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Abstract. Service Oriented Architecture (SOA) is becoming the new paradigm
for developing enterprise systems. We consider SOA to be concerned with high-
level design of software, which is commonly calledsoftware architecture. In this
respect, SOA can be considered to be a new architectural style. This paper pro-
poses an advanced software architecture for information systems. It was devel-
oped by systematically applying solid software engineering principles such as
loose coupling,interface stabilityandasynchronous communicationto contem-
porary n-tier architectures for information systems in Java Enterprise Edition.
The resulting architecture is SOA-compliant, generic and demonstrates to a high
extent architectural qualities such as evolvability.

1 Introduction

In the last few years, Service Oriented Architecture (SOA) has been proposed as a new
paradigm for building enterprise systems. Basically, the idea behind SOA suggests that
systems should be built of services operating in highly networked environments. Since
these services are modular and exhibit loose coupling, SOA should lead to evolvable
systems. SOA is most often implemented by using Web Service technology. However,
several authors emphasize that services can be composed of object oriented code, or
even legacy code [1–3].

Building a SOA-compliant enterprise information systems for a specific organiza-
tion is, however, not straightforward. From a technical point of view, one of the chal-
lenges is that SOA requires highly sophisticated designs to ensure that not only current,
but also future requirements can be met. This means that the cost and effort in develop-
ing a full-scale SOA for a given organization is substantial, and for many organizations
maybe even prohibitive. On the other hand, there seems to be a degree of similarity be-
tween the enterprise systems of most organizations. An indication of this is for example
that most systems are based on a standard software package, with mostly limited cus-
tomizations. This suggests that it may be possible to build an architecture for real-world,
large-scale enterprise systems, which implements SOA-principles and can be used by a
wide range of organizations.

In this paper, we propose an advanced, generic software architecture that could be
used for building enterprise information systems. Initially, the architecture was devel-
oped for application domains such as large-scale satellite-based content distribution,
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monitoring and control of remote power units, and communications monitoring sys-
tems, but a prototype has shown its potential for building enterprise information sys-
tems. It was built according to contemporary n-tier architectures for information sys-
tems in the Java Enterprise Edition (Java EE) framework. Thesoftware architecture was
built by systematically and thoroughly applying solid software engineering principles
such asloose coupling, interface stability, andasynchronous communication. The re-
sulting architecture is suitable for large-scale systems,generic and demonstrates to a
high extent architectural qualities such as evolvability.The architecture is also SOA-
compliant since it supports many SOA-principles, including loose coupling, reusability
and abstraction [4]. The software architecture is independent from the underlying imple-
mentation technology (e.g., web services), but has been fully implemented in Java EE
and is in use in several organizations.

2 Software Architecture

SOA is a holistic concept spanning many research areas, fromtechnical issues such as
web services to management issues concerning business processes. However, our point
of view is that SOA concerns essentially high-level design of software. This level is
commonly calledsoftware architecture, and is a growing field of research within the
area of software engineering [5]. More specifically, SOA canbe seen as a new architec-
tural style [6]. For example, Lublinsky considers SOA as an architectural style “[. . . ]
promoting the concept of business-aligned enterprise services as the fundamental unit
of designing, building, and composing enterprise businesssolutions. Multiple patterns,
defining design, implementations, and deployment of the SOAsolutions, complete this
style.” [7]. SOA attempts to increase modularity, thereby improving evolvability of the
entire system. Also, considering SOA as a high-level designissue implies that SOA is
more general than an implementation technology such as web services (i.e., web ser-
vices is only one possible implementation technology for SOA).

Currently, client-server architecture [6, 8] is frequently used for developing infor-
mation systems. Java EE, for example, is based on an n-tier client-server architecture.
The software architecture we propose, is an attempt to SOA-enable these n-tier client-
server architectures, or in other words, to extend them according to SOA-principles.

In order to visualize a software architecture, different views are necessary [9]. Each
view differs in its intended stakeholders, and the system properties that are described.
The physical topology viewof the architecture that we propose is depicted in Fig. 1.
Consistent with contemporary design principles, the concept of layering is adopted here.
Each layer is highly cohesive, and loosely coupled to the other two layers. This principle
ensures that modifications to a specific layer have no—or limited—impact on the rest
of the system. This requires that each layer has an interfacethat shields the internal
implementation details of that layer. This interface should remain stable in time (see
Sect. 3.2). By introducing layers into the systems architecture, volatility can be better
managed, as coding changes will not propagate across different layers.

