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Abstract: The design of complex software systems requires developers to use a variety of modeling languages in order
to model various system aspects. The heterogeneity of these modeling languages gives rise to new challenges.

Design decisions must be communicated across heterogeneous models, thus creating ecresdfadel

communication. Furthermore, models must be transformable between different modeling languages, thus

creating a need focross-model transformationsBy supporting only a single modeling language and by
providing limited interoperability, however, the majority of today’s modeling tools cannot provide cross-model
communication nor transformation, as such jeopardizing the consistency of the design as a whole.

In this paper, we present the design dfansformation framework, Pluto, which suppoctess-model trans-
formationsbased ompluggable metamodel$Ve discuss how Pluto eases the realization of concrete metamod-
els by offering abstract modeling constructs, and we show how it is able to execute transformations between
concrete instances of such metamodels.

1 INTRODUCTION 2003). Also, general design decisions to be respected
by the whole project must be communicated to mod-
els written in different modeling languages, as such

The design of complex enterprise applications im- : oy
9 P P PP Freatlng a need farross-model communicatiom or-

poses new challenges on software developers as welder to guaranteeross-model consistendRensink
as on tools supporting model-driven software design. 2005) 9 '
Such complex designs are typically created using dif- : )

ferent modeling languages, where each language fo- ~ Current tool support can hardly cope with the
cuses on a specific aspect of the enterprise applica-ncreased complexity introduced by heterogeneous
tion. Aligning software with business requirements, Modeling languages as the majority of modeling
for instance, is typically done using workflow model- t0ols rely onhardwired, vendor-specific metamod-
ing languages such as the Business Process Executiof!S: By hardwiring their metamodels, such tools dis-
Language (BPEL) (BPEL4WS, 2003). The technical able transformations _to other modelmg languages.
realization of each identified BPEL process is then Furthermore, by relying orproprietary metamod-
modelled using UML interaction diagrams, whereas ©lS. transformation tools obstruct metamoxkelsein

the back-end database persisting the state of thatother modeling tools because those competing tools
BPEL process is designed using Entity-Relationship rely on ad hoc metamodels that are in turn proprietary
(ER) or Relational (RDB) database models. The het- and hence incompatible.

erogeneity of these modeling languages imposes new  Being convinced that a lack of support for cross-
challenges on modeling tools. For example, Plat- model transformations and vendor lock-in are serious
form Independent Models crafted in earlier stages of limitations of today’s modeling tools, we have de-
the design process must be transformable to modelssigned and implementedtansformation framework
written in different modeling languages, thus creat- with support forpluggable metamodels. By making
ing a need forcross-model transformatior{&rankel, metamodels interchangeable, this tool allows mod-

315

Delanote G., De Labey S., Vanderkimpen K. and Steegmans E. (2007).

A FRAMEWORK FOR EXECUTING CROSS-MODEL TRANSFORMATIONS BASED ON PLUGGABLE METAMODELS.
In Proceedings of the Second International Conference on Software and Data Technologies, pages 315-325

DOI: 10.5220/0001348803150325

Copyright © SciTePress



ICSOFT 2007 - International Conference on Software and Data Technologies

ellers to introduce a metamodel for their own mod-
eling language and it provides a basis for executing
horizontal,cross-model transformations

In this paper, we focus on thadesignof Pluto,
a framework providing reusable concepts for (1)
building concrete metamodels and (2) for transform-
ing concrete models between different modeling lan-
guages. The remainder of this text is structured as
follows. Section 2 elaborates on current tool support
for model transformations and discusses a number of
limitations, leading to a list of design goals, as de-
scribed in Section 3. Section 4 introduces our frame-
work, Pluto, and Section 5 shows how Pluto eases the
implementation of new metamodels. Section 6 shows
how Pluto models can be transformed to target models
written in other modeling languages. Finally, Section
7 discusses related work and Section 8 concludes.

