Designing a Generic and Evolvable Software
Architecturefor Service Oriented Computing

Herwig Mannaert, Kris Ven and Jan Verelst

University of Antwerp, Department of Management Information Systems
Prinsstraat 13, B-2000 Antwerp, Belgium

Abstract. Service Oriented Architecture (SOA) is becoming the new paradigm
for developing enterprise systems. We consider SOA to be concerned with high-
level design of software, which is commonly calleaftware architecture. In this
respect, SOA can be considered to be a new architectural style. This paper pro-
poses an advanced software architecture for information systems. It was devel-
oped by systematically applying solid software engineering principles such as
loose couplingjnterface stabilityandasynchronous communicatiéo contem-
porary n-tier architectures for information systems in Java Enterprise Edition.
The resulting architecture is SOA-compliant, generic and demonstrates to a high
extent architectural qualities such as evolvability.

1 Introduction

In the last few years, Service Oriented Architecture (SOA) has been proposed as a hew
paradigm for building enterprise systems. Basically, the idea behind SOA suggests that
systems should be built of services operating in highly networked environments. Since
these services are modular and exhibit loose coupling, SOA should lead to evolvable
systems. SOA is most often implemented by using Web Service technology. However,
several authors emphasize that services can be composed of object oriented code, or
even legacy code [1-3].

Building a SOA-compliant enterprise information systems for a specific organiza-
tion is, however, not straightforward. From a technical point of view, one of the chal-
lenges is that SOA requires highly sophisticated designs to ensure that not only current,
but also future requirements can be met. This means that the cost and effort in develop-
ing a full-scale SOA for a given organization is substantial, and for many organizations
maybe even prohibitive. On the other hand, there seems to be a degree of similarity be-
tween the enterprise systems of most organizations. An indication of this is for example
that most systems are based on a standard software package, with mostly limited cus-
tomizations. This suggests that it may be possible to build an architecture for real-world,
large-scale enterprise systems, which implements SOA-principles and can be used by a
wide range of organizations.

In this paper, we propose an advanced, generic software architecture that could be
used for building enterprise information systems. Initially, the architecture was devel-
oped for application domains such as large-scale satellite-based content distribution,

Mannaert H., Ven K. and Verelst J. (2007).

Designing a Generic and Evolvable Software Architecture for Service Oriented Computing.

In Proceedings of the 1st International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 9-18
DOI: 10.5220/0001348600090018

Copyright © SciTePress

10

monitoring and control of remote power units, and commuioca monitoring sys-
tems, but a prototype has shown its potential for buildintplarise information sys-
tems. It was built according to contemporary n-tier aratitees for information sys-
tems in the Java Enterprise Edition (Java EE) framework sbfivare architecture was
built by systematically and thoroughly applying solid sadte engineering principles
such adoose couplinginterface stability andasynchronous communicatiomhe re-
sulting architecture is suitable for large-scale systegeseric and demonstrates to a
high extent architectural qualities such as evolvabilllye architecture is also SOA-
compliant since it supports many SOA-principles, inclgdimose coupling, reusability
and abstraction [4]. The software architecture is indepatfiltom the underlying imple-
mentation technology (e.g., web services), but has begnifaplemented in Java EE
and is in use in several organizations.

2 Software Architecture

SOA is a holistic concept spanning many research areas,tiolmical issues such as
web services to management issues concerning businesspesc However, our point
of view is that SOA concerns essentially high-level desi§saftware. This level is
commonly calledsoftware architectureand is a growing field of research within the
area of software engineering [5]. More specifically, SOA barseen as a new architec-
tural style [6]. For example, Lublinsky considers SOA as erhitectural style [. . .]
promoting the concept of business-aligned enterpriseices\as the fundamental unit
of designing, building, and composing enterprise busigesgions. Multiple patterns,
defining design, implementations, and deployment of the @Aions, complete this
style” [7]. SOA attempts to increase modularity, thereby impngvevolvability of the
entire system. Also, considering SOA as a high-level desigme implies that SOA is
more general than an implementation technology such as emicrss (i.e., web ser-
vices is only one possible implementation technology foARO

Currently, client-server architecture [6, 8] is frequgniked for developing infor-
mation systems. Java EE, for example, is based on an n-éat-clerver architecture.
The software architecture we propose, is an attempt to S@le these n-tier client-
server architectures, or in other words, to extend themrdawgpto SOA-principles.