Nowadays, information systems are generally composed of minimum 3 tiers: the
user interface tier, thebusiness tierand thedatabase tier. In contrast to the traditional
3-tier design, we distinguish between 4 different tiers: theclient tier, theweb tier(con-
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Legend: EB: Entity Bean; SB: Session Bean; Jax: JAX-RPC; Act: Cocoon Action Object; Xsp: XML Server
Pages; T: Table

Fig. 1. 4-Tier Application Architecture.

taining for example Cocoon and Axis), theEJB tierand thedatabase tier. Both the web
and EJB tier are grouped in the Java EE container.

3 Guiding Principles

The architecture is based on several solid software engineering principles such asloose
coupling, interface stability, andasynchronous communication. These principles are al-
ready known for quite some time. However, our main contribution consists of applying
these principles in a systematic and thorough way. This allowed us to improve upon sev-
eral architectural qualities such as evolvability, performance, security and availability
[10]. In this paper, our focus will be on the evolvability of the architecture.

3.1 Loose Coupling

Loose coupling is an important principle in software engineering that aims to mini-
mize the degree of interconnections (or coupling) between modules. If a module has a
large number of connections to other modules, the module is also dependent on these
other modules. As a result, the complexity of the system increases. We have applied the
principle of loose coupling consistently throughout our architecture, by minimizing the
number of interconnections between modules. In fact, we strive towards linking only
two modules at the same time, in order to keep the complexity of the system to a strict
minimum. We will provide several illustrations of this in the following sections.

3.2 Interface Stability

Evolvability is essential for an information system in order to accommodate changing
requirements. In large-scale distributed systems, updating client applications follow-
ing the release of a new version of a service provider is not always feasible. This new
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version could incorporate additional features and/or additional interfaces that are ac-
cessible to clients. In this section, we only considerextensionsin the interface (i.e., the
addition of parameters). This should however not affect theability of existing clients—
that will not use this new functionality—to keep accessing the service provider. We
refer to this principle asversion transparency. Hence, it is necessary that the interface
of the service provider remains stable in time. We distinguish between two types of
interface stability.

A first type isstrict-sense interface stability. This type of stability requires loose
coupling between modules that is completely implementation technology independent
(i.e., it does not require that the service provider is basedon a specific implementation
technology such as Java EE). Consequently, the use of XML (e.g., web services that
communicate via SOAP) is mandatory for the exchange of information between mod-
ules. This type of loose coupling is situated at run-time level, as recompilation of client
applications is not required when a new version of a service provider is released. This
type of loose coupling is preferable when there is a large number of distributed clients,
or when the service client is located in a different unit of compilation than the service
provider.

A second type of interface stability iswide-sense interface stability. This type re-
spects the principle of loose coupling by only passing serializable objects with default
constructors that only provide access to member fields through get and set methods.
However, it allows imposing the use of a specific implementation technology (e.g., Java
RMI). This type of coupling is situated at compile-time, since it requires recompilation
of client applications upon the release of a new version of a service provider. However,
coding changes to the service provider do not propagate beyond the service interface,
i.e., modifications to a service provider should not requireany coding changes to ex-
isting clients. Wide-sense interface stability can be a valid option when the number of
clients is limited, or when clients are contained within thesame unit of compilation as
the service provider.

3.3 Asynchronous Communication

In general, service invocations tend to be synchronous: theclient requests an operation
from a service provider, waits for the provider to complete its operation, and receives
the result of this operation. This is for example how web services essentially work.
Synchronous communication however has some serious drawbacks.

First of all, the use of synchronous communication createstemporalcoupling be-
tween modules [7]. This means that the client is blocked fromthe time that it issues the
call until it receives a reply from the service provider. This may have negative perfor-
mance consequences. It also requires that the service provider is available at the time the
client issues the service request (i.e., the provider system is up and running, and there is
network connectivity between service client and provider). Second, synchronous com-
munication does not allow for the state of the transaction tobe known. It is for example
not straightforward to determine whether a service requesthas been submitted, but has
not arrived yet at the service provider. Finally, when usingsynchronous communica-
tion, the client must incorporate additional knowledge about the underlying layers in
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the information system. This once again increases coupling, and as a result, the com-
plexity of the system increases. For example, if a client hasa user interface that retrieves
data from a service provider, the user interface has to respond to the possibility that no
network connection could be established to the service provider. However, it must also
be able to react upon other errors that occur on the provider side, e.g., the fact that the
database is currently down.