2 MOTIVATION

Current tools for designing and transforming models

hardly support the functionality required for develop-

ing complex software systems. We have identified a

number of disadvantages that have led to the design

goals enumerated in Section 3:

e Limited Applicability. Transformation tools are

often shipped containing leardwired metamodel
of asingle modeling languag®o as to (vertically)
transform modelsvithin that same languagel-
though complex models may be realized using
such tools, it is impossible to design models in
any other modeling language than the one sup-
ported. This forces modellers to use a different
tool for each modeling language they are willing
to use. Threatened by the risk to scatter their
designs over incompatible tools, developers are
tempted to stick with a single, general model-

o Limited Extensibility. Modeling tools often pro-
vide a mechanism to defirextensiondor mod-
eling languages. The Unified Modeling Lan-
guage, for instance, introducelvL profilesand
stereotypedo allow developers to extend UML
with domain-specific modeling concepts (OMG
UML Specification 1.5, 2003). Transformation
tools may provide similar extension mechanisms
to let developers extend the modeling language on
which that tool operates. Thexpressive powesf
such mechanisms, however, is much weaker than
that of apluggable metamodel systdracause the
semantics of metamodel-specific extension mech-
anisms are irreversibly linked to the semantics of
their base metamodethus obstructing the intro-
duction of new modeling concepts that are incom-
patible with that base metamodel.

e Limited Support for Transformations. Hard-
coding a metamodel inside the transformation tool
disables transformationsetweenmodeling lan-
guages. This makes it impossible, for instance, to
transform a series of BPEL processes into a UML
interaction diagram. Indeed, tools used for creat-
ing such models will lack the ability to commu-
nicate design decisions to each other, thus jeop-
ardizing the consistency of the application being
designed.

e Limited Reusability. Although specialized tools
exist that are able to transform between multi-
ple modeling languages, the set of supported lan-
guages is typically predefined and therefore not
extensible. Also, the logic for executing such
transformations is often too much tailored to the
base application, hence obstructing the reuse of
transformation algorithms in other tools.

ing language such as UML, even though special- 3 DESIGN GOALS

ized modeling languages are often better suited

for modeling specific parts of a software system. The main objective of our research projectis to build a

e Limited Interoperability. Next to being hard-
wired in modeling tools, embedded metamodels
often contaimproprietaryconstructs, for example,
to increase the performance of the transforma-
tion tool in which they are embedded. Although
economically feasible for the tool supplier, who
achieves a vendor lock-in, such proprietary con-
structs are awkward for thend usersf that tool
because it becomes very hard to reuse their de-
signs in other modeling applications. Indeed, the
latter will not be able to understand the format of
the proprietary metamodeih which the original
version of the model was defined.

316

metamodel-independettansformation tool that sup-
ports transformations between models designed in
different modeling languagesThis gives rise to a
number of design goals:

e Pluggable Metamodel SystemDevelopers must
be able to define their own metamodels and feed
them to the transformation tool, as such increas-
ing the applicability of the latter. For example,
if our transformation tool is running on a UML
metamodel, it must be able to accept an ER meta-
model or an RDB metamodel and then allow mod-
ellers to design their applications using the UML,
ER and RDB modeling languages. Next to adding
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Figure 1: Overview of the Pluto framework for metamodeling.

metamodels of existing modeling languages, de- depend on the technical details of a single hard-
velopers must also be able to define and insert  wired metamodel (as noted isrboss-model trans-

custom metamodetsf domain-specific modeling formations$). Thus, we need to define@mmon
languages or language extensions that they have contracton which the transformation tool relies
defined themselves. when a metamodel is fed to it.

Cross-model Transformations. Next to trans- Realization. Given these design goals, we have de-
forming between models that share a common velopedPluto, a framework with reusable concepts
metamodel, our tool must support transformations for metamodels and model transformations. Section
betweendifferent modeling language@dviens et 4 outlines this framework. Its two main functions,
al.,, 2005). This requires our tool to be able to metamodel realizatioandmodel transformationare
work with multiple metamodelsimultaneously discussed in Sections 5 and 6, respectively.

