that ob-
ject. It represents the usefulness of caching this object
at the portal. Larger values represent more useful ob-
jects for caching. The cache-worthiness score is sent
by the provider to the portal in response to a request
from the portal (Mahdavi et al., 2003; Mahdavi et al.,
2004; Mahdavi and Shepherd, 2004).

The fact that it is up to providers to calculate
cache-worthiness scores may lead to inconsistencies
between them. Although, all providers may use
the same overall strategy to score their objects, the
scores may not be consistent. In the absence of
any regulation of cache-worthiness scores, objects
from providers who give higher scores will get more
chance to be cached, and such providers will get more
cache space than others. This leads to unfair treat-
ment of providers. As a result those who give lower
scores get comparatively less cache space and their
performance improvements are expected to be less
than those who score higher. It may also result in less

effective cache performance as a whole. To achieve
an effective caching strategy, the portal should detect
these inconsistencies and regulate the scores given by
different providers.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview about Web
caching. In Section 3 we explain the regulation mech-
anism used in a collaborative caching environment.
Experimental results are presented in Section 4. Fi-
nally, some conclusions are presented in Section 5.

2 WEB CACHING BACKGROUND

Web caching has been studied extensively. Browser
and proxy caches are the most common caching
strategies for (static) Web pages. Caching dynamic
Web pages has been studied in (Aberdeen Group,
2001; Chutney Technologies, 2001; Chutney Tech-
nologies, 2006; Akamai Technologies Corporate,
2006; Chidlovskii and Borghoff, 2000; Candan et al.,
2001; Oracle Corporation, 2006; Oracle Corporation,
2001a; Anton et al., 2002; Challenger et al., 1999;
Dynamai, 2006; TimesTen Inc., 2002).

Caching Web objects has already created a
multi-million dollar business: Content Deliv-
ery/Distribution Network (CDN) (Oracle Corpora-
tion, 2006; Vakali and Pallis, 2003). Companies
such asAkamai (Akamai Technologies Corporate,
2006) have been providing CDN services for several
years. CDN services are designed to deployedge
servers at different geographical locations. Examples
of edge servers includeAkamai EdgeSuite (Akamai
Technologies Corporate, 2006) andIBM WebSphere
Edge Server (IBM Corporation, 2006).

Some applications may need a customized
caching technique. Application-level caching is nor-
mally enabled by providing a cache API, allowing
application writers to explicitly manage the cache to
add, delete, and modify cached objects (Degenaro
et al., 2001; Bortvedt, 2004; Sun Microsystems, 2005;
Apache Software Foundation, 2004).

When considering caching techniques, acaching
policy is required to determine which objects should
be cached (Podlipnig and Boszormenyi, 2003; Bala-
mash and Krunz, 2004; Cao and Irani, 1997; Datta
et al., 2002; Aggrawal et al., 1999; Cheng and Kam-
bayashi, 2000a; Young, 1991; Wong and Yeung,
2001). For rapidly changing data we might pre-
fer not to cache them because of the space, com-
munication or computation costs. Products such as
Oracle Web Cache (http://www.oracle.com),IBM
WebSphere Edge Server (http://www.ibm.com), and
Dynamai (http://www.persistence.com) enable sys-

REGULATION MECHANISM FOR CACHING IN PORTAL APPLICATIONS

153



tem administrators to specify caching policies. Weave
(Florescu et al., 2000; Yagoub et al., 2000) is a Web
site management system which provides a language
to specify a customized cache management strategy.

The performance of individual cache servers in-
creases when they collaborate with each other by re-
plying each other’s misses. A protocol calledInter-
cache Communication Protocol (ICP) was developed
to enable querying other proxies in order to find re-
quested web objects. (Li et al., 2001; Paul and Fei,
2000; Cheng and Kambayashi, 2000b; Fan et al.,
2000; Rohm et al., 2001; Chandhok, 2000). InSum-
mary Cache, each cache server keeps a summary table
of the content of the cache at other servers. When
a cache miss occurs, the server probes the table to
find the missing object in other servers. It then sends
a request only to those servers expected to contain
the missing object (Fan et al., 2000). InCache Ar-
ray Routing Protocol (CARP) all proxy servers are
included in an array membership list and the objects
are distributed over the servers using a hash function
(Microsoft Corporation, 1997).