In order to visualize a software architecture, differeng are necessary [9]. Each
view differs in its intended stakeholders, and the systeopguties that are described.
The physical topology vievef the architecture that we propose is depicted in Fig. 1.
Consistent with contemporary design principles, the cphaHayering is adopted here.
Each layer is highly cohesive, and loosely coupled to therdtko layers. This principle
ensures that modifications to a specific layer have no—ordiritimpact on the rest
of the system. This requires that each layer has an intetfateshields the internal
implementation details of that layer. This interface sdawmain stable in time (see
Sect. 3.2). By introducing layers into the systems architeg volatility can be better
managed, as coding changes will not propagate acrossatiffiyers.

Nowadays, information systems are generally composed niimim 3 tiers: the
user interface tierthebusiness tieand thedatabase tierln contrast to the traditional
3-tier design, we distinguish between 4 different tiers:dlent tier, theweb tier(con-

11

’7 Java EE Container

Clients Web Container EJB Container

\ Actl > EB1
Browser Hﬁr >
Xspl »{ SB1

Application ﬁ Axis »(sB3

Jax1 > EB4

[[
[[
Service ABC Service XYZ

Legend: EB: Entity Bean; SB: Session Bean; Jax: JAX-RPC; Act: Cocoon Action Obfagt XML Server
Pages; T: Table

Fig. 1. 4-Tier Application Architecture

taining for example Cocoon and Axis), tBdB tierand thedatabase tierBoth the web
and EJB tier are grouped in the Java EE container.

3 Guiding Principles

The architecture is based on several solid software engngegrinciples such awose
coupling interface stabilityandasynchronous communicatiohhese principles are al-
ready known for quite some time. However, our main contrdsutonsists of applying
these principles in a systematic and thorough way. Thisvaltbus to improve upon sev-
eral architectural qualities such as evolvability, perfance, security and availability
[10]. In this paper, our focus will be on the evolvability bt architecture.

3.1 LooseCoupling

Loose coupling is an important principle in software enghirgg that aims to mini-
mize the degree of interconnections (or coupling) betweedutes. If a module has a
large number of connections to other modules, the modulls@sdependent on these
other modules. As a result, the complexity of the systenemees. We have applied the
principle of loose coupling consistently throughout owhétecture, by minimizing the
number of interconnections between modules. In fact, weestowards linking only
two modules at the same time, in order to keep the complekitiyeosystem to a strict
minimum. We will provide several illustrations of this ingfiollowing sections.

3.2 Interface Stability

Evolvability is essential for an information system in artie accommodate changing
requirements. In large-scale distributed systems, upglatient applications follow-
ing the release of a new version of a service provider is nveays feasible. This new

12

version could incorporate additional features and/or tiafdil interfaces that are ac-
cessible to clients. In this section, we only consigetensionén the interface (i.e., the
addition of parameters). This should however not affecatbibty of existing clients—
that will not use this new functionality—to keep accessing $lervice provider. We
refer to this principle agersion transparencyHence, it is necessary that the interface
of the service provider remains stable in time. We distisguietween two types of
interface stability.

A first type isstrict-sense interface stabilityrhis type of stability requires loose
coupling between modules that is completely implemematéahnology independent
(i.e., it does not require that the service provider is based specific implementation
technology such as Java EE). Consequently, the use of XM}, (@eb services that
communicate via SOAP) is mandatory for the exchange of inédion between mod-
ules. This type of loose coupling is situated at run-timelegs recompilation of client
applications is not required when a new version of a serviogiger is released. This
type of loose coupling is preferable when there is a largebrrrof distributed clients,
or when the service client is located in a different unit ofngdlation than the service
provider.

A second type of interface stability iside-sense interface stabilitf¥his type re-
spects the principle of loose coupling by only passing fizalble objects with default
constructors that only provide access to member fields ¢irget and set methods.
However, it allows imposing the use of a specific implemeotetechnology (e.g., Java
RMI). This type of coupling is situated at compile-time,@rit requires recompilation
of client applications upon the release of a new version @raice provider. However,
coding changes to the service provider do not propagatenioeye service interface,
i.e., modifications to a service provider should not reqaing coding changes to ex-
isting clients. Wide-sense interface stability can be &vaption when the number of
clients is limited, or when clients are contained within gaene unit of compilation as
the service provider.