When fed with the ER and the UML metamodel, Traceability. The need for horizontal, cross-model
for instance, it must be possible to transform a transformations in turn creates a needdmrss-model
UML class diagram into an ER schema, and vice communicatiorso as to guarantee the consistency of
versa. the design. Therefore, transformations mustrhee-
Reusability. Metamodels have a wide-spread ap- able meaning that our tool must be able tollink target
plicability beyond the domain of model transfor- elements to the source element(s) that triggered the

mations as they can be used, for instance, in modelcreation of the former. This also means that changes
verifiers or code generators. Therefore, the meta- to a target model must be communicated back to the

models on which our tool relies must beusable source model from which that target model was cre-

in these domains without modification: we must 2t€d-
avoid polluting metamodels with dependencies on
components that are specific to model transforma-

tion logic. 4 THE PLUTO FRAMEWORK —

Obliviousness. In order to allow the transfor- OVERVIEW

mation tool and the metamodels to evolve inde-

pendently, a certain amount of obliviousness is Pluto is a Java framework providing abstract mod-
needed in both directions. On one hand, meta- eling constructs to be reused by concrete metamod-
models should be entirely independent of the els. Itis therefore typically layered on top @ncrete
transformation tool (as noted imcusability’); on metamodels as shown in Figure 1. The upper part de-
the other hand, the transformation tool should not picts a set of Pluto constructs providing general func-
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tionality for metamodels. The lower part of Figure to a number ofRel ati onshi p instances, and each
1 shows how interfaces of the ER metamodel are de-Rel at i onshi p in turn contains a number of relation-
fined asextension®f Pluto interfaces. Concrete re- ship ends (represented by instance®afe). Simi-
alizations of these interfaces represent elements thatlar composite structures occur frequently in the ma-
occur in ER models. Such concrete classes imple- jority of available modeling languages. Without hav-
ment these ER-specific interfaces by inheriting gen- ing reusable constructions for managing model com-
eral functionality from abstract Pluto classes and by position, however, implementors of metamodels have

filling in ER-specific behaviour where necessary.
It is important to note that Pluto is in itsetfot
a metamodel of metamodedsd neither is it acon-
crete metamodelRather, Pluto should be seen as an
abstract metamodd&tom which concrete metamodels
inherit common functionality. Therefore, in the Meta
Object Facility layering structure (The Meta Object
Facility Core Specification 2.0, 2006), Pluto is situ-
ated at the meta-level (M2) rather than the meta-meta-
level (M3).
The remainder of this text focuses on two key func-
tions of Pluto.
e Metamodeling. Section 5 focuses on theft part
of Figure 1 and shows how Pluto offers reusable
concepts forcompositionand dependency man-
agement To illustrate the wide applicability of
this transformation framework, we use the Entity
Relationship (ER) metamodel and the Relational
Database (RDB) metamodel as examples instead
of the UML metamodel.

Transforming Models. Section 6 reviews the
right part of Figure 1 and shows how Pluto trans-
forms models between different modeling lan-
guages. As an example, we show how the ER
metamodel can be extended so as to transform
models from the ER modeling language to the
RDB language, and vice versa.

5 DESIGNING CONCRETE
METAMODELS AS PLUTO
EXTENSIONS

Pluto offers constructs for buildingonsistent, hi-
erarchical composition structureSection 5.1) and
provides areusable dependency management system
(Section 5.2) that can be reused by developers of
concrete metamodels. Both constructs provide func-
tionality that is paramount for Pluto’s transformation
logic (Section 6).

