
A SOFTWARE TOOL FOR REQUIREMENTS SPECIFICATION
On using the STORM Environment to Create SRS Documents

Sergiu Dascalu*, Eric Fritzinger*
*Department of Computer Science and Engineering, University of Nevada, Reno,USA

Kendra Cooper**, Narayan Debnath***
**Dept. of Computer Science, University of Texas at Dalla

***Dept. of Computer Science, Winona State University,USA

Keywords: Software tool, requirements specification, use case modelling, SRS document, UML, CASE.

Abstract: STORM, presented in this paper, is a UML-based software engineering tool designed for the purpose of
automating as much of the requirements specification phase as possible. The main idea of the STORM
approach is to combine adequate requirements writing with robust use case modelling in order to expedite
the process leading up to the actual design of the software. This paper presents a description of our approach
to software requirements specification as well as an overview of STORM’s design concepts, organizing
principles, and modes of operation. Also included are examples of the tool’s use, a comparison between
STORM and similar CASE tools, and a discussion of needed features for software environments that
support text aspects of requirements and use case modelling.

1 INTRODUCTION

Specification of software is a difficult and complex
activity that requires substantial effort on the part of
the requirements engineer (Endres and Rombach,
2003). There are many Computer Aided Software
Engineering (CASE) tools that help with the
development of software, but they rarely have much
support for text descriptions of requirements, use
cases and scenarios. Existing tools place less
emphasis on text aspects of requirements modelling
and Unified Modelling Language (UML) tools are
largely diagrammatic editors (Booch, 2002; OMG
UML, 2007).

We have created STORM, the Supporting Tool
for the Organization of Requirements Modelling, to
assist requirements engineers in the specification
phase of the software life cycle. STORM is a UML
software tool that incorporates requirements
management and use case creation as outlined in
(Arlow and Neustadt, 2002). This is done in an
effort to help the engineer through the specification
of the software. One of the ways that STORM
assists the requirements engineer is in the automated

generation of several artefacts of the software
specification.

Although initiated in an academic environment,
STORM answers real needs for speeding up the
specification process by supporting the semi-
automated generation of the Software Requirements
Specification (SRS) document (Sommerville, 2006).

STORM has been introduced in a 2006 paper
(Dascalu, 2006) that described its main concepts and
provided excerpts from its software model and
prototype in action. Since then, STORM has
undergone further development and has evolved in
terms of new features, operational capabilities, and
reliability. The current paper provides an overview
of STORM’s functionality and highlights its new
features available. Furthermore, the way we
organize the SRS is used as the structure of the
“target document” to be generated by STORM based
on the requirements engineer’s and system analyst’s
input on requirements, actors, and use cases.

This paper’s contributions are as follows. First,
we provide a description of a new operational tool
for requirements specification that answers real
software specification needs. Because UML contains
no modelling constructs for expressing functional

319
Dascalu S., Fritzinger E., Cooper K. and Debnath N. (2007).
A SOFTWARE TOOL FOR REQUIREMENTS SPECIFICATION - On using the STORM Environment to Create SRS Documents.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 319-326
DOI: 10.5220/0001345303190326
Copyright c© SciTePress

and non-functional requirements there is lack of
tools that support the process of defining and
managing such requirements. Here is where the
novelty of STORM comes in place, as a solution to
fill in this existing gap in the landscape of CASE
tools. Second, we identify and discuss a set of
needed yet typically overlooked features of
supporting tools in requirements and use case
modelling. Third, through the tool described in this
paper we propose an initial component in a suite of
tools aimed at automating software modelling and
documentation. For example, in future work, within
the traditional (waterfall-like) timeline of the
software process, before using STORM a new
component tool would extract an outline of
requirements from a project concept. At STORM
level, specification patterns and evolved reusable
requirements libraries could be supported by a new
component of the tool suite (or by a future version of
STORM). After using STORM, the artefacts it
creates could be fed into a new component tool that
would guide and support the automated generation
of design models such as interaction diagrams, state-
chart diagrams, and class diagrams (Liu et al, 2003).

The remaining of this paper is organized as
follows: Section 2 provides related background
information and further describes our motivation for
creating STORM; Section 3 presents details of the
SRS document we have used as target document to
be generated by STORM; Section 4 overviews the
tool’s functionality and highlights its new features
and capabilities; Section 5 provides examples of
using STORM for requirements specification and
use case modelling; Section 6 contains a comparison
with related work; finally, Section 7 outlines
directions of future work and presents our
conclusions.

