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Abstract: In this paper, we give a framework for defining an extension to the event B method. The event B method
allows us to state only invariance properties, but in some applications such as automated or distributed systems,
fairness and eventuality properties must also be considered. We first extend the expressiveness of the event B
method to deal with the specification of these properties. Then, we give a semantics of this extended syntax
over traces, in the same spirit as the temporal logic of actions TLA does. Finally, we give verification rules
of these properties. We denote by temporal B model, the B model extended with liveness properties. We
illustrate our method on a case study related to automated system.

1 INTRODUCTION der two types of assumptions : minimal progress and
weak fairness. They define proof obligations in terms

The paper deals with liveness properties of automated©f Weakest preconditions, which allow us to prove ba-
systems. In such systems, we distinguish a softwareSIC liveness properties as usual B proof obligations.
part : thecontroller and anoperative parformed by ~ They suggest the use of UNITY "Leadsto” operator to
a physical device and its environment. specify more general liveness properties. The seman-
The event B method provides us with techniques tcS Of these properties is defined in termsaafakest
and tools for specifying, refining, verifying invariant preconditiongbut in our work, we give a semantics in

properties and impiementing systems. B is not well {€rms oftraces. _ .
suited to deal with liveness properties. We define an ~ The paper is organized as follows : section 2
extension of B in order to capture liveness properties. Presents an overview of the event B method, section 3
We describe the syntax of the extension and define thePresents an overview of the language T1.Aection 4
semantics in terms of traces in the same spirit of the 9ives a description of our proposal using a case study
language TLA. We also give the verification rules of : We give the syntax, the semantics of liveness proper-
these properties. ties and then _the vern‘lcatl.on rules necessary to prove
Several related works concern B extensions for [N€Se properties under fairness assumptions. Finally,

capturing and proving liveness temporal properties. J- section 5 ends with a conclusion and future work.
R. Abrial and L. Mussat in (Abrial and Mussat, 1998)

proposed an extension consisting in a dynamic invari-

ant clause containing linear temporal logic formulae 2 Q\VERVIEW OF THE EVENT B
(LTL). In order to allow verification by theorem prov-

ing, the user has to provide the model with decreas- METHOD
ing functions, a variant and a loop invariant. Such
items are necessary for the prover but are indeed notThe event B method (Abrial, 2003) is based on the B
part of the specification. Furthermore, finding vari- notation (Abrial, 1996). It extends the methodologi-
ant and loop invariant is not an easy task. D.Bert cal scope of basic concepts such as set-theoretical no-
and R.Barradas (Barradas and Bert, 2002) have pro-tations and generalized substitutions in order to take
posed a method for the specification and proof of live- into account the idea oformal models. Roughly
ness properties in B event systems under fairness asspeaking, a formal model is characterized by a (finite)
sumptions. They give proof obligations in order to list x of state variablepossibly modified by a (finite)
prove basic progress properties in B event systems un-ist of events; an invariartx) states some properties
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that must always be satisfied by the variabtesnd

maintained by the activation of the events. General-
ized substitutions provide a way to express the trans-

formations of the values of the state variables of a for-
mal model. An event consists of two parts gaard
(denotedgrd) and an action. A guard is a predicate
built from the state variables, and antionis a gen-
eralized substitution (denote&aS).

An event can take one of the forms shown in the
table 1. LetBA(x,x") be the before-after predicate as-

Technologies

contains the effective definitions of constants. The
clauseASSERTIONS contains the list of theorems

to be discharged by the proof engine. The clause
VARIABLES contains a (finite) list of state vari-
ables possibly modified by a (finite) list of events; the
clauselNVARIANT states some properties that must
always be satisfied by the variables and maintained
by the activation of the events. The clauS¢ENTS
contains all the system events which preserve the set
of invariants.

sociated with each event shape. This predicate de-

scribes the event as a logical predicate expressing th
relationship linking the values of the state variables
just before(x) and just after(x') the event "execu-
tion”. In the table belowx denotes a vector built on
the set of state variables of the model.
eral substitutiorx : p(xg,X), X denotes theew value
of the vector, whereag denotes itold valueandt
represents a vector of distinct local variables.