3 REGULATION MECHANISM

In current systems, caching policies are defined and
tuned by parameters which are set by a system admin-
istrator based on the previous history of available re-
sources, access and update patterns. A more useful in-
frastructure should be able to provide more powerful
means to define and deploy caching policies, prefer-
ably with minimal manual intervention. As the own-
ers of objects, providers are deemed more eligible and
capable of deciding objects for caching purpose.

A caching score (calledcache-worthiness) can be
associated to each object, determined by the provider
of that object. The cache-worthiness score is sent by
the provider to the portal in response to a request from
the portal.

Cache-worthiness scores are determined by
providers via an off-line process which examines
the provider’s server logs, calculates scores and then
stores the scores in a local table. In calculating
cache-worthiness, the providers consider parameters
such as access frequency, update frequency, compu-
tation/construction cost and delivery cost. More de-
tails on the caching strategy are presented in (Mah-
davi et al., 2003; Mahdavi et al., 2004; Mahdavi and
Shepherd, 2004).

A typical cache-worthiness calculation would as-
sign higher scores to objects with higher access fre-
quency, lower update frequency, higher computa-
tion/construction cost, and higher delivery cost. How-

ever, each provider can have its own definition of
these scores, based on its own policies and priorities.
For example, a provider might choose not to process
server logs for defining the scores. It might, for ex-
ample, choose to let the system administrator assign
some zero or non-zero values to objects.

Relying on the providers to calculate and assign
caching scores may lead to inconsistencies between
them. The following factors contribute to causing in-
consistencies in caching scores among providers:

• Each provider uses a limited number of log entries
to extract required information, and the available
log entries may vary from one to another

• Providers may use other mechanisms to score the
objects (they are “not required” to use the above
approach)

• Malicious providers may claim that all of their
own objects should be cached, in the hope of get-
ting more cache space

To achieve a fair and effective caching strategy,
the portal should detect these inconsistencies and reg-
ulate the scores given by different providers. For this
purpose, the portal uses a regulating factorλ(m) for
each provider and applies it to the cache-worthiness
scores and uses the result in the calculation of the
overall caching scores received from providerm. This
factor has a neutral value in the beginning and is
adapted dynamically by monitoring the cache behav-
ior. This is done by tracingfalse hits andreal hits.

A false hit is a cache hit occurring at the por-
tal when the object is already invalidated. False hits
degrade the performance and increase the overheads
both at portal and provider sites, without any out-
come. These overheads include probing the cache val-
idation table, generating validation request messages,
wasting cache space, and probing cache look-up ta-
ble.

A real hit is a cache hit occurring at the portal
when the object is still fresh and can be served by
the cache. The performance of the cache can only be
judged by real hits.

The portal monitors the performance of the cache
in terms of tracing real and false hits and dynamically
adaptsλ(m) for each provider. For those providers
with higher ratio of real hits, the portal upgradesλ(m)
by a small amountδ1. The new value forλ(m) is
calculated by adding a small value to it. Therefore,
all the cache-worthiness scores from that provider are
treated as being higher than before. Choosing a small
increment (close to 0) ensures that the increase is done
gradually. Recall that we impose an upper bound of
1 on cache-worthiness scores. The new value ofλ(m)
will be:

ICSOFT 2007 - International Conference on Software and Data Technologies

154



λ(m)← λ(m)+δ1 (1)

For those providers with higher ratio of false hits,
the portal downgradesλ(m) by a small amountδ2.
The new value forλ(m) is calculated by decreas-
ing a small value from it. Therefore, all the cache-
worthiness scores from that provider are treated as
lower scores. Choosing a small decrement (close to
0) ensures that the decrease is done gradually. Re-
call that we impose a lower bound of 0 on cache-
worthiness scores. The new value ofλ(m) will be:

λ(m)← λ(m)−δ2 (2)

A high false hit ratio for a providerm, indicates
that the cache space for that particular provider is
not utilized. That is because the cached objects for
that provider are not as worthy as they should be.
In other words, the provider has given higher cache-
worthiness scores to its objects. This can be resolved
by downgrading the scores from that provider and
treat them as they were lower.

Unlikely, a high real hit ratio for a providerm, in-
dicates that the cache performance for this provider is
good. Therefore, providerm is taking good advantage
of the cache space. Upgrading the cache-worthiness
scores of providerm results in more cache space be-
ing assigned to this provider. This ensures fairness in
the cache usage based on how the cache is utilized by
providers. The fair distribution of cache space among
providers will also result in better cache performance.
The experimental results confirm this claim.