5.1 Reusable Composition Concepts
The existence of nesteehole-part relationgypically

causes models to be arranged ihierarchies The
ERMbdel instance in Figure 1, for example, refers
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to implement similar structures over and over again.
We avoid this repetitive and error-prone work by in-
tegrating reusable functionality for managing hierar-
chies at the level of Pluto. This is achieved by struc-
turing its top level classes according to tl®mm-
posite design pattern (Gamma et al.,, 1994). This
composite structure is shown in Figure 2, where in-
stances of\hol eModel El enent refer to instances of
Part Model El ement . The basic version of the Com-
posite pattern is further extended by the introduction
of three subinterfaceshat differentiate between the
root node, the intermediate nodes, and the leaves of a
model tree:

e Root ConposedMbdel El enent is used for ele-
ments that are not contained in other elements,
such as theoot nodeof a model. In the ER meta-
model (see Fig. 2), for instance, this interface is
extended by thé&RMWdel interface because ER
models cannot be contained in other model ele-
ments.

e Basi cMbdel El ement is used to represent those
model elements that are contained in other model
elements without containing elements themselves.
They represent thieavesof a model tree. An ex-
ample of such a basic model element is the rela-
tionship end of alent i t y, as represented BRpl e

in Figure 2.

NonRoot ConposedModel El enent inherits its be-
haviour from both Whol eMbdel El ement  and
Part Model El enent, meaning that it contains
model elements while being contained in another
model element. Concrete realizations of this inter-
face represernhternal nodesTheRel at i onshi p
interface, for instance, is an internal node because
it is contained in alkRVbdel (see Figure 2) while
containing a set oRol e instances.

Evaluation. By augmenting the semantics of
model composition, we allow metamodel developers
to reusePluto’s consistency and validity checks, as
such decreasing the odds for introducisiguctural
integrity violations(e.g. circular dependencies or de-
tached model elements) during the construction of a
new metamodel.
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Figure 2: Parent/child and dependee/dependant relations in Pluto.

5.2 Reusable Dependency Management

The whole/partrelation of Section 5.1 is too gen-
eral to cover different kinds of dependencies between
model elements. Therefore, this section further de-
composes that relation inttwo specialized depen-
dency relations First, the parent/child relation is
used to specifyinterdependencies Second, thale-
pendee/dependarglation is used to specifynidirec-
tional dependencidsetween different kinds of model
elements.

The Parent/Child Relation. This is a hierarchical
one-to-many relation used for expressing interdepen-
dencies between different kinds of model elements.
The following properties characterize the parent/child
relation:

e One-to-Many. A parent can have multiple chil-
dren, but a child only has one parent. For
example, the realization of the ER metamodel
specifies that d&el ati onshi p (parent) contains
multiple relationship ends (i.e. instances of
Rol e), but aRol e (child) can only belong to one
Rel ati onshi p.

e Interdependence. The parent/child relation is

used to express the existencebidirectional de-
pendenciedetween different kinds of model ele-
ments. This means that parents and their children
influence each other:

— Children depend on their parenthildren can-
not survive the removal of their parent. In the
ER metamodel, for instance, this means that in-
stances oRol e cannot survive the removal of
theRel ati onshi p to which they belong. This
is exactly what the ER metamodel must enforce
because a role does not make sense when it is
not participating in any relation.

— Parent depends on childretn parent/child re-
lations, the parent also depends on its children.
A Rel ati onshi p, for instance, is invalid with-
out instances dRol e being attached to it; such
a configuration would specify the existence of a
relationship without participants and this is not
sensible.

e Transitive. Given three model elements 3, and
Yy, such that is a parent of3 andf is a parent of
vy, thena is an indirect parent (a&ncestoy of y.

e Symmetric. A model elementx is the parent of

319



ICSOFT 2007 - International Conference on Software and Data Technologies

B iff Bis a child ofa. Combined withtransitivity, over again, thus increasing the possibility of introduc-
we get thati is anancestorof B iff B is adescen-  ing inconsistencies in the metamodel. By integrating
dantof a. dependency management at the level of Pluto, how-
« Non-reflexive and Acyclic. The data structure in- ~ €Ver, concrete metamodels extending this framework
duced by the parent/child relation asyclic No mher!t (1) fine-grained consistency guarantees and _(2)
model element can be its own parent and a child algorithms _that automatically manage dependencies
cannot be the parent of one of its ancestors. based on lifecycle changes of model elements, thus