Table 1: Event forms.

Event Before-after Guard
Predicate BA(x, X’)

BEGIN P(x,X) TRUE

X: P(x0,X)

END,

SELECT GX) G(X) AQ(x,X) G(x)

THEN x: Q(Xg,X)

END,;

ANY t Jt.(G(t,%) J.G(T,x)

WHERE Gt,X) AR(X,X 1))

THEN x: R(xg,X,t)

END;

Proof obligations are associated to events and stat
that the invariant conditioh(x) is preserved. We next
give the general rule to be proved. It follows immedi-
ately from the very definition of the before-after pred-
icate,BA(x,x) of each event :

[ 1) ABAXX) = 1(X) |
The B model has the following form :

MODEL (name

SETS(sets

CONSTANTS (constants

PROPERTIES (properties of sets and constapts
VARIABLES (variables %

INVARIANT (invariants I(x))

ASSERTIONS (A(x))

INITIALISATION (initialization of variable$
EVENTS (events

END

An abstract B model has a name; the claBEE'S
contains definitions of sets; the claUG®NSTANTS
allows us to introduce information related to the
mathematical structure. The clauBROPERTIES
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In the gen-

.1 Refinement

Construction by refinement (Back and v. Wright,
1998; Back and K-Sere, 1989) is a technique suitable
for the development of complex systems. The refine-
ment of a formal model allows us to enrich a model
in a step by step approach. It is used to transform an
abstract model into a more concrete version by modi-
fying the state description (Spivey, 1988). This is es-
sentially done by extending the list of state variables,
refining each abstract event into a corresponding con-
crete version, and adding new events.

The essence of the refinement relationship is that
it preserves already proved system properties. The in-
variant of an abstract model plays a central role for
deriving safety properties and our method focuses on
the incremental discovery of the invariant; the goal
is to obtain a formal statement of properties through
the final invariant of the last refined abstract model.
Atelier B (ClearSy, 2002), the toolkit supporting the
B method, generates the proof obligations associated

gwith a model or a refinement. It also provides au-
tomatic and iterative proof procedures to discharge
these proof obligations.

2.2 Example : A Parcel Sorting Device

In this section, we present an example of reactive sys-
tem : a parcel sorting device (Jaray and A.Mahjoub,
1996) which will be taken to illustrate our proposed
approach. We just give the abstract model of the sys-
tem and not the refinement steps. The problem is to
sort parcels into baskets according to an address writ-
ten on the parcel. In order to achieve such a sort-
ing function we are provided with a device made of
a feeder connected to the root of a binary tree made
of switches and pipes as shown in the figure 1. The
switches are the nodes of the tree, pipes are the edges
and baskets are the leaves. A parcel, thanks to gravity,
can slide down through switches and pipes to reach a
basket.

A switch is connected to an entry pipe and two
exit pipes, a parcel crossing the switch is directed to
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forms achannellinking the entrance to a unique sort-
ing basket. A basket is an element of a set named
Baskets Channels and sorting baskets are in a one
to one correspondence. Therefore, the abstract model
of the sorting device can be reduced to a single vari-
ablechanneltaking the value of the sorting basket it
leads to, namely a value in the ®x#iskets Thechan-
nel value is changed by the evesg¢tchannel It is
worth noticing that the abstraction forces a "sequen-
H u u u u u u u tial functioning” of the sorting device, i.e. the value
o ] i R of the channel remains unchanged as long as the par-
cel released in the sorting device has not reached a
sorting basket.