4 Architectural Patterns

We argue that additional structure is required, on top of standard component models
and frameworks such as Java EE, Cocoon and Axis (see Fig. 1), in order to support the
principles that were discussed in Sect. 3. Therefore, we have developed four different
architectural patternsthat are based on elementary object types, namely:data objects,
flow objects, action objectsandconnector objects. Each of these patterns is cross-layer,
since each pattern defines a number of objects located in several layers in Fig. 1. Al-
though we do not claim that these patterns are the best possible solution, we have found
them to be suitable for describing changes in a quantitativeway [11], as well as auto-
matic code generation [12]. It is important to note that these patterns are not solutions
which are tied to a specific implementation platform. Instead, they are based on fun-
damental software engineering principles and concepts. Inthis paper, we illustrate how
these underlying principles and concepts can be implemented in a certain technology
(e.g., Java EE).

A code base has been developed within the Java EE framework. JOnAS is used as
application server, while the Cocoon XML publishing framework provides the user in-
terface. The code base consists of about 1200 Java classes, containing about 120 EJBs
divided over 8 separate software components, and provides 5different applications.
These applications are divided in three different application domains: satellite-based
content distribution [13], monitoring and control of remote power units [14], and com-
munications monitoring systems (i.e., nurse call systems in hospitals and digital pro-
cessing in a broadcast studio). Three components are sharedby all five applications, the
other components are currently confined to a single application. Given the genericity of
this architecture (which is based upon the four architectural patterns), we are convinced
that the architecture can be used to build enterprise information systems.

In order to build applications within the architecture, theuniverse of discourse (i.e.,
the relevant part of the real world) is modeled in terms of these four architectural pat-
terns. For example, to develop an application for an on-linebook store, data objects can
be used to contain information on the books in the catalogue,connector objects can be
used to generate sales reports and to provide the user interface, flow objects can be used
to handle a sale, and action objects can be used to register payment through a credit
card. We will now describe each of these patterns in more detail.

4.1 Data Objects

Data objects represent persistent objects in the real worldthat are stored in a relational
database. Examples of data objects arecustomerandorder.
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Within the Java EE framework, data objects are implemented by using entity beans.
For each object<Obj> that is stored persistently in the database, the Java EE frame-
work requires the implementation class (<Obj>Bean), the interfaces for the lifecycle
operations (find, create, and delete) (<Obj>HomeLocal and<Obj>HomeRemote),
and the interfaces for the business methods (<Obj>Local and<Obj>Remote).

In addition to these five standard classes and interfaces, weinclude two additional
transport objectsfor each persistent object. Transport objects are serializable objects
that encapsulate data fields of corresponding data objects and only provide getters and
setters to access each field. They also have a default constructor (without parame-
ters), in which default values are set for all its member fields. A first transport ob-
ject (<Obj>Details) contains all data fields of an entity. A second transport object
(<Obj>Info) contains a subset of these data fields. The idea here is to include only
those fields in the info-object that will be shown in for example listings and tables that
display summary information.

These transport objects are essential to the architecture,since they support the prin-
ciples of interface stability and version transparency. Asa rule, only transport objects
are allowed as parameters or return value in the interface ofservice providers. This
allows for loose coupling—and version transparency—betweenservice client and ser-
vice provider. Our architecture supports bothwide-senseandstrict-senseinterface sta-
bility. Wide-sense interface stability is implemented by exchanging serialized transport
objects with remote session beans by using Java RMI calls. This design ensures that
recompiling the client is sufficient when the service provider is extended in function-
ality through the addition of parameters (i.e., no coding changes to existing clients are
required). Strict-sense interface stability is obtained by serializing the transport objects
to XML format, and invoking the web service that correspondsto the session bean at
the service provider1.