3.3 Asynchronous Communication

In general, service invocations tend to be synchronouscliéet requests an operation
from a service provider, waits for the provider to complésedperation, and receives
the result of this operation. This is for example how web sew essentially work.
Synchronous communication however has some serious dcigiba
First of all, the use of synchronous communication cretgegporalcoupling be-

tween modules [7]. This means that the client is blocked frioertime that it issues the
call until it receives a reply from the service provider. §imay have negative perfor-
mance consequences. It also requires that the servicalprasiavailable at the time the
client issues the service request (i.e., the provider sy&eaip and running, and there is
network connectivity between service client and provid8gcond, synchronous com-
munication does not allow for the state of the transactidret@nown. It is for example
not straightforward to determine whether a service redugsteen submitted, but has
not arrived yet at the service provider. Finally, when uséggchronous communica-
tion, the client must incorporate additional knowledge wthtbe underlying layers in

13

the information system. This once again increases coupdind as a result, the com-
plexity of the system increases. For example, if a clienthaser interface that retrieves
data from a service provider, the user interface has to resfwthe possibility that no
network connection could be established to the serviceigeavHowever, it must also
be able to react upon other errors that occur on the provider s.g., the fact that the
database is currently down.

4 Architectural Patterns

We argue that additional structure is required, on top afidaad component models
and frameworks such as Java EE, Cocoon and Axis (see Fig. dijdér to support the
principles that were discussed in Sect. 3. Therefore, we daveloped four different
architectural patternghat are based on elementary object types, nandeltg objects
flow objectsaction objectsandconnector objectsEach of these patterns is cross-layer,
since each pattern defines a number of objects located imatdagers in Fig. 1. Al-
though we do not claim that these patterns are the best p@ssiotion, we have found
them to be suitable for describing changes in a quantitataye [11], as well as auto-
matic code generation [12]. It is important to note that ¢heatterns are not solutions
which are tied to a specific implementation platform. Indiehey are based on fun-
damental software engineering principles and concepthidrpaper, we illustrate how
these underlying principles and concepts can be implerdenta certain technology
(e.g., Java EE).

A code base has been developed within the Java EE framewondAS is used as
application server, while the Cocoon XML publishing franuelvprovides the user in-
terface. The code base consists of about 1200 Java classésining about 120 EJBs
divided over 8 separate software components, and provid#ifesent applications.
These applications are divided in three different apglicatiomains: satellite-based
content distribution [13], monitoring and control of reragtower units [14], and com-
munications monitoring systems (i.e., nurse call systantsospitals and digital pro-
cessing in a broadcast studio). Three components are dhyaedidive applications, the
other components are currently confined to a single apficaBiven the genericity of
this architecture (which is based upon the four architetfpaitterns), we are convinced
that the architecture can be used to build enterprise irdton systems.

In order to build applications within the architecture, threverse of discourse (i.e.,
the relevant part of the real world) is modeled in terms o§éhfour architectural pat-
terns. For example, to develop an application for an ondimek store, data objects can
be used to contain information on the books in the cataloguenector objects can be
used to generate sales reports and to provide the useaiceeffow objects can be used
to handle a sale, and action objects can be used to registereph through a credit
card. We will now describe each of these patterns in moredldeta

4.1 Data Objects

Data objects represent persistent objects in the real wioaldare stored in a relational
database. Examples of data objectsa@rgtomerandorder.

14

Within the Java EE framework, data objects are implemenyatsing entity beans.
For each objectObj > that is stored persistently in the database, the Java EEefram
work requires the implementation clasgdpj >Bean), the interfaces for the lifecycle
operations (find, create, and deletelj >HomeLocal and<Chj >HoneRenot e),
and the interfaces for the business methed®bf >Local and<Cbj >Renot e).

In addition to these five standard classes and interfaceg)chale two additional
transport objectdor each persistent object. Transport objects are saatalkzobjects
that encapsulate data fields of corresponding data objedtsray provide getters and
setters to access each field. They also have a default cotwstiwithout parame-
ters), in which default values are set for all its member el first transport ob-
ject (<nj >Det ai | s) contains all data fields of an entity. A second transporgcibj
(<vj >I nf 0) contains a subset of these data fields. The idea here islta@only
those fields in the info-object that will be shown in for exdenlistings and tables that
display summary information.