Parcels. Parcels, as part of the environment, are rep-
an exit pipe depending on the switch position. The resented as elements of a set we n&ARCELSWe
feeder releases one parcel at a time in the router, theuse a total functiongdr) from PARCELSo the inter-
feeder contains a device to read the address of the parval Basketgo refer to the parcels address. We give
cel to be released. When released, a parcel enterghe status arrived” to the parcel which has reached
a first switch (the root of the binary tree) and slides a sorting basket. The variablar(ived) is a function
down the router to reach a basket. The controller can from PARCELSto Baskets The goal of the sorting
activate the feeder and change the switches position.system is to decrease the set of the parcels to sort. The
For safety reasons, it is required that switch change variable sorted represents the set of sorted parcels.
should not occur when a parcel is crossing it. In order The remaining parcels are defined by the expression
to check this condition, sensors are placed at the entryPARCELS - sortedamedUNSORTEDASs peis un-
and the exits of each switch. defined when the sorting device is empty, we have in-

We consider a simplified version of the system troduced a sePPARCELSof which PARCELSIs a
with only safety properties to illustrate a specification proper subsetpe is an element oPPARCELSand
with the event B method and we will deal in the fol- assignment of any value IRPARCELS - PARCELS
lowing with liveness properties (eventuality and fair- stands for "undefined”. The expressiBRARCELS -

Figure 1: Router.

ness) to explain our approach. PARCELSWill be referred adlNOPARCELSThe se-
lection of a parcel is an event which may be activated

Abstract Model of the System once the device is free and the variapkeis unde-
fined, which means it does not exist a parcel being

the abstract model of the system is given in the figure sortgd. )

2 Moving parcels. In our abstraction a parcel takes no
time to travel from the feeder to a basket. A parcel

e arrives in the basket to which the channel leads up.
When the eventrossparcel occurs, the current par-
cel sorting is finished and then, of course, the current
parcel becomes undefined.

The Controller. The controller has to ensure right

’ parcel routing. Two events are added for the con-
M M M u M M u 8 | Paskes troller : Setchannel and Release The event
Setchannelassigns to channel the value adr(pe)
The evenReleasehanges the state of the sorting de-
vice fromfreeto busy The model of the automated
The sorting device. The sorting device consists of a System is presented in Figure 3.
feeder and a sorting layout. The feeder has two func- Simulation of the B model with ProB. We have used
tions: selection of the next parcel to introduce into the ProB (Leuschel and Butler, 2003), witch is an simu-
sorting layout and opening the gate (releasing a par-lator and model checker for the (B/Event-B) Method.
cel in the sorting layout). We introduce the evesis It allows fully automatic animation of many B spec-
lectandreleaseto capture the two functions. In order ifications, and can be used to systematically check a
to produce the abstract model of the sorting layout, specification for errors. ProB’s animation facilities al-
we have to notice that a given state of the switches low users to gain confidence in their specifications,

channel

Figure 2: Router.

27



ICSOFT 2007 - International Conference on Software and Data Technologies

MODEL Parcel _Sorting tains a model checker and a constraint-based checker,
SETS PPARCELS SortingState= {free, busy} both of which can be used to detect various errors in
CONSTANTS PARCELS, adr, Baskets B specifications. ProB enables users to uncover errors
PROPERTIES that are not easily discovered by existing tools. Fig-
PARCELS- PPARCELS\ PARCELS# @ A ure 4, shows the simulation of the abstract model of
Baskets# @ A adr € PARCELS— Baskets the system.
VARIABLES Verification of the B model . All generated proof
arrived, channe] sorting, pe, sorted readyto_sort obligations are verified with the B click_Prove tool.
INVARIANT
arrivede PARCELS+ Baskets\ channele Baskets
A
pe e PPARCELS\ sortinge SortingStaten lsemp_cons.ams«q,r,s},{e.f,g,m,((q,e)(r,.;.(s,gm
ready to_sort € BOOLA sortedC PARCELSA
(sorting = busy=- channel = adr(pe)\ PARCELS={a s} Baskele={el g ac(ae)
(sorting = busy=- — ready.to_sort) A
(readyto_sort=- channel = adr(pe)\ lnma.isemachnem,e,ﬁeep,(,,pALsE,
(readyto_sort= pec PARCELSh
vp.(p € PARCELSA p € dom(arrived) = v} channelee soringoS
arrived(p) = adr(p)) pe=p sorted={
DEFINITIONS
UNSORTED== PARCELS sorted; }“a"a’“'
NOPARCELS= PPARCELS PARCELS —3 '
INITIALISATION T e
arrived := {} || channel £ Basketd| sorting := free
‘ | lsetchannel
pe :c NOPARCELS)| sorted :={} ||
readyto_sort := FALSE e ) beg
EVENTS
selectparcel = ANY p Where p € UNSORTED\ l,e.ease
pee NOPARCELS\ sorting = free
THEN pe=p arrived=(},channel=e,sorting=busy,
E N D, pe=q,sorted={}
setchannel = SELECT sorting = free A pe € lp.
PARCELS
/\ - ready,to,sort channel=e,sorting=free,pe=p,
THEN channel := adr(pe)| sortedt=(d)artivedi(q.¢)
readyto_sort := TRUE
END; Figure 4: Model checking of the router abstract model.
release = SELECT sorting = free A pe €
PARCELS\ Requirement of liveness propertiesin our example,
readytosort we need to consider the dynamics of the system. Our
THEN sorting := busyl| . - .
readyto_sort := FALSE model must take into account the following properties
END; 1. Every parcel introduced in the entry eventually
_ reaches one of the baskets, this property is de-
crossparcel = SELECT sorting = busy scribed with -
THEN arrived(pe) := channel || y .
sorted := sorted U { pe} || Vp.(p € UNSORT ED=- Qarrived(p) € Basket$
pe :€ NOPARCELS || sorting := 2. Every parcel introduced in the entry must reach
free the basket corresponding to its destination ad-
END END dress, this property is described with :
Vp.(p € UNSORTED ~ arrived(p) = adr(p))