2 BACKGROUND AND
MOTIVATION

Three of this paper’s authors regularly teach, at
different universities, undergraduate and graduate
courses in software engineering. Typically, these
courses include group projects that involve teams of
3 to 6 students each (Dascalu, 2005). At senior and
graduate level courses we aim to emulate as much as
possible an industrial environment in which students
apply sound software engineering practices and
develop in collaboration relatively complex
software-intensive projects. As part of the
educational and development process, the main

phases of the software process (Pressman, 2006;
Sommerville, 2006) are covered and student groups
are required to take their projects from the
successive phases as project concept definition,
requirements specification, analysis, design,
implementation, integration, testing, and delivery.
Due to time constraints, in semester-long courses
only development is covered while in year-long
courses evolution is also involved (in the 2 or 3
iterations of the project).

What struck us from the beginning our teaching
of these courses (about five years ago) was the lack
of CASE tools for capturing requirements as well as
textual descriptions of use cases and scenarios.
Tools such as Rational Rose (IBM Rational, 2007)
and MagicDraw (Magic Draw, 2007) have excellent
capabilities for drawing diagrams and even generate
code from software models but not sufficient
facilities for the above – hence, the students had to
write their project’s SRS using regular text editors
such as Microsoft Word or vi.

To speed up the generation of the SRS, we
started about three years ago the development of
STORM, a tool which has the goal of supporting
requirements engineering and use case modelling
and assist software engineers in generating the SRS
for their software-intensive projects.

Our work on STORM has been initially
materialized in a 2005 version of the tool (Dascalu,
2006). Further work has been done continuously
since then on improving STORM and a second,
2006 version has been developed as part of a Master
thesis in Computer Science successfully defended in
June 2006 by one of this paper’s authors (Fritzinger,
2006). This version, with its significant new
enhancements, is discussed in this paper. Currently,
work involving a couple of graduate students is
ongoing on developing of a web-based version of
STORM that will be likely made publicly available,
as open source software, around the end of 2007.

Beyond its immediate scope and utility, we
believe the STORM project is a worthwhile
endeavour for several reasons. First, it is at the core
of our research interests, focused on software
specification. In fact, in terms of research STORM
provides an excellent groundwork for investigating
the principles of Model-Driven Development
(MDD) and advancing work in this area (Stahl et al,
2006). Second, the tool’s potential for application in
practical, real-world applications is high (we are
working to achieve this goal). Third, it constitutes a
powerful educational tool that not only illustrates the
significance of supporting tools in software
engineering but also serves the requirements

ICSOFT 2007 - International Conference on Software and Data Technologies

320

specification and (partially) analysis phases of the
software process. Furthermore, it helps the students
create software models and generate documentation
(the SRS) in a more effective way. In other words,
STORM is placed at the confluence of methods
(ways of performing software process activities that
it supports), models (that it helps create), and tools
(itself being a representative of this category), three
fundamental pillars of software engineering.

3 OUR SPECIFIC SRS

Before looking at STORM’s current features it is
necessary to briefly describe the typical structure of
the SRS used in our projects. As shown in Table 1,
this structure has been kept to several minimal but
essential sections in order to be suitable for a rather
short, streamlined software engineering process
applied in projects involving 3 to 6 developers over
a period of 4 or 8 months.

Table 1: Structure of the target SRS document.

Section # Section contents
0 Table of contents
1 Abstract / executive summary
2 Introduction
3 Requirements modelling:

- functional requirements;
- non-functional requirements.
 (prioritized on 3 levels)

4 Use case modelling:
- use case diagram;
- use cases using templates and text
descriptions;

- sample scenarios (primary scenario and
 most important secondary scenarios)

5 Requirements traceability matrix
6 Initial snapshots of the user interface
7 Glossary of terms
8 Resources and references
9 Contributions of team members

10 Appendices

Notably, the most substantial items in this SRS
structure (sections 3, 4, and 5, which account for
about 70% of the SRS size) are covered in STORM,
as described next in the paper. All other items, such
as the glossary of terms and the initial snapshots of
the software system’s planned user interface can be
appended by the requirements engineer in the
document file generated by STORM. Also, future

needed extensions to the SRS will be implemented
in STORM–diverse software modelling practices,
including details of extended SRS documents are
planned to be covered by new versions of the tool.