Moreover, our architecture supports dynamically changing(i.e., at run-time) how
clients will call a service provider interface. The client will either call the session bean
over Java RMI, or the corresponding web service by using XML messages. How the
client must invoke the remote service is stored in the database at the service provider
side. This setting can be changed at run-time. This means that—theoretically—the de-
gree of coupling between client and provider can be changed as well. However, given
the fact that the client must be able to support Java RMI in this situation, it means
that the client must be recompiled when the service provideris modified (unless the
client will only use web service calls in the future). This means that such clients are not
strict-sense version transparent. This feature however provides opportunities for future
evolvability of the system, and to make decisions on the architectural qualities at run-
time. For example, if one initially wants to maximize performance, service invocations
can take place over Java RMI. If, at a later time, the network configuration changes
and a firewall is placed between the client and the service provider, the client can be
reconfigured to invoke the corresponding web service.

1 Within Java EE, session beans can be made available as web services.
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4.2 Connector Objects

A connector object is used to import and export data objects from and to the outside
world. Connectors can be used to transform data objects fromand to: theuser inter-
face(e.g., HTML),files(e.g., PDF), andnetwork protocols(e.g., UDP, HTTP, SNMP).
Connector objects for example generate an entry form for an entity in the database, or
generate a report in PDF format.

Within the Java EE framework, a session bean (<Obj>ConnectorBean) is cre-
ated for each data object that will be imported or exported. This bean depends on at least
one implementation class for a specific protocol (<Obj><Protocol>). This class is
not an EJB and is independent from Java EE. The<Protocol> is a variable that al-
lows for alternative implementations for a specific connector (e.g., to provide multiple
implementations for sending and receiving network packetsover TCP or UDP). This
supports the dynamic configuration of different protocols or formats through dynamic
class loading.

This design further builds on loose coupling. By dividing the responsibility of the
import/export functionality between the session bean and the implementation class, the
complexity of the system is kept to a minimum. The connector object (i.e., session
bean) is part of the EJB framework, and has knowledge about the data model of the
corresponding data object. It has however no knowledge about the specific implemen-
tation of the external format or protocol. The latter responsibility is assigned to the
implementation class, which however has no knowledge aboutthe EJB framework. The
same principle is used at the user interface. The Cocoon action classes for example
have knowledge of Cocoon and the data model, but not about theunderlying EJB con-
tainer. As such, each object in the system only has knowledgeabout (is coupled with)
maximum two other objects, hence minimizing complexity.

4.3 Flow Objects

Flow objects represent business processes, i.e., a sequence of steps in a workflow. Ex-
amples of flow objects are objects that handle the processingof a new order, or the
registration of a new customer. In our architecture, a workflow is considered to be a
sequence of actions (implemented by action objects, see Sect. 4.4).

Within Java EE, a flow object is an entity bean (<Flow>OrderBean) that stores
the consecutive transitions required to execute a workflow.This bean also captures the
current state of the workflow. Each transition is stored as a persistent object by using
another entity bean (TransitionBean). This entity bean contains information such
as the input and output state, and a reference to the session bean (i.e., action object) that
implements the transition. The editing of the workflow is supported by the entity bean
(<Flow>OrderBean) which provides CRUD (create, read, update, delete) function-
ality.

An important advantage of storing workflow persistently in arelational database,
is that it allows for dynamic reconfiguration. Within our architecture, it is possible to
update the workflow within the application through a web-based interface. Although
the Business Process Execution Language (BPEL) is often used to describe workflow,
the disadvantage of BPEL is that it doesn’t directly supportpersistency, nor concurrent
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access with transactional integrity. More particularly, editing a BPEL file in XML for-
mat through a web-based interface is not trivial. However, in order to support BPEL
specifications, it is possible to develop connector objectsto import a BPEL file, parse
the XML, and store its contents in a relational database.

4.4 Action Objects

Action objects are atomic steps in a workflow. Action objectsperform operations on
data objects, or external resources such as files. Examples of actions are encrypting a
file, and performing a credit card validation.

In Java EE, action objects are implemented by using session beans. Similar to data
objects, action objects require an implementation class (<Act>Bean), the lifecycle
interfaces (<Act>HomeLocal and<Act>HomeRemote) and the business method
interfaces (<Act>Local and<Act>Remote).

Similar to connector objects, we applied the loose couplingprinci-
ple. This means that the action itself is implemented in a separate class
(<Act><Implementation>), which has no knowledge of the Java EE framework.
In order to increase flexibility and ensure loose coupling,<Implementation> is
a variable that allows for providing several alternative implementations for a specific
action (e.g., to support payments via various credit card companies using different
interfaces). Since<Implementation> is a variable, it allows to dynamically choose
between various implementations at run-time.