) . easing the implementation of new metamodels.
e Tree structure. The non-reflexive, transitive clo-

sure of the parent/child relationship induces an

acyclic tree structur@n a set of model elements.
The Dependee/Dependant Relation. This rela- 6 MODEL TRANSFORMATIONS
tion models a hierarchical many-to-many relation- ) o
ship, meaning that a dependant relies on one or moreNext to offering reysable constructs for building
dependees, which in turn have zero or more depen_metamodels, Pluto incorporates concepts tfans-

dants. The properties of the dependee-dependant reformingmodels defined as concrete instances of those
lation are summarized below: metamodels. These concepts are shown in the right

e Many-to-Many. Other than parent/child interde- part of Figure 1. The basic idea of model transfor-
pendencies, where a child only has one parent, amations in Pluto is shown in Figure 3, which shows
dependant can haveultipledependees. how transformable behaviour is attached to model el-

« Unidirectional Dependency Relation. Unlike  €Ments using th®ecorator pattern(Gamma et al.,
the parent/child relation, where a parent depends 1994). These classes decorate model elements with

onits children, dependees anelependenof their transformable behaviour by pointing to srategy

dependants. In the ER metamodel of Figure 2, for containing arexecutio_n .pIan‘or creating a target el-
instance, afEnt i ty is a dependee of itgol e in- ement. Developers willing to transform some source

stances (and not a parent) because the ER spec-moOIeI o a _UML class dif_;lgram, for _instance, attach
ification does not require aBntity to partici- UML-specific transformation strateglgs to that deco-
pate in aRel ationship to be valid. The re- rator, whgreas datgbase modellgrs WI|| select RDB- or
verse, however, remains unchanged: the deletion ER—spemflc_strategles: This section first explores how
of anEnt i ty is cascaded to igel at | onshi p in- transformation strategies are added to metamodels via
stances in order to ensure model consistency. decorators (Section 6.1) and then shows how these

" . ) \ transformation strategies interact with Pluto’s generic
e Transitive. Similar to the parent/child relation, ansformation algorithm (Section 6.2).

dependee/dependant is a transitive relation. In
Figure 2, for instancebRWbdel is a dependee of 6.1 Decorating Model Elements with

Entity, which is in turn a dependee &l e. f . .
Therefore, ERMdel is an indirect dependeef Transformation Strategies

Rol e whereasRol e is anindirect dependantf ) ) )
ERVbdel . The upper right part of Figure 1 shows the key in-

flexi . i he d terfaces exported by Pluto that attach transformable
o Non-reflexive, Symmetric, Acyclic. The de-  popaviour to model elements. There is a one-to-

pendee/dependant relation has the same mathey e manping between transformation-specific inter-

matical properties as the parent/child relation. By faces (e.g.Tr ansf or mabl eMbdel El enent) and ba-
installing a many-to-many dependency relation, gjc interfaces for metamodels (e.§ybdel El ement)

hhowdever, fjhe /rclion—refcljexwg, dtransmve Clo‘;‘ilére of as shown in Figure 4. There is alsalafault imple-
the dependee/dependant induces an aclatlice o ationfor each transformation-specific interface

structure on a set of related model elements, rather,[0 be reused by decorators of concrete metamodels.

than atree This is also shown in Figure 4, where a concrete dec-

Reusable Dependency Managementt is clear orator, Tr ansf or mabl eEnti ty, inherits from a Pluto
that mathematical properties suchsggnmetry tran- class in order to decoraténtity. Such concrete
sitivity and the abscence @f/clic dependenciese- decorators must be created only once for each meta-

quire rigorous specifications for managing the depen- model element because they &ully agnosticabout
dencies between different kinds of model elements in technical transformation details. They only serve as
trees and lattices. Without a reusable infrastructure a “bridge” between model elements and theke-

for dependency management, metamodel implemen-cution plan These execution plans provide map-
tors would have to implement these relations over and pings between source elements and target elements,
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so they are encapsulated infransformation strate-  ing cross-model consistency, ensuring source model
gies shown agirclesin Figure 4. validity, etc. Instead, developers only have to provide