4 OVERVIEW OF STORM

STORM’s main goal was to create a user friendly
CASE tool capable of improved handling of text
aspects of requirements specification and use case
modelling, an area mostly neglected by the currently
available CASE tools. Primarily, STORM provides
support for managing requirements, use cases, use
case diagrams, scenarios, and traceability matrix.
This section briefly describes how each of these
aspects is handled within the STORM environment.

4.1 Main Functionality

Requirements management. STORM supports
software requirement management as outlined by
(Arlow and Neustadt, 2002). The requirement
statements are broken down into functional and non-
functional requirements, and are sequentially
numbered, e.g., R1, R2, R3, etc. This method allows
the creation of the traceability matrix to be less
tedious than it would be with other methods of
requirements writing.

One of the other functions within this context is
the ability to import and export requirements from/to
a particular file format. Currently, STORM is
compatible with the RUT (RUT, 2007), a
requirements tool created by other authors in parallel
with STORM. This feature is especially important
when dealing with large projects that may borrow
functionality from previous projects.

Actor management. The actors in STORM can
be associated with use cases and can even inherit
each other. An inheriting actor is automatically
associated with all of the use cases associated with
the inherited actor.

Use case management. Use case management in
STORM was designed from the beginning to allow
for automated generation of the use case diagram as
well as of the primary and secondary scenarios. The
goal of the use case form (template) is to structure
everything so that it can do so. The interface
changes as necessary to accommodate sequential
actions, branching, and looping. One can even
“collapse” particular branches to make the viewing
of the use case easier.

Some of the functions included are the ability to
inherit, extend, and include other use cases, denoted
by the <<inherit>>, <<extend>>, and <<include>>
stereotypes, respectively.

A SOFTWARE TOOL FOR REQUIREMENTS SPECIFICATION - On using the STORM Environment to Create SRS
Documents

321

Misuse case management. Misuse cases
(Alexander, 2003) are use cases that attempt to
destabilize the system and cause havoc among its
internal workings. These misuse cases add two new
stereotypes for use case creation: <<threatens>> and
<<mitigates>>. The idea is to find weak areas in the
system and attempt to find use cases to mitigate the
potential threats to the system.

Requirements tracing. The traceability matrix
provides a mapping of requirements to use cases. In
the form of a table, it shows what requirements are
captured in what use cases. It is a good tool for
tracing and verification, as well for showing at a
glance which use cases are critical to the success of
the system.

Scenario generation. STORM’s scenario
generation facility automatically creates the
scenarios, both primary and secondary, based on the
data entered via the use case template. This
automated generation is done by taking all branches
as separate scenarios and compiling them into a list.
The user specifies the primary scenario on the use
case form via radio buttons located at each branch.

Use case diagram generation. The use case
diagram is also automatically generated based on the
information input in the actor forms and use case
form. The user can click and drag all of the
individual components of the diagram in order to
position them to the user’s liking. In order to keep a
clean look to the diagram all connections and system
boundaries will auto-adjust to the movements. The
only objects that need to be moved are the actors and
use cases.

SRS document export. In addition to the
features listed here, STORM can also export the
software requirements specification document to
either HTML or rich-text format (RTF). This is
major feature, developed in an effort to allow the
requirements engineer to generate and show the
specification outside of STORM’s interface and
allows for a printable version of the specification.

4.2 Summary of New Features

As compared with the initial version of the
environment, the last standalone edition of STORM
provides the following major additions and
enhancements:

 Requirements reuse via import and export
facilities;

 Capability to generate the use case diagram
from use cases;

 Capability to generate scenarios from use
cases;

 Facility to generate SRS as an RTF document;

 Facility to generate SRS as an HTML
document;

 Further tested software, packaged for use,
applied in student projects.

5 EXAMPLES OF USE

In this section, samples of STORM uses are
provided to illustrate the environment’s main
functions described in the previous section. Figure 1
shows the main menu of STORM, allowing the
requirements engineer to select any part of the
specification he or she might want to work on.

Figure 1: Main user interface of the STORM tool.

Figure 2 displays the requirements entry form,
which in essence allows the user to specify if the
requirement is functional or non-functional and
select its priority.

Figure 2: STORM requirements form.

ICSOFT 2007 - International Conference on Software and Data Technologies

322

Figure 3 presents the use case form (template),
which allows the user to input use cases. A use case
template contains preconditions, post-conditions,
main flow of events, and alternative flow of events.
Each statement in the main flow of events can be a
basic statement, an if-statement, or a while-
statement (loop).

Figure 3: STORM use case form.