Some actions need to be performed regularly (e.g., every hour). For such
actions, an EJB session bean (<Act>EngineBean) and an EJB entity bean
(<Act>ServiceEngineBean) are created. The latter represents a persistent object
that controls the time interval at which the action needs to be run, and also allows to
start and stop the action. If the target of the operation is a persistent object that is rep-
resented by an entity bean (i.e., a data object<Obj>Bean), the state of the action can
also be stored persistently as an entity bean (<Obj>TaskState).

The implementation of workflow through flow and action objects is fully based on
asynchronous communication. This ensures loose coupling between service client and
provider. As a result, different action objects implementing consecutive steps in a work-
flow do not communicate directly with each other. Instead, the input for a given action
is stored in a database table. Each action has an agent that regularly polls the database
table for incoming requests. When an outstanding request is found, the corresponding
action is performed on the data. The output of this action is written to a second table in
the relational database. The client (i.e., flow object) thathas requested the action will
also regularly poll the database for the result of the action. Once the result is available,
it will be retrieved. This output can be passed as input to thenext step in the workflow.
It is clear that this design functionally and temporally decouples consecutive steps in a
workflow. Another advantage of this design is that all actions and intermediate results
of actions are logged in the database, and can be retrieved atany time. This allows for
the creation of test data based on real operations that were performed by the system in
the past, rather than artificially created data. This historic information may also be used
for audit purposes.

16



5 Conclusion

In this paper, we have presented an advanced software architecture for information sys-
tems. The architecture is consistent with contemporary n-tier architectures, and demon-
strates to a high extent several architectural qualities. The architecture has several im-
portant contributions.

First, the software architecture is generic, which is supported by several properties.
For example, the application framework developed within this software architecture
provides five different applications in distinct application domains. The architecture is
also independent on the implementation technology (we havechosen to implement the
architecture in Java EE). Additionally, it is possible to dynamically reconfigure several
properties of the system at run-time, by using CRUD operations on the system itself.
Examples are the degree of coupling between modules, and theworkflows contained in
the system.

Second, we have developed four different architectural patterns that are used as ele-
mentary building blocks within the architecture. This implies that the patterns can also
be used for implementing meta-activities that represent common operations on services
(such as discovery, selection and monitoring). These patterns are independent from a
specific implementation platform, and are based on several solid software engineering
principles such as loose coupling, interface stability, and asynchronous communica-
tion. By thoroughly and systematically applying each of these principles, we consider-
ably increased several quality factors such as evolvability. This is illustrated by various
characteristics of the architectural patterns. Transportobjects (part of the data object
pattern) support the notion of interface stability and version transparancy. This allows
to extend their interface without requiring a recompilation of existing clients. More-
over, the architecture allows to choose at run-time betweenservice invocations over
Java RMI or web services, allowing for example to cope with changing requirements in
the network infrastructure. Both the connector and action objects support the concept
of dynamic class loading. This allows to provide additionalimplementations where
clients can choose from. These patterns also support loose coupling and asynchronous
communication, thereby separating the implementation as much as possible from the
rest of the platform. The flow objects support run-time modifications to the workflow
that is stored persistently in a relational database. This allows to update the workflow
without any recompilation.

Third, the architecture is SOA-compliant, in the sense thatit implements the afore-
mentioned software engineering principles which also constitute the core of SOA, irre-
spective of the underlying implementation technology (e.g., web services).

Our goal is to further validate and extend this architecturein several ways. First,
although we have implemented and tested the architecture ina number of settings, we
plan to develop additional applications in other application domains. More specifically,
we are convinced that this architecture is appropriate for building enterprise information
systems, and will build on the current prototype to demonstrate this in more detail.
Second, research can be performed on how the real world can bemapped to the four
architectural patterns. Finally, we aim to identify additional patterns across the four
architectural patterns that allow for the automatic generation of fully working code,
calledpattern expansion. A first pattern that was successfully expanded is the CRUDS
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pattern, which involves the generation of classes that implement data and connector
objects, and is described in previous work [12]. In order to develop information systems
in this architecture, the developer needs to define the actions and the data model of the
application. Based on these elements, a considerable portion of the source code can be
automatically generated through pattern expansion.
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