These transport objects are essential to the architesines they support the prin-
ciples of interface stability and version transparencyaAsile, only transport objects
are allowed as parameters or return value in the interfacenfice providers. This
allows for loose coupling—and version transparency—betveegvice client and ser-
vice provider. Our architecture supports batile-sensandstrict-sensenterface sta-
bility. Wide-sense interface stability is implemented xgleanging serialized transport
objects with remote session beans by using Java RMI calis. ddgsign ensures that
recompiling the client is sufficient when the service previts extended in function-
ality through the addition of parameters (i.e., no codingnges to existing clients are
required). Strict-sense interface stability is obtaingdérializing the transport objects
to XML format, and invoking the web service that correspotalthe session bean at
the service providér

Moreover, our architecture supports dynamically chandireg, at run-time) how
clients will call a service provider interface. The clientheither call the session bean
over Java RMI, or the corresponding web service by using XMissages. How the
client must invoke the remote service is stored in the datalad the service provider
side. This setting can be changed at run-time. This meams-thaoretically—the de-
gree of coupling between client and provider can be changede#l. However, given
the fact that the client must be able to support Java RMI ig #ifuation, it means
that the client must be recompiled when the service proviglenodified (unless the
client will only use web service calls in the future). Thisams that such clients are not
strict-sense version transparent. This feature howewstiges opportunities for future
evolvability of the system, and to make decisions on theitectural qualities at run-
time. For example, if one initially wants to maximize perf@nce, service invocations
can take place over Java RML. If, at a later time, the netwarkfiguration changes
and a firewall is placed between the client and the serviceigeqg the client can be
reconfigured to invoke the corresponding web service.

1 within Java EE, session beans can be made available as web services.

15

4.2 Connector Objects

A connector object is used to import and export data objeots fand to the outside
world. Connectors can be used to transform data objects &manto: theuser inter-
face(e.g., HTML),files(e.g., PDF), andietwork protocolge.g., UDP, HTTP, SNMP).
Connector objects for example generate an entry form foméityén the database, or
generate a report in PDF format.

Within the Java EE framework, a session bea@ljj >Connect or Bean) is cre-
ated for each data object that will be imported or exportéidks hean depends on at least
one implementation class for a specific protocalijj ><Pr ot ocol >). This class is
not an EJB and is independent from Java EE. ¥Reot ocol > is a variable that al-
lows for alternative implementations for a specific conoe¢.qg., to provide multiple
implementations for sending and receiving network packets TCP or UDP). This
supports the dynamic configuration of different protocal$oomats through dynamic
class loading.

This design further builds on loose coupling. By dividing tlesponsibility of the
import/export functionality between the session bean hadrmplementation class, the
complexity of the system is kept to a minimum. The connectged (i.e., session
bean) is part of the EJB framework, and has knowledge abeuti#ta model of the
corresponding data object. It has however no knowledgetahetspecific implemen-
tation of the external format or protocol. The latter resgbility is assigned to the
implementation class, which however has no knowledge ahelJB framework. The
same principle is used at the user interface. The Cocoonractasses for example
have knowledge of Cocoon and the data model, but not abouinitherlying EJB con-
tainer. As such, each object in the system only has knowlatiget (is coupled with)
maximum two other objects, hence minimizing complexity.

4.3 Flow Objects

Flow objects represent business processes, i.e., a segaksieps in a workflow. Ex-
amples of flow objects are objects that handle the procesdimgnew order, or the
registration of a new customer. In our architecture, a wovkfis considered to be a
sequence of actions (implemented by action objects, sees4r

Within Java EE, a flow object is an entity beatt{ ow>Or der Bean) that stores
the consecutive transitions required to execute a workfldnis bean also captures the
current state of the workflow. Each transition is stored asraigtent object by using
another entity beanTf ansi t i onBean). This entity bean contains information such
as the input and output state, and a reference to the segsar(ite., action object) that
implements the transition. The editing of the workflow is gogted by the entity bean
(<FI ow>Or der Bean) which provides CRUD (create, read, update, delete) faneti
ality.