3. Weak fairness conditions on the events is assumed
: WF(select parcel) AW F(cross parcel) A
W F(setchanne) AW F(release

and unlike the animator provided by the B-Toolkit, These properties can not be specified in the clause
the user does not have to guess the right values for thelNVARIANT. We need to extend the expressivity of
operation arguments or choice variables. ProB con- event B to take into account such properties.

Figure 3: Abstract model of the sorting device.
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3 OVERVIEW OF THE construction we need is tfieeads to” eventuality op-

LANGUAGE TLA * erator as in TLA and Unity which expresses require-
ments on behaviors, i.e. sequence of states. In order
to assess eventuality properties we must state assump-
tions on the fair occurrence of events. Such assump-
tions are stated using the TLA operativ$- andSF.

TLA™ is a language intended for the high level speci-
fication of reactive, distributed, and in particular asyn-

chronous systems. It combines the linear-time tempo—WF(e) assumes that the evesis weakly fair, i.e. the

ral I9g|c of actions TLA (Lamport, 1994), and ma}the— evente occurs infinitely often provided that it is even-
matical set theory. The language has a mechanism for.

structuring in the form of modules, either by exten- tally always enabledSF(e) assumes that the event
sion, or by instance. The semantics of TLA is based is strongly fair, i.e. the evergoccurs infinitely often

on behaviors of state variables. It can be viewed as aprovv\l/iei?utjr;z;t dltifténfrlglteego?:sn zzzgli?'the lanauage
logic built in an incremental way in three stages : g P guag

TLA™ into the event B models and we deal with proof
1. predicates whose semantics is based on states. obligations of temporal” B models.

In the following, we start with the syntax of the
extension, then we give a semantics and verification
rules of liveness properties over traces as it is done in
3. temporal formulas of actions whose semantics is TLA*. We suggest the use of TI*operators because

based on state behaviors of variables. the two methods are very close with respect to their

A TLA specification of a system denoted by foundayghs.

Spe¢S) looks like : Init AO[Nexix AL where :

2. actions whose semantics is based on pairs of
states.

4.1 Syntax of the Extension
1. Init is the predicate which specifies initial states,

2. x is the list of all state variables and|[Nexfy In order to establish liveness properties we must as-
means that either two consecutive states are equalSume some progress c_onditions on the system. As
onx, X = x (stuttering), oNextis an action (are- long as we have to verify that an event system sat-

lation) that describes the next-state relation, usu- isfies safety properties, it is sufficient to refer to a pair
ally written as a disjunction of more elementary Of states (before and after states of a triggering event).
actions, But in order to prove temporal properties we need
to introducebehaviors(sequences of states) starting
from the initial state and where two consecutive states
s ands;; are such that some event enabled;iand
leads to the statg. 1.