4 EXPERIMENTS

In order to evaluate the performance of the collabora-
tive caching strategy, a test-bed has been built. This
test-bed enables us to simulate the behavior of a busi-
ness portal with different number of providers, mes-
sage sizes, response time, update rate, cache size, etc.
We examine the behavior of the system under a range
of different scenarios.

The performance results show that the collabo-
rative caching strategy (i.e.,CacheCW outperforms
other examined caching strategies by at least 22%
for throughput, 24% for network bandwidth usage
and 18% for average access time. Examined caching
strategies includeLeast Recently Used(LRU), First In
First Out (FIFO), Least Frequency Used(LFU), Size
(SIZE), Size Adjusted LRU (LRU-S), andSize Adjusted
and Popularity Aware LRU (LRU-SP).

To address the issue of inconsistencies, a reg-
ulation factor is assigned to each provider. Every

provider’s cache-worthiness score is multiplied by
the corresponding factor. Therefore, providers whose
scores are low should have a high regulation factor
and vice versa. The regulation factor changes over
time by monitoring false and real hit ratio.

For this purpose, the providers in the simulation
are set up in such a way that first one deliberately
overestimates, second one underestimates, and third
one produces the standard cache-worthiness score.
The same pattern applies for subsequent providers.
In other words, one third of providers overestimate,
one third underestimate, and for the remaining one
third the normal cache-worthiness score is consid-
ered. Each provider was initially given a regulation
factor of 1, so that each cache-worthiness score from
them was not modified.

False and real hit ratio were used to downgrade or
upgrade the regulation factor. However, using real hit
ratio over the occupied cache space by each provider
for upgrading the regulation factor was the most suc-
cessful among all the variations used. Using real hit
ratio by itself did not produce the desired results, as
the performance of the cache for a provider depends
both on the real hit ratio and the cache space occupied
by the provider.

Providers were monitored to see if the regulation
factor was moving in such a way as to separate the
three groups of providers so that the underestimat-
ing providers consistently had the highest factor, fol-
lowed by the accurately estimating provider, with the
overestimating provider having the lowest regulation
factor. Figure 1 shows the changes in regulation fac-
tor for different groups of providers. One provider
from each group is used in the Figure. However, all
providers in each group show similar results. The re-
sults demonstrate that the regulation factor does sep-
arate the providers accordingly.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

0 120 240 360 480 600 720

Time (min)

R
eg

u
la

ti
o

n
 F

ac
to

r

UnderEst NormalEst OverEst

Figure 1: Regulation Factor.

When upgrading or downgrading the regulation
factor, we use small valuesδ1 andδ2 by whichλ(m)
is upgraded or downgraded. By choosing very small

REGULATION MECHANISM FOR CACHING IN PORTAL APPLICATIONS

155



value forδ1 andδ2, it takes a long time for the sys-
tem to adjust itself. On the other hand, choosing large
value forδ1 andδ2 makes the regulation factor fluc-
tuate unnecessarily. Choosing an appropriate value
makes the system adjust itself in a fair amount of time.
For this purpose we have examined different values
for δ1 andδ2.

∆i(CW ) = CWi+1−CWi (3)

δ1 = f1×∆(CW ) : 0 < f1≤ 1 (4)

δ2 = f2×∆(CW ) : 0 < f2≤ 1 (5)

Where:

CWi, j : Cache-worthiness score of object
O j at providerPi

CWi : Average value of cache-worthiness
scores at providerPi

Smaller values forf1 and f2 make the adjust-
ment smoother, but more timely. The experiment re-
sult show that any value forf 1 and f2 in the range
of 0 < f1, f2 ≤ 1 will generate the expected results.
The results in this experiment are generated based on
f1 = 0.1 and f2 = 0.1. When∆(CW ) = 0, although
very unlikely, the regulation factor will be zero. In
other words, in this special case the regulation process
will stay unchanged. However, in the next interval,
when∆(CW ) is calculated again the regulation pro-

cess will resume. The value for∆(CW ) is calculated
using available objects in the cache. Our experiments
show that even using a subset of cached objects to
generate∆(CW ) will give the same results and an es-
timation of the value, in case the overhead is an issue,
will generate the desired results.