An important advantage of storing workflow persistently inekational database,
is that it allows for dynamic reconfiguration. Within our hitecture, it is possible to
update the workflow within the application through a webdahmterface. Although
the Business Process Execution Language (BPEL) is oftashtosgescribe workflow,
the disadvantage of BPEL is that it doesn't directly suppersistency, nor concurrent

16

access with transactional integrity. More particularljitieg a BPEL file in XML for-
mat through a web-based interface is not trivial. Howevenrder to support BPEL
specifications, it is possible to develop connector objerimport a BPEL file, parse
the XML, and store its contents in a relational database.

4.4 Action Objects

Action objects are atomic steps in a workflow. Action objgmesform operations on
data objects, or external resources such as files. Exampéegions are encrypting a
file, and performing a credit card validation.

In Java EE, action objects are implemented by using sessiansb Similar to data
objects, action objects require an implementation clags{ >Bean), the lifecycle
interfaces €Act >HoneLocal and<Act >HoneRenot e€) and the business method
interfaces €Act >Local and<Act >Renot e).

Similar to connector objects, we applied the loose couplipgnci-
ple. This means that the action itself is implemented in aasdp class
(<Act ><I npl enent at i on>), which has no knowledge of the Java EE framework.
In order to increase flexibility and ensure loose couplingnpl enent at i on> is
a variable that allows for providing several alternativgpiementations for a specific
action (e.g., to support payments via various credit campamies using different
interfaces). Sincel npl enent at i on> is a variable, it allows to dynamically choose
between various implementations at run-time.

Some actions need to be performed regularly (e.g., every)hdtor such
actions, an EJB session beadA¢t >Engi neBean) and an EJB entity bean
(<Act >Ser vi ceEngi neBean) are created. The latter represents a persistent object
that controls the time interval at which the action needseaun, and also allows to
start and stop the action. If the target of the operation israigtent object that is rep-
resented by an entity bean (i.e., a data obj&aij >Bean), the state of the action can
also be stored persistently as an entity bedibf >TaskSt at e).

The implementation of workflow through flow and action obgeistfully based on
asynchronous communication. This ensures loose coupétgden service client and
provider. As a result, different action objects implemegttonsecutive steps in a work-
flow do not communicate directly with each other. Instead,itiput for a given action
is stored in a database table. Each action has an agentdglédntg polls the database
table for incoming requests. When an outstanding requestisdf, the corresponding
action is performed on the data. The output of this actionritem to a second table in
the relational database. The client (i.e., flow object) thest requested the action will
also regularly poll the database for the result of the actimce the result is available,
it will be retrieved. This output can be passed as input tathe step in the workflow.
It is clear that this design functionally and temporally olggles consecutive steps in a
workflow. Another advantage of this design is that all aciand intermediate results
of actions are logged in the database, and can be retriexaat/aime. This allows for
the creation of test data based on real operations that veefermed by the system in
the past, rather than artificially created data. This hisiaformation may also be used
for audit purposes.

17

5 Conclusion

In this paper, we have presented an advanced softwareeithi for information sys-
tems. The architecture is consistent with contemporaigmatchitectures, and demon-
strates to a high extent several architectural qualitiége. drchitecture has several im-
portant contributions.

First, the software architecture is generic, which is supgabby several properties.
For example, the application framework developed withiis #oftware architecture
provides five different applications in distinct applicatidomains. The architecture is
also independent on the implementation technology (we bhagsen to implement the
architecture in Java EE). Additionally, it is possible tadynically reconfigure several
properties of the system at run-time, by using CRUD openation the system itself.
Examples are the degree of coupling between modules, aneoitkéows contained in
the system.

Second, we have developed four different architecturaépad that are used as ele-
mentary building blocks within the architecture. This imeglthat the patterns can also
be used for implementing meta-activities that represemtncon operations on services
(such as discovery, selection and monitoring). These ipatt@re independent from a
specific implementation platform, and are based on sevelid software engineering
principles such as loose coupling, interface stabilityd asynchronous communica-
tion. By thoroughly and systematically applying each oftherinciples, we consider-
ably increased several quality factors such as evolvabiitis is illustrated by various
characteristics of the architectural patterns. Transpbjects (part of the data object
pattern) support the notion of interface stability and imrdransparancy. This allows
to extend their interface without requiring a recompilatiaf existing clients. More-
over, the architecture allows to choose at run-time betvg=swmice invocations over
Java RMI or web services, allowing for example to cope withngdding requirements in
the network infrastructure. Both the connector and actiojecis support the concept
of dynamic class loading. This allows to provide additiomaplementations where
clients can choose from. These patterns also support lang®icg and asynchronous
communication, thereby separating the implementation @shnas possible from the
rest of the platform. The flow objects support run-time madiiions to the workflow
that is stored persistently in a relational database. Tllowa to update the workflow
without any recompilation.