Before defining the syntax of formulae which ex-
tends B expressivity, we start with some definitions.
State and rigid variables. The state of a system is
composed of a denumerable set of flexible or state
variables ¥). Let (X) be a denumerable set of rigid
variables. These variables are not modified by pro-
gram transitions and hence keep the initially chosen
value during a program run (logical constant). A state
is a valuation of flexible variables.

Terms and States.A termt is defined recursively as

In the sequel we will focus on the extension of the follows :
event B method with liveness properties, their syntax, t ::=c | x | f(ts,...,tn) wherec is a constantx is a
their semantics and verification rules. variable k€ VUX]) , t1,...,ty are terms and is a

function symbol with arityn.
Atomic propositions. An atomic propositiorapis a

3. L is a fairness assumption (strong or weak) on
actions. W Fynprimedvar(s) (S) defines the condi-
tion of weak fairness over the system S and
SFinprimedvar(s) (S) defines the condition of strong
fairness over the system S, whgyemed.var(S)
are primed occurrences of the system variakles
and as is conventional, a primed occurrewcef
a state variables denotes the value of in the
state following the transition described biext
unprimedvar(S) are unprimed occurrences of the
system variables and an unprimed occurrence
denotes the value of a variablen the state be-
fore the transition.

formula of the form :
4 ASSIGNING TEMPORAL ap:=p(ty,....tn) wherep is a predicate symbol with
MEANING TO B MODELS arity n andty, ....t, are terms.

State predicates. A state predicatspis a formula
This section defines an extension to event B in order defined by the following grammar
to deal with liveness properties. The most important sp::=ap| —-sp| spVsp| spASp| sp=-sp| sp<

29



ICSOFT 2007 - International Conference on Software and Data Technologies

sp| Ix sp| Vxsp

In our extension, we introduce transition and live-
ness formulae.
Transition formulae. A transition formula describes
state transitions. A transition formuée is a formula
of the form :

ac:=GSe) | [e]sp]| (e)spwheree is an event,
GSe) is its generalized substitution asgis a state
predicate.
Safety properties. Safety properties are formulae of
the form
F ::=0sp| d(sp=0Osp) , wherespis a state predi-
cate.
Liveness properties. Liveness properties (fairness
and eventuality) are formulae defined as follows:

- Eventuality properties are expressed with formulae
of the form :

F ~ G (F leads to G defined adl(F = 0G)

and means that evefy will be followed by G,
whereF andG are formulae of the form F ::=

sp| OF | OF | WF(e)|SF(e).

Wherespis a state predicat&y F(e) and SF(e)

are respectively the weak and strong fairness of
the evenk.

These properties are added in the clause EVEN-
TUALITY.

- Fairness properties are expressed with formulae of

the form :

- WF(e) defined ag)(grd(e) = O0GSe). Itis
the weak fairness condition of an evenaind
it means that the evertoccurs infinitely often
provided that it is eventually always enabled,

- SK(e) defined ad10grd(e) = OGS e). Itis
the strong fairness condition of an everand
it means that the evemtoccurs infinitely often
provided that it is infinitely often enabled,

Where :
e eisaBevent,
e grd(e) is the guard of this evemt(state predicate),

e GYe) is the generalized substitution of the event
e. It is a transition formula containing both
primed and unprimed occurrences of states vari-
ables, such as a before-after predicate.

These properties are added in the clause FAIRNESS.
4.2 Semantics of the Extension
In our extension, we deal with properties over state se-

guences (fairness and eventuality properties). This is
why we need a semantics over sequence of states an
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have to explain how we can view events as a relation
over primed and unprimed variables and we will use
this point to find the extension of the event B method.
A systemSis modelled as a set of possible events trig-
gering actions, when guards are true. An eveas it
was shown in the table 1, is defined by a guard de-
notedgrd(e) (condition for triggering or enabledness
condition) and by a relation over a set of flexible vari-
ables V) denoted5Se) (relation stating the transfor-
mation of variables). According a TL/Amodule, we
consider three kinds of properties :

- State propertiesvhich denote properties on states
of the systemS and are interpreted over states.
These properties are state predicates,

- Relational propertiesvhich denote relations o8
between pairs of states, which we call transition
formulae,

- Temporal Propertiestate properties over traces and
use state properties, relational properties and tem-
poral operators({, ¢, ~-, ...), which we call live-
ness properties.