Transformation Strategies. The main responsi- strategiegontainingocalized execution planghich
bility of a strategy is toencapsulate an execution &€ called by Pluto whenever they are needed during

plan for the transformation of a source element into the exgcution of i'_[S trarjsformgtior? alg.orithm.
the corresponding model construct of a target lan- ~ This general idea is applied in Figure 5, where
guage. Figure 4, for instance, shows two differ- instances ofntity are transformed to instances of

ent transformation strategies that can be attached toRel ation. The vertical arrow.indicates the execution
a Transf or mabl eEntity decorator. Each strategy ©f the algorithm and the horizontal arrow shows the

contains a different execution plan because they bothtransformation of the model element. The transforma-
transform instances dntity to a different target  tion algorithmis explained in three steps: {gnsfor-

modeling language —UML and RDB, respectively. mation preconditic_)n,s(Z) transformation rulesand
Each strategy publishes an operation (3)thetransformation protocol

transforn(), which is called by Pluto through Transformation Preconditions. For the transforma-

the decorator to which the strategy is attached. The tion algorithm to run correctly, we need to make some

execution of such a transformation strategy only assumptions about the source model:

has alocal effect it transforms a single model o .

element, independent of its surrounding elements.V1 The model isvalid, meaning that every model

Any dependencies with related model elements ~ €lement obeys its invariants and that all de-

are handled by the dependency relations that were ~Pendee/dependant relations and parent/child de-

integrated in Pluto, as discussed in Section 5.2. Such ~ Pendencies are wired correctly.

localized transformations make the implementationy2 The model isimmutableduring the transforma-

of Strategies Stl’aightforward, as such making them tion. Changes made to the source model during

eligible for code generation Although not a target the execution of a transformation are not reflected
of this research project, it should be manageable to  in the target model.

add an extra layer above Pluto that converts model _ ) o
transformation languages into strategies that can beTransformation Rules. Given that our two validity

executed by our transformation algorithm. rules,V1 and V2, are satisfied, we can execute the
desired transformation. The generic transformation
6.2 Pluto’s Generic Algorithm for algorithm of Pluto uses three rules to specifyyans-
7 formation orderamong a set of transformable model
Transforming Model Elements elements:

T1 Model elements can never directly transform
other model elements; they can only transform
themselves. It is only possible to start the trans-
formation of another model elemeintdirectly, as
will be explained below.

The previous Section explained how transformation
strategies are attached to decorators in order to make
model elements transformable. This Section shows
how Pluto’s generic algorithm interacts with these
strategies in order to transform model elements. The
basic philosophy of this algorithm is to exonerate the T2 Elements can only transform themselvafer
developer from taking care of all the technical “mid- their parent and dependees have been trans-
dleware” concerns of model transformations. Such formed. Thus, an element may have to wait
tasks include determining an execution order, manag-  for other elements before it can transform itself,
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which is calledtransformation preemptignas
shown in Figure 5.

T3 After its transformation, a model element indi-
rectly triggers the transformation of its children
and dependants. This is calledinsformation
propagation(see Fig. 5).