Third, the architecture is SOA-compliant, in the sense ithiatplements the afore-
mentioned software engineering principles which also tituts the core of SOA, irre-
spective of the underlying implementation technology.(exgb services).

Our goal is to further validate and extend this architectarseveral ways. First,
although we have implemented and tested the architecteniimber of settings, we
plan to develop additional applications in other applmatiomains. More specifically,
we are convinced that this architecture is appropriateddding enterprise information
systems, and will build on the current prototype to dematstthis in more detail.
Second, research can be performed on how the real world carapped to the four
architectural patterns. Finally, we aim to identify addlital patterns across the four
architectural patterns that allow for the automatic getm@maof fully working code,
calledpattern expansionA first pattern that was successfully expanded is the CRUDS

18

pattern, which involves the generation of classes thatempht data and connector
objects, and is described in previous work [12]. In orderadeedop information systems
in this architecture, the developer needs to define therexctiad the data model of the
application. Based on these elements, a considerabl@patithe source code can be
automatically generated through pattern expansion.

References

11.

12.

13.

14.

. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of servicevmdeanalysis and de-

sign (2004) IBM Developerworks, on-line available fatt p: / / www 106. i bm conmt
devel operworks/ i brary/ ws- soadl/.

. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann,rem#&r, B.J.: Service-oriented

computing: A research roadmap. In Cubera, Farder, B.J., Papazoglou, M.P., eds.: Ser-
vice Oriented Computing (SOC). Number 05462 in Dagstuhl SeminareBditgs, Inter-
nationales Begegnungs- und Forschungszentrum fuer Inform8t)(1Schloss Dagstuhl,
Germany (2006)

. Marks, E.A., Bell, M.: Service-Oriented Architecture: A Planningl dmplementation

Guide for Business and Technology. John Wiley and Sons, Inc., késhdNJ, USA (2006)

. Erl, T.: Service-Oriented Architecture: Concepts, Technology, Besign. Prentice Hall

PTR, Upper Saddle River, NJ, USA (2005)

. Shaw, M., Clements, P.: The golden age of software architectiEeE Software23 (2006)

31-39

. Shaw, M., Garlan, D.: Software Architecture—Perspectives oirarrging Discipline.

Prentice Hall, Upper Saddle River, NJ, USA (1996)

. Lublinsky, B.: Defining SOA as an architectural style (2007) on-linailable

at: http://ww- 128.i bm com devel operwor ks/ |i brary/ ar-soastyl e/
i ndex. html .

. Bass, L., Clements, P., Kazman, R.: Software Architecture intiPeacAddison-Wesley,

Reading, MA, USA (1998)

. Kruchten, P.: The 4+1 view model of architecture. IEEE Softw2rél 995) 42—-50
. Kazman, R, Klein, M., Barbacci, M., Longstaff, T., Lipson, Barriere, J.: The architecture

tradeoff analysis method. In: Proceedings of the Fourth IEEE Irtierred Conference on
Engineering Complex Computer Systems (ICECCS’98). (1998)

Mannaert, H., Verelst, J., Ven, K.: Towards rules and lawsdtiwgre factories and evolv-
ability: A case-driven approach. In: Proceedings of the InterndtiGoaference on Soft-
ware Engineering Advances (ICSEA06), Tahiti, French Polynes@ol@er 29—November
3. (2006)

Mannaert, H., Verelst, J., Ven, K.: Exploring concepts for deirgistic software engineering:
Service interfaces, pattern expansion and stability. In: Proceedintpe &econd Interna-
tional Conference on Software Engineering Advances (ICSEA 2@@ap Esterel, French
Riviera, France, August 25-31. (2007)

Mannaert, H., De Gruyter, B., Adriaenssens, P.: Web pontahfdticast delivery manage-
ment. Internet Researd!3 (2003) 94-99

Mannaert, H., Huysmans, P., Adriaenssens, P.: Connectiagtital controller to the internet
through software composition in web application servers. In: InternatiGonference on
Internet and Web Based Applications and Services, Mauritius, Maya.32007)