According to the experiments regulation results
in improvement in the throughput. The results are
shown in Table 1. The resulted throughput after regu-
lation is 305 compared to 278 which is 10% improve-
ment in throughput

Table 1: Throughput.

Throughput
NoReg 278
Reg 305

Average access time for individual providers is
improved as a result of better utilization of cache
space, as shown in Table 2. However, those providers
that take better advantage of cache, show better im-
provement (i.e., those with higher real hit ratio). In

our example, these are providers that underestimate
and are shown as UnderEst. providers that overes-
timate (i.e., OverEst) result in less improvement. In
other words, the improvement in average access time
for individual providers is in proportion with their uti-
lization of cache space. Total average access time is
also improved as a result of regulation process and
better utilization of cache space (i.e., 6.59 compared
to 7.26) as shown in Table 3.

Table 2: Average access times for individual providers.

UnderEst NormalEst OverEst
NoReg 7.54 7.21 7.04
Reg 6.63 6.58 6.55

Table 3: Total average access time.

Average Access Time
NoReg 7.26
Reg 6.59

5 CONCLUSION

In this work, we discussed how a collaborative
caching strategy can overcome the limitations of cur-
rent systems in providing an effective caching strat-
egy in portal applications. We addressed the issue of
heterogeneous caching policies by different providers
and introduced a mechanism to deal with that. This
is done by tracing the performance of the cache and
regulating the scores from different providers. As a
result, better performance for individual providers is
achieved and the performance of the cache as a whole
is improved.

REFERENCES

Aberdeen Group (2001). Cutting the Costs of Per-
sonalization With Dynamic Content Caching.
http://www.chutneytech.com/tech/aberdeen.cfm. An
Executive White Paper.

Aggrawal, C., Wolf, J. L., and Yu, P. S. (1999). Caching on
the World Wide Web.IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 11(1):94–107.

Akamai Technologies Corporate (2006).
http://www.akamai.com.

Anton, J., Jacobs, L., Liu, X., Parker, J., Zeng, Z., and
Zhong, T. (2002). Web Caching for Database Apli-
cations with Oracle Web cache. InACM SIGMOD
Conference, pages 594–599. Oracle Corporation.

Apache Software Foundation (2004).
JCS and JCACHE (JSR-107).
http://jakarta.apache.org/turbine/jcs/index.html.

ICSOFT 2007 - International Conference on Software and Data Technologies

156



Balamash, A. and Krunz, M. (2004). An Overview of Web
Caching Replacement Algorithms. InIEEE Comuni-
cations Surveys and Tutorials, volume 6, pages 44–56.

Bortvedt, J. (2004). Functional Specification for Ob-
ject Caching Service for Java (OCS4J), 2.0.
http://jcp.org/aboutJava/communityprocess/jsr/cacheFS.pdf.

Candan, K. S., Li, W.-S., Luoand, Q., Hsiung, W.-P.,
and Agrawal, D. (2001). Enabling Dynamic Content
Caching for Database-Driven Web Sites. InACM SIG-
MOD Conference, pages 532–543.

Cao, P. and Irani, S. (1997). Cost-Aware WWW Proxy
Caching Algorithms. InProceedings of the USENIX
Symposium on Internet Technologies and Systems,
pages 193–206.

Challenger, J., Iyengar, A., and Dantzig, P. (1999). A Scal-
able System for Consistently Caching Dynamic Web
Data. InIEEE INFOCOM, pages 294–303.

Chandhok, N. (2000). Web Distribution Systems:
Caching and Replication. http://www.cis.ohio-
state.edu/ jain/cis788-99/web-caching/index.html.

Cheng, K. and Kambayashi, Y. (2000a). LRU-SP: A Size-
Adjusted and Popularity-Aware LRU Replacement
Algorithm for Web Caching. InIEEE Compsac, pages
48–53.

Cheng, K. and Kambayashi, Y. (2000b). Multicache-based
Content Management for Web Caching. InWISE.

Chidlovskii, B. and Borghoff, U. (2000). Semantic caching
of Web queries.VLDB Journal, 9(1):2–17.

Chutney Technologies (2001). Dynamic Content Accelera-
tion: A Caching Solution to Enable Scalable Dynamic
Web Page Generation. InSIGMOD Conference.