Properties are interpreted over traces (sequences
of states). We introduce notations for characterizing
systems :

- V is the set of state variables of the syst8m is a
state variablex is the current value of andx is
the next value of.. PrimedVar(S) = {X|ve V}
andUnprimedVar(S) = {xjve V}.

- Init(S) specifies the initial values of state variables
of the systens.

- Event$S) specifies the set of possible eventsSpf
it means that we list the possible events defined in
the figure 1. An event e is defined as follows :

e = grd(e) thenGSe)

- Next(S) is a formula over primed and unprimed
variables ofS corresponding to the relation over
State$S), namely—, whereStategS) is the set
of states of the systei®@ Nexthas the following
form:

Next(S) = R(e1)(x,X) V.... VR(&) (x,X)
whereR(g)(x,X) is a relation corresponding to
one of the event forms presented in the table 1.
RE)(XX) = P(xX) V (G(X) A P(x,x)) Vv
(3t.(G(t,X) AP(x,X,1)))

- — is arelation over StateSYsimulating the execu-
tion of the systens.

- InvariantyS) is a set of properties over Stat8ps(
invariant forS. ¢ is in InvariantyS), if

d 1. Init(S) = ¢
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2.V 50,5 € State$S) : 5,& = nit(S) A (s —*
s)=s.&F¢
- Traceg$) is the set of traces (state sequences) gen-
erated from Init§) using—. A trace is denoted
S, ..... and satisfying the following

constraints :

1. 5,& E Init(9) (the initial states satisfies the
initial condition),

VieN: (s —s+1) V(S =s4+1) any two suc-
cessive statesi(s+1) either satisfy the before-
after predicatBAq¢(x,X') for some evene and
some variableg, or agree on the values of all
system variables (called stuttering steps)

2.

Let o € TracesS), A propertyd over states se-
guence of the systefis a state property, a relational
property or a temporal property; the semantics over
traces unified semantics over states and pairs of state
as follows :

1. astate property is a trace property as follows :
0.8 =0, ifs,& 9.

2. arelational property is also a trace property by
extending the semantics over pairs of states into
a semantics over traces as follows ;& = 0, if

(%0,51),& = 9.

Temporal properties contains state properties,
relational properties and temporal combination of

these properties. Our extension is the same one than

TLA* and a systenS is specified by the following
temporal expression :

Specification§) £ A Init(9
/\D[NeXl(S)]<unprimedvar(S)>
AW I:un primedvar(S) (S)
/\SFunprimedvar(S)(
Where:
Init(S) states initial conditions,
O[Next(S)|cunprimedvar(s)> States how traces are
built,
W Fynprimedvar(s)(S) defines the condition of weak
fairness over the systeBSiand
SFinprimedvar(s) (S) defines the condition of strong
fairness over the systef

WFunprimedvar(S)(S) and SFunprimedvar(S)(S)are
defined as follows :

(1>

W I:un primedvar(S) (S)
/\EEW F_EventgS) WHhn primedvar(S) (E)
and
Skin primedvar(S) (S)
/\EGSF,Event$S) Shin primedvar(S) (E)

(1>

WhereWF_EventsS) is the set of weakly fair
events andSF_EventgS) is the set of strongly fair
events. W FRynprimedvar(s)(E) is the weak fairness
associated to the evelt and SKynprimedvar(s) (E) 1S
the strong fairness associated to the eu&ntEach
event is associated with a fairness condition which
will be a weak or strong or undefined.