Two-Phase Transformation Protocol. Given our
transformation rules, T1-T3), by which concrete
transformation strategies must abide, every model el-
ement can decide whether or not to transform it-
self based ornocal information, i.e. by determining
whether its dependees and parent have been trans-
formed (T2). Therefore, the transformation of a
model element can be decomposed into two different
transformation steps:

CT Conditional Transformation Request. These
requests are sent by external model elements
to the model element that must be transformed.
These requests are termeanditionalbecause it
is not guaranteed that the transformation will be
executedlirectly. Indeed, the request may pee-
emptedso as to conform to rul@é2. Also, aCT
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request will propagate ne@T requests to all the
dependants and children of the model element af-
ter it has transformed itself (as required Bg).
The implementation of th€T operation isnde-
pendentof concrete transformations, so we have
encapsulated this logic in the Pluto framework.

AT Actual Transformation. Unlike the CT phase,

this second operation does not check preemption
constraints and it does not propagate calls to chil-
dren or dependants. Instead, it activates the ex-
ecution plan of the strategy that was attached to
the transformable model element, causing the tar-
get model to be manipulated. Therefore, this op-
eration is private to the model element and it is
called byCT when all preconditions have been
satisfied, i.e. when the parent and the dependees
of this model element have been transformed such
that preemption is no longer required. This is the
only phase that is specific to a model transfor-
mation, so thesactual transformationsnust be
provided by the developers by means of a con-
cretetransformation strateggbject, as explained

in Section 6.1. The other steps of the algo-
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rithm are transformation-independent, so devel-
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target model, possibly making use of the elements that

opers can reuse them in concrete transformationswere already created by its parent and dependee.

without further configuration.

6.3 lllustration

Given a set of preconditions, a set of transformation
rules, and the dichotomy betweeonditionalandac-

tual transformations, we now explain the generic ex-
ecution strategy of our transformation algorithm by a
simple example. Assume a conditional transforma-
tion requestCT, arrives atvbdel El enment in Figure

6 and assume that the modelvalid according to

the transformation precondition¥1-V2. This Sec-
tion describes the steps taken by the transformation
algorithm of Pluto in order to create a target model
for Model El enent and its related elements. As noted
above, this target model can be written in any other
modeling language, depending on the contents of the
concretetransformation strategynstances that were
provided by the implementor of the transformation.
This illustration is therefore independent of the cho-
sen target language.

[Phases 1-6] Preemption of ModelElementPluto
first checks whethekbdel El enent has any parent

or dependees that have not executed their transfor-

mation, as required by2. After discovering that
Par ent ye is not transformed, the transformation of
Model El ement is preempted and a conditional trans-
formation requesiCT is forwarded toParent yg.
Pluto repeats th€T procedure for that parent and
finds thatPar ent ye can transform immediately with-
out being preempted (according to rlig). Thus, the

strategy attached to that parent is executed and a targe

element is created. Next, accordingTi®, the condi-
tional transformation request must be propagated to
all children, causing the call to reathdel El ement .

Due to the existence of a dependee that still needs to

be transformed, howevevhdel El enent is again pre-
empted and €T request is sent tbependeeye. The
latter executes its transformatiéi and propagates a
CT request to its children.

[Phase 7] Transformation of ModelElement.
Downward propagation of theCT request from
Dependeeyne eventually reachelgbdel El enent , one
of the dependants dkependeeme, so Pluto checks
whethenvbdel El enent can transform itself. All pre-
conditions have been satisfied, since both its par-

[Phases 8-9] Propagation from ModelElement.
After the execution ofbdel El ement has completed,
Pluto propagates @T request to all the children and
dependants, causing the transformation algorithm to
visit Dependant g and Chi |l dye. These elements
can transform themselves without being preempted.

Due to space limitations, we cannot give a more real-
istic example of this transformation algorithm. There-
fore, we refer to our technical report (Labey et al.,
2007) for more information about the technical details
of this algorithm in the context of multiple dependees
or transitive dependencies between model elements.

7 RELATED WORK

In (Sunye et al., 2002) and (Varro and Pataricza,
2003), the applicability of Action Semantics (AS)
(OMG, 2002) to model transformations is studied.
The authors conclude that AS can be used for trans-
forming between UML models, thus allowing for iter-
ative refinement of UML designs. Another advantage
of using AS is that design patterns can be encoded
as a sequence of transformation steps, thus allowing
to refactor designs. One shortcoming is that cross-
model transformations are not supported because AS
is irreversibly linked to the Unified Modeling Lan-
guage.