Figure 4 displays the associate-actors-to-use
cases form. This form allows the developer to
associate actors with use cases in addition to
allowing the designer to make actors inherit other
actors. This form allows the automated generation of
connections between actors and other components of
the use case diagram.

Figure 4: STORM form for associating actors with use
cases.

Figure 5 shows how from the use case created in
Figure 3 several scenarios were generated based on
the information entered into the use case template.
The primary and secondary scenarios are outlined,

and the steps are shown as they would appear in an
execution of the use case. One thing to note is how
the loop is handled in the primary scenario. In
general, it is difficult if not impossible to determine
how many loops it would take to complete a task, so
at this moment this aspect of scenario generation is
handled only superficially in STORM.

Figure 5: Example of generated scenarios in STORM.

Figure 6 contains a snapshot of the generated use
case diagram. Here, the user can click and drag the
components of the diagram to improve its graphical
presentation and make it more “structured”. This
diagram was generated based on the information
garnered from the use case form, the actors form,
and the associate-actors-to-use cases form. All
connections are created through the UML
stereotypes (e.g., <<extend>> and <<include>>)
specified on the associations made.

Figure 6: Example of generated use case diagram in
STORM.

A SOFTWARE TOOL FOR REQUIREMENTS SPECIFICATION - On using the STORM Environment to Create SRS
Documents

323

Finally, Figure 7 presents an excerpt of the
generated SRS document as an RTF (Word) file.
Due to space limitations, other features of STORM
such as generation of the SRS as an html file or
reuse of requirements using import and selection
facilities, are not illustrated in the paper.

Figure 7: Excerpt from a generated SRS document as an
RTF file in STORM.

6 COMPARISON WITH
RELATED WORK

While STORM also incorporates support for
graphical representations (use case diagrams), the
defining feature of the tool is its ability to handle the
text aspects of requirements specification and use
case modelling. There are very few programs or add-
ons on the market that support text in the way that
STORM does, and none of them provide all features
that STORM has to offer.

Among the closest related tools, DOORS is a
requirements tool capable of handling very large
commercial projects (DOORS, 2007). Scenario Plus
is an add-on for DOORS which adds support for use
cases and a use case diagram (Scenario Plus, 2007).
Together they provide a powerful combination for
managing and tracking requirements. This
combination also allows for dealing with misuse
cases and exporting generated documents to
Microsoft Word. The main difference that sets
STORM apart is the automatic generation of
scenarios from use case templates, which STORM
supports, but DOORS does not. Furthermore,
STORM allows use case and scenario descriptions
using the practical templates proposed by Arlow and
Neustadt (2002), while DOORS does not.

The Open Source Requirements Management
tool is a powerful open source requirements tool

(OSRMT, 2006). It is available for download on
sourceforge.net and has many features similar to
DOORS’. This tool allows for prioritization of
requirements and includes a traceability matrix but
lacks support for use cases, scenarios, and use case
diagrams. It is a good open source solution for
requirements management, but compared to
STORM it does not handle the use case modelling of
a software system.

EventStudio is a CASE tool mainly concerned
with the graphical representations of a system
(EventStudio, 2006). It incorporates a scripting
language called FDL that allows for dynamic
generation of diagrams, including automatic
generation of scenarios. Further, EventStudio can
create images that can be scaled to different paper
sizes and can export documents. However, it does
not handle text aspects of requirements, use cases,
and scenarios.

RUT is a use case tool developed by NASA’s
Software Assurance Technology Center (RUT,
2007). It is a web-based system that allows users to
create projects, actors, and use cases much in the
same way that STORM does. It is based on PHP and
MySQL and performs text analysis to look for
keywords that may add ambiguity to the use case
text. RUT is a much focused tool that handles use
cases very specifically. Nevertheless, STORM has a
broader scope, providing support for managing
requirements, use case diagrams, use cases, and
traceability matrix.

Diagramming editors represent an important
category of CASE tools that includes Microsoft’s
Visio (Microsoft Visio, 2003), MetaMill (MetaMill,
2007), and IBM’s Rational Rose (IBM Rational
Rose, 2007). These tools provide excellent support
for diagrams and visual aids to assist in the
development of software. They are some of the most
popular CASE tools on the market. The difference
between them and STORM is significant in that
STORM’s main focus is on the text aspects of
software specification while the diagramming tools
only truly support its visual aspects. While the
visual aspects are very important, some specification
depths are lost when only dealing with diagrams.