In the event BBA(x,X') is the before-after pred-
icate for an event; this is a first-order formula built
from the constants declared for the system specifi-
cation, as well as primed and unprimed occurrences
of the system variable¥. The before-after predi-
cateBAs(x,X) in B method is interpreted by the for-
mula Nextin TLA*. In TLA", or an actione, the
enabled conditiofEnablede) is defined by existen-
tially quantifying over the primed occurrences of the
State variables; thus, the state predidatablede) is
true of those states that have a successor state related
by an occurrence of the eveat

Enablede) £ 3x : BAs(x,X).

The guardgrd(e) in B is interpreted by the
conditionEnablede) in TLA™.

We can summarize the semantics of temporal B

notations over traces by the following equivalences in
+.

grd(e)
BA:

Enablede)
Next

L
L

Interpretation of formulae

Let 0 = 5s1... be a behavior, i.e. a sequence of
states and a valuation of the rigid variables @&.

Let [|x|]§ be the value of the variable in the state

S, [|f(t1,...,tn)|]§ gives the semantics of the term
f(ty,...,tn) in the states.

t [ &Xx)
(Xl = { s(x)
[tz t) 1§ = [ (2] oens 01

In the following, we denote bys,& = sp the
satisfaction of the state predicagpin the states of
a transition system and hy,§ = F the satisfaction
of the temporal formul& over a trace € TracegS).

where xe X;
where xe V.

Proposition formulae
s,{=ap iff apholdsinthe statg

State formulae

s, E=sp iff spholdsin the statg
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Boolean formulae

s,E=—sp iff s,& = spis false

s.&Espasp iff s.&=spands §f=sp

s.{Espvsp  iff s &spors.if=sp

s, {Esp=sp iff s &=-sp or
(s,€ =sp ands,& |=sp)

s,{FEspesp iff s,{Esp=sp and
S,&Esp=sp

s,&f=()sp it (3)eV:sE=sp

s,&f=(v)sp iff () eV:sk=sp

Transition formulae
(s,8),£=GYe) iff s>¢
s, =[esg iff for every execution of the

evente, if s— & then the statd, & |= sp

This formula is satisfied by a state which evolves
to a states’ satisfyingsp for every execution of the
evente.

s,& = (e)sp iff it exists an execution of the
evente, such that ifs> s then the statd, & = sg

This formula is satisfied by a state which can
evolve to a state satisfyingg by the execution of the
evente.

Temporal formulae

We interpret a temporal formula on behaviors. In
the definitions belowg|;,§ &= F means that formula
F holds of the suffix o from pointi onwards.

o, =0F iff ol,&=F forallieN

The formulalJF asserts that F is true at all times
during the behavioo.

Leads-to property F~G

This formula asserts that every suffix satisfying
the temporal propert§ is followed by some suffix
satisfying the temporal proper€y.

0,§EF~G iff forallieN,ifaol,EEF
then o]j,& = G for somej > i

F ~ G=0(F = 0G) where0G = -0-G

Weak fairness property

A behavior is weakly fair for some evestiff e
occurs infinitely often provided that it is eventually
always enabledW F(e) = 0 grd(e) = O0GSe)).

0, EWF(e) iff itexistsje Nsuch thatfor

alli > j, ali,& = grd(e) then for alln € N, it exists
me N such that foralk > n+m, (s,%),& = GSe)
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Strong fairness property

A behavior is strongly fair for some eventiff
e occurs infinitely often provided that it is infinitely
often enabledSF(e) = ¢ grd(e) = J0GSe)).

0, =SKFe) iff forall ieN, it exists
j € N such that for alll > i+ j, o],§ = grd(e)
then for alln € N, it existsm € N such that for all
k>n+m, (s,%),§=GSe)

4.3 \erification Rules of Liveness
Properties

In this section, we give verification ruleg/f, SFand
LATTICE) to prove liveness properties under fairness
assumptions.

Under weak fairness

Let S be an extended B event system and
WFevenTdS) is the set of events of the system
Ssatisfying the weak fair assumption. LeiP be the
weakest pre-condition which ensures tirais true
after the execution of the eveat Let (e)P(—[€]-P)

be the conjugate weakest pre-condition, i.e. the state
from which it is possible for an evemtto ensureP.
The following rule is used to prove a leads-to formula
under a weak fairness assumption.