YATL (Patrascoiu, 2004) is a language for defin-
ing model transformations. It combines declarative

oncepts for querying the source model with impera-
ive constructs for executing the transformation itself.
By relying on the Meta Object Facility (The Meta
Object Facility Core Specification 2.0, 2006), YATL
provides support for pluggable metamodels, but the
transformation tool does not offer reusable concepts
for definingthose metamodels. Furthermore, it is not
clear how the transformation language can be applied
to concrete instances of such newly introduced meta-
models.

MTRANS (Peltier et al., 2001) is a model trans-
formation framework that provides both a develop-
ment environment and a language to define model
transformations. This language is defined as an ab-
straction above XSLT and, therefore, the transforma-
tion architecture of MTRANS is strongly influenced

ent and its dependee have successfully transformedby the XSLT specification. One major drawback of

so Model El ement can execute itsAT transforma-
tion according toT2. To do so, Pluto delegates to
the strategythat was attached to théecorator of
Model El ement. This strategy now manipulates the

this dependency is that many-to-one transformations
are not supported because XSLT inherently relies on
one-to-one mappings between source and target ele-
ments. Pluto, on the other hand, is independent of
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Figure 6: lllustration of Pluto’s transformation algorithm.

any transformation language and transparently man-

relies on a hardwired metamodel, thus disallowing

ages one-to-many and many-to-one dependencies fopluggable metamodels We are investigating how

model transformations.

UMLX (Willink, 2003) and VMT (Sendall et
al., 2003) are graphical transformation languages for
MDA, primarily developed in an attempt to increase
user-friendliness of model transformation languages.
The major advantage of UMLX and VMT is their
expressiveness, given their limited amount of graph-
ical modeling constructs. One problem, however,
is that these transformation languages are limited to
transforming UML models. As the UMLX compiler
is able to compile transformations into Java code,
however, it should be possible to attach this gener-
ated code to our transformation strategies. Indeed,
our model transformation framework fits into a larger
framework, Chameleon, (van Dooren, 2007), which
can be used ttransform between programming lan-
guages Concrete examples of such transformations
can be found in the work of (van Dooren and Steeg-

these transformation languages can be compiled to
our transformation strategy objects, which is benefi-
cial for both paradigms: (1) the transformation lan-
guage can be used for cross-model transformations
and (2) the developer is freed from having to program
strategies.

8 CONCLUSION

Modeling tools often rely on hardwired, proprietary
metamodels, as such obstructinogpss-model trans-
formationsand metamodel reuse. This leads to in-
consistent designs scattered over a variety of model-
ing tools. We have implemented Pluto, a framework
providing reusable concepts fonetamodelingand

for model transformationsPluto eases the definition
of new metamodels by providing reusable concepts

mans, 2005; Delanote and Steegmans, 2006; Labetsr gependency management and model composition.

et al., 2007). By integrating Pluto’s support for lan-
guage transformations with the VMT compiler, we in-
tegrate a visual transformation language witbss-
model transformabilitythus solving the problems of
the original VMT proposal, which relies on a hard-
wired metamodel.

Finally, a large number of transformation lan-

Furthermore, Pluto enables cross-model transforma-
tions by deferring model-specific transformation logic
to strategiescontaining localized execution plans.

The decoupling betweemetamodel-independent
constructs offered byluto and model-specificcon-
cepts provided bylevelopergdlecreases the develop-
ment time of new metamodels and increases their con-

guages have been proposed, for example, Convergesistency because modellers can focus on metamodel-

(Tratt and Clark, 2003) and the work of Kuznetsov
(Kuznetsov, 2005). These languages are typically
compiled and executed on a transformation tool that
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specific concepts while inheriting common modeling
functionality from Pluto.
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