As a example of this class, Microsoft Visio is a
diagramming tool among the most accessible and
popular on the market. It handles only diagrams, and
so is quite powerful when it comes to making
graphical representations of a software system.
However, there is little emphasis on text for
specification of the system. There are workarounds
for the lack of text support, for example use case
objects having a “comments” field which can be
used to list the steps in that use case, but this has no

ICSOFT 2007 - International Conference on Software and Data Technologies

324

Table 2: Comparison with similar CASE tools.

CRITERIA →
TOOL ↓

Requirements
modelling

Use case
text

description

Use case
diagram

generation

Automated
scenario

generation

Misuse
case

support

Export to
document

format

Full
diagram

capabilities
STORM √ √ √ √ √ √ ×
DOORS + SP √ √ √ × √ √ ×
OSRM √ × × × × √ ×
EventStudio × × × √ × √ √
RUT × √ × × × × ×
MS Visio × × × × × × √

functionality other than that for textual design.
STORM was designed mostly for text aspects of
requirements specification, which significantly
distinguishes it from Visio.

The above are summarized in Table 1, which
contains a chart comparing STORM to the CASE
tools mentioned in this section.

7 FUTURE WORK AND
CONCLUSIONS

There has been much accomplished in the STORM
project to create a CASE tool capable of handling
the text aspects of requirements and use case
modelling. However, there is still more work that
can be done to make the tool more complete and
robust. The capabilities of STORM currently are
sufficient to specify a system, but there is plenty of
room for expanding it into other phases of the
software process. In the long run, STORM could be
the first component of a suite of tools capable of
handling most of the software engineering process.

On a shorter timeframe, one major improvement
to the environment can be to allow for the exporting
and importing of more file formats. In particular, it
will be useful to import and export to the XMI
special file format, which is an XML-based diagram
format that many of the commercial CASE tools
support. Exporting and importing entities using this
format would allow for more interoperability
between STORM and other CASE tools.

Another enhancement is to allow for more robust
scenario generation. As it stands, the scenario
generation is handled almost completely by the tool.
Allowing the user to pick which paths (i.e. prune the
scenario tree) of a use case to generate related
scenarios would be useful. Further, allowing the user
to have control over loops in a use case which are
rather superficially handled at present is another
item of future work.

Collaboration can be a great asset, especially when it
comes to designing software. One of the ways
STORM could be applied to this is to create a web-
based version, one that could be used to work with
people all over the world in the specification and the
design of a software system. In fact, a web-based
version of STORM has already been started, with
the related goal of using the open source software
paradigm to allow for a repository of specifications
that other requirements engineers could browse and
use in software development.

There are yet more areas of STORM
development. The following is a list of some more
additions to the tool that can increase its utility:

 Enhanced requirements description and reuse,
for example by supporting additional templates
for requirements definition;

 More customization features to adapt STORM
utilization to specific user preferences (e.g.,
choices of font types, font size, colors, etc.);

 Expanded scope of the tool by including
support for more diagrams, particularly for
analysis and design (e.g., class diagrams,
activity diagrams, interaction diagrams) as well
as for code generation;

 New features for integrating other SRS
document figures and data (e.g. screenshots of
the user interface, glossary of terms, and
references).

STORM has a strong enough base in UML to be
expanded in many different ways. Being text-
oriented in nature, the tool would be complemented
by having additional diagrams added to its
functionality.

The goal of the STORM project was to create a
CASE tool for the specific purpose of supporting the
requirements and specification phases of software
engineering (Dascalu, 2006). It has been designed as
a tool to be used in an academic setting, in particular
for supporting the way specification is done at the
University of Nevada, Reno, USA. STORM is using

A SOFTWARE TOOL FOR REQUIREMENTS SPECIFICATION - On using the STORM Environment to Create SRS
Documents

325

techniques garnered mostly from (Arlow and
Neustadt, 2002) book, along with some further
modifications from this paper’s authors, who has
also relied on some of Ian Sommerville’s software
engineering approaches and guidelines
(Sommerville, 2006). There are few text-oriented
CASE tools because generally the primary focus is
on diagrams, charts, and pictures. The diagrams are
important, but how the system functions is more
important, which is often described also in the text
of the specification, not exclusively in its diagrams.
The need for text-oriented CASE tools is clear, but
they are not as prevalent in the industry as
diagramming tools. It has been shown, though, that
reducing errors earlier in the software process will
reduce time and cost of the project as a whole
(Lauesen, 2002; Endres and Rombach, 2003). That
is why it is important to specify the system with
more than just diagrams.