INPA—=Q=-[e](PVQ) foralleventeofsS
it exists an event e of S where

IAPA-Q=-(€) truen [€|Q

ec WkyvenT<S)

SEP~Q

In this rule, P and Q are state predicates, is
the invariant of the B event syste® By the first
premise, any successor of a state satisfyfh@pas
to satisfyP or Q, so P must hold for as long a®
has not been true. By the second premise, it exists a
successor of a state satisfyiRgmust satisfyQ and
ensures that in every state, the evenis enabled
((e) true means the feasibility condition of the event
e), and so the assumption of weak fairness ensures
that e eventually occurs, unles® has become true
before. Finally, the third premise ensures tbét an
event for which weak fairness is assumed.

WF.

Proof of a liveness property under weak fairness.

To see why the rule is correct, assume that
0 = %,%,...5,... IS a behavior satisfying
Ol AWFevenTdS), and thatP holds ins. We
have to show tha® holds of some stateg with j >

i. Let s be the initial state ang satisfiesP. Suppose
that no next state satisfi€y so all next states must
satisfyP. By the second premise, it exists a successor
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of a state satisfying in which an eventis enabled  founded ordering.
and always its execution carry out in a state satisfying Other verification rules

Q (contradiction). So, from a stat satisfyingP, P~Q Q=R g P=Q R=Q
we can reach a stagg(j > i) satisfyingQ with the PZ}ZW R PWPQVRWQ
execution of an evergunder weak fairness. oo (dedy 5K PR) < (3% O00) (exist9
Under strong fairness These rules can be used to prove comjpleadsto
Let Sbe a B event system ar8fzvenT4S)is the set  formulas.
of strong fair events. As similar to the previous rule,
the following rule is used to prove a leads-to formula Application to the example.
from a strong fairness assumption. We try now to prove the following property :
Vp.(p € UNSORTED ~ arrived(p) = adr(p)).
INPA-Q=[e](PVQ) foralleventeofsS Let P = Vp(p € UNSORTED, Q =
it exists an event e of S where arrived(p) = adr(p) and | be the invariant of
INPA-Q=[€Q the systemS. Let e be an event ofS. We have :
SEO(APA-Q) = Ogrd (e) INPA-Q=[g(PVvQ) for all event e of S
SE ec SkeventdS With the event crossparcel, we have
: SEP~Q I APA—Q = (crossparcel) trueA [crossparcel|Q

. . . andeeW S). So by applying the rulgVF,
In this rule, P and Q are state predicates, | is | o haveSE\I/DEiTé_) Y FAPPINg

again an invariantge is an event for which strong

fairness is assumed. We assume thé a behavior

satisfying Ol A SF(e) and that P holds of a state

s. We have to show tha® holds of somes; with S5 CONCLUSION

j > i. By the first premise, any successor of a state

satisfying P has to satisfyP or Q. By the second In this paper, we have built an extension of the event

premise, it exists an eveetc Swhere its execution B method to deal with fairness and eventuality prop-

from a state satisfying evolves the system to a state erties. We have proposed a semantics of the extension

satisfyingQ. The third premise ensures that in all over traces, in the same spirit as TLAoes and we

of these states, the eveatis enabled, and so the have given verification rules in the axiomatic of the

assumption of strong fairness ensures that eventuallyevent B method.

e occurs, unles§) has become true before, in which In future work, we plan to define new required

case we are done. Finally, the last premise ensuresproof obligations. Moreover, the B prover may not be

thateis an event for which strong fairness is assumed. enough powerful for proving new proof obligations.
Future work will explore also, the question of the re-

Using LATTICE rule finement and the properties of refinement, within the

The Lattice rule is used to verify complex liveness extended language.

properties using well-founded relations(S, <) is

a binary relation such that there does not exist an

infinite descending chairx; < Xo,... of elements ACKNOWLEDGEMENTS

X € S FandG are temporal formulae.

(S <) is a well— founded relation over S Thanks to Stephan Merz for comments on an earlier

WXESIF(X) ~ GV (3yeS: (y<x)AF(Y)) draft of this paper.

LATTICE.
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