Chutney Technologies (2006).
http://www.chutneytech.com.

Datta, A., Dutta, K., Thomas, H. M., VanderMeer, D. E.,
and Ramamritham, K. (2002). Accelerating Dynamic
Web Content Generation.IEEE Internet Computing,
6(5):27–36.

Degenaro, L., Iyengar, A., and Ruvellou, I. (2001). Improv-
ing Performance with Application-Level Caching. In
International Conference on Advances in Infrastruc-
ture for Electronic Business, Science, and Education
on the Internet (SSGRR).

Dynamai (2006). http://www.persistence.com.

Fan, L., Cao, P., and Broder, A. (2000). Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol. In
IEEE/ACM Transactions on Networking, volume 8.

Florescu, D., Yagoub, K., Valduriez, P., and Issarny, V.
(2000). WEAVE: A Data-Intensive Web Site Man-
agement System. InThe Conference on Extending
Database Technology (EDBT).

IBM Corporation (2006). http://www.ibm.com.

Kossmann, D. and Franklin, M. J. (2000). Cache Invest-
ment: Integrating Query Optimization and Distributed
Data Placement. InACM TODS.

Li, D., Cao, P., and Dahlin, M. (2001). WCIP: Web Cache
invalidation Protocol. http://www.ietf.org/internet-
drafts/draft-danli-wrec-wcip-01.txt.

Mahdavi, M., Benatallah, B., and Rabhi, F. (2003). Caching
Dynamic Data for E-Business Applications. InInter-
national Conference on Intelligent Information Sys-
tems (IIS’03): New Trends in Intelligent Information
Processing and Web Mining (IIPWM), pages 459–
466.

Mahdavi, M. and Shepherd, J. (2004). Enabling Dynamic
Content Caching in Web Portals. In14th International
Workshop on Research Issues on Data Engineering
(RIDE’04), pages 129–136.

Mahdavi, M., Shepherd, J., and Benatallah, B. (2004). A
Collaborative Approach for Caching Dynamic Data
in Portal Applications. InThe Fifteenth Australasian
Database Conference (ADC’04), pages 181–188.

Microsoft Corporation (1997). Cache Array Rout-
ing Protocol and Microsoft Proxy Server 2.0.
http://www.mcoecn.org/WhitePapers/Mscarp.pdf.
White Paper.

Oracle Corporation (2001a). Oracle9i Application Server:
Database Cache. Technical report, Oracle Corpora-
tion, http://www.oracle.com.

Oracle Corporation (2001b). Oracle9iAS Web
Cache. Technical report, Oracle Corporation,
http://www.oracle.com.

Oracle Corporation (2006). http://www.oracle.com.

Paul, S. and Fei, Z. (2000). Distributed Caching with Cen-
tralized Control. In5th International Web Caching
and Content Delivery Workshop.

Podlipnig, S. and Boszormenyi, L. (2003). A Survey of Web
Cache Replacement Strategies. InACM Computing
Surveys, volume 35, pages 374–398.

Rohm, U., Bohm, K., and Schek, H.-J. (2001). Cache-
Aware Query Routing in a Cluster of Databases. In
ICDE.

Sun Microsystems (2005). JSRs: Java Specification Re-
quests. http://www.jcp.org/en/jsr/overview.

TimesTen Inc. (2002). Mid-Tier Caching. Technical report,
TimesTen Inc., http://www.timesten.com.

Vakali, A. and Pallis, G. (2003). Content Delivery Net-
works: Status and Trends.IEEE Internet Computing,
pages 68–74.

Wong, K. Y. and Yeung, K. H. (2001). Site-Based Ap-
proach to Web Cache Design.IEEE Internet Com-
puting, 5(5):28–34.

Yagoub, K., Florescu, D., Valduriez, P., and Issarny, V.
(2000). Caching Strategies for Data-Intensive Web
Sites. InProceedings of 26th International Confer-
ence on Very Large Data Bases (VLDB), pages 188–
199, Cairo, Egypt.

Young, N. E. (1991). The k-Server Dual and Loose Com-
petitiveness for Paging.Algorithmica, 11(6):525–541.

Zona Research Inc. (2001). Zona Re-
search Releases Need for Speed II.
http://www.zonaresearch.com/info/press/01-
may03.htm.

REGULATION MECHANISM FOR CACHING IN PORTAL APPLICATIONS

157