In summary, the primary contributions of the
STORM environment consist of the handling of
textual aspects of requirements and use cases
modelling, including via requirements reuse, as well
as of the automated facilities of the tool. In
particular, the generation and the exporting of a
STORM project (SRS document) to rich-text format
and HTML are useful from a practical point of view.

 We see STORM as a promising component of a
set of future interrelated tools that will incorporate
MDD principles and will get closer to the ideal
“software factory,” where practically in no time
desires (software requirements) are expressed by
users and running code to achieve them is generated
by the factory’s suite of tools. From a general and
realistic perspective on software development, this is
still largely a utopian thought, but perhaps only for a
limited time. In the past, advances in computing,
including in software engineering, proved capable to
exceed our expectations.

REFERENCES

Alexander, I., 2003. Misuse cases: use cases with hostile
intent. In IEEE Software 20(5): 58–66.
Arlow J. and Neustadt, I., 2002. UML and the Unified

Process: Practical Object-Oriented Analysis and
Design. Addison-Wesley.

Dascalu, S., Fritzinger, E., Debnath, N., and Akinwale, O.,
2006. STORM: Software Tool for the Organization of
Requirements Modeling, in Procs. of the 6th IEEE
Intl. Conf. on Electro/Information Technology (EIT-
2006), IEEE Computer Society Press, pp. 250-255.

Dascalu, S., Varol, Y., Harris, F., and Westphal, B., 2005.
Computer Science capstone course Senior Projects:

From project idea to prototype implementation, Procs.
of the IEEE FIE-2005 Frontiers in Education
Conference, pp. S3J/1-6.

Fritzinger, E., 2006. STORM: Software Tool for the
Organization of Requirements Modeling, Master
thesis, University of Nevada, Reno, USA.

Booch, G., Rumbaugh, J., and Jacobson, I., 2002. The
Unified Modeling Language: User Manual, Addison-
Wesley, 2nd edition.

DOORS, 2007. Telelogic’s DOORS. Requirements
management traceability solutions. Available online as
of March 31, 2007 at http://www.telelogic.com/
products/doorsers/index.cfm

Endres, A., Rombach, D., 2003. A Handbook of Software
and Systems Engineering, Addison-Wesley.

EventStudio, 2006. EventHelix, EventStudio System
Designer 2.5 – sequence diagram based system design.
Available online as of July 5, 2006 at http://www
eventhelix.com/EventStudio/.

IBM Rational Rose, 2007. Available online as of April 11,
2007 at http://www-306.ibm.com/software/rational/

Lauesen, S., 2002. Software Requirements: Styles and
Techniques, Addison-Wesley.

Liu, D., Subramaniam, K., Far, B.H., and Eberlein, A.,
2003. Automating transition from use cases to class
model. In Procs. of the 2003 Canadian Conference on
Electrical and Computer Engineering, pp. 831-834.

Metamill Software, 2007, Metamill – The UML CASE
tool, model UML diagrams, and engineer Java, C,
C++, and C# code,” Available online as of April 1,
2007 at http://www.metamill.com/

Microsoft Visio, 2003. Microsoft Office Online: Visio
2003 Home Page. Available online as of June 1, 2006
at http://www.visio.com/

OMG UML, 2007. Object Management Group – UML,
Available online as of April 11, 2007 at www.omg.org

OSRMT, 2006. Requirements Management Tool. News.
Available online as of July 1, 2006 at
http://www.osrmt.com/

Pressman, R.S., Software Engineering: A Practitioner’s
Approach, McGraw-Hill, 6th edition.

RUT, 2007. Requirements Use Case Tool. NASA.
Assurance tools and techniques. Available online as of
February 19, 2007 at http://satc.gsfc.nasa.gov/

Scenario Plus, 2007. Scenario Plus – templates & tools for
scenario-based requirements engineering. Available
online as of March 20, 2007 at
http://www.scenarioplus. org.uk/index.html

Sommerville, I. 2006. Software Engineering, Addison-
Wesley, 8th edition.

SourceForge, 2006. SourceForge.net: Use Case Editor.
Available online as of July 1, 2006 at:
http://sourceforge.net/projects/uced

Stahl, T., Voelter, M., Czarnecki, K., 2006. Model-Driven
Software Development: Technology, Engineering,
Management, Wiley & Sons.

ICSOFT 2007 - International Conference on Software and Data Technologies

326

