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Abstract: Genetic Algorithm (GA) is a directed random search technique working on a population of solutions and 
based on natural selection. However, its convergence to the optimum may be very slow for complex 
optimization problems, especially when the GA is software implemented, making it difficult to be used in 
real time applications. In this paper a parameterized GA Intellectual Property (IP) core is designed and 
implemented on hardware, achieving impressive time–speedups when compared to its software version. The 
parameterization stands for the number of population individuals and their bit resolution, the bit resolution 
of each individual’s fitness, the number of elite genes in each generation, the crossover and mutation 
methods, the maximum number of generations, the mutation probability and its bit resolution. The proposed 
architecture is implemented in a Field Programmable Gate Array Chip (FPGA) with the use of a Very-High-
Speed Integrated Circuits Hardware Description Language (VHDL) and advanced synthesis and place and 
route tools. The GA discussed in this work achieves a frequency rate of 92 MHz and is evaluated using the 
Traveling Salesman Problem (TSP) as well as several benchmarking functions.  

1 INTRODUCTION 

Genetic Algorithms (GAs), initially developed by 
Holland (Holland 1975), are based on the notion of 
population individuals (genes/chromosomes), to which 
genetic operations as mutation, crossover and elitism 
are applied. Genetic algorithms obey Darwin’s natural 
selection law i.e., the survival of the fittest. GAs have 
been successfully applied to several hard optimization 
problems, due to their endogenous flexibility and 
freedom in finding the optimal solution of the problem 
(Mitchell 1996, Goldberg 1989). 

However, the most serious drawbacks of software-
implemented GAs are both the vast time and system 
resources consumption. Keeping that in mind, a 
multitude of hardware-implemented GAs have been 
evolved mainly during the last decade, exploiting the 
rapid evolution in the field of the Field Programmable 
Gate Arrays (FPGAs) technology and achieving 
impressive time-speedups. 

This paper deploys the design and hardware 
implementation of a parameterized GA Intellectual 
Property (IP) core (Semiconductor intellectual property 
core n.d.) on an FPGA chip. The genetic operators 

applied to the genes of the population are crossover, 
mutation and elitism, whose employed method is 
parametrically selected. The designed selection 
algorithm is the “Roulette Wheel Selection Algorithm”. 
The FPGA chip used in this work is a Xilinx 
XC3S1500–4FG676C Spartan-3 FPGA (Xilinx 2003). 
A software implementation of the designed GA using 
the Matlab Platform has also been developed to 
produce input and output test vectors for the 
performance evaluation of the hardware implemented 
GA using several benchmark functions, described 
below. Finally, after adapting the proposed hardware 
implemented GA to the Traveling Salesman Problem 
(TSP), a successful solution to it has been found. 

2 GA HARDWARE 
ARCHITECTURE 

This section describes and explains analytically the 
various hierarchical modules of the presented GA 
architecture. 
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2.1 System Overview 

A high level architectural structure of the system is 
shown in Figure 1. 

 
Figure 1: High level architectural structure. 

2.2 GA Characteristics 

Table 1: GA Characteristics. 

Parameter name Description 
genom_lngt Chromosome length in bits 

score_sz Fitness value bit resolution 
pop_sz Population size 

scaling_factor_res 
Bit resolution of the random 

number used in RWS 
algorithm 

elite Number of elite offsprings 
mr Mutation rate 

mut_res Bit resolution of the random 
number used in mutation 

fit_limit Fitness limit 
max_gen Maximum generations number 

inv_type 

Type of the inversion of 
the fitness value 

 (used  only in TSP) 
1: division 2: subtraction 

2.3 GA Architecture 

As shown in Figure 1, the architecture is broken into 
separate blocks each one of which performs a 
particular task, coordinated by the control block. 
Moreover, they send back signals to the control 
module notifying their state i.e., ready out signals. 

2.3.1 Control Module 

In order to assure, control and synchronize the order 
of execution of the several hardware implemented 
modules of the proposed GA architecture, a control 
module has been implemented for that reason. This 
block produces and feeds all other modules with the 
needed control signals using a nine-state Mealy state 
machine (Zainalabedin 1998). The task performed 
by each of the nine states, is described in Table 2. 

Table 2: Diverse states of the implemented state machine. 

State Description 
clear_ram Clear RAM 1 

fill_ram Fill RAM 1 with a random gene 
to create the initial population 

fit_eval 
Fitness evaluation of the input 
gene and generation of the elite 

offsprings’ indexes 

sel Selects one parent among the 
genes of the current population 

cross Apply crossover operation 
mut Apply mutation operation 
done Check of the termination criteria 

read_write_ram_1 Read/write RAM 1  
read_write_ram_2 Read/write RAM 2 

2.3.2 Fitness Evaluation Module 

This section describes the fitness evaluation module, 
which functions every time a new population of 
individuals is formed. This block performs two 
separate tasks; on the one hand it calculates the 
fitness of each individual according to the given 
fitness function and, on the other, it performs elitism 
on the current population producing the elite genes 
for the next generation. Having that in mind, the 
structural architecture of this module consists of two 
sub-modules as shown in Figure 2. 

 
Figure 2: High level architectural structure. 

The one is used for fitness calculation and the 
other for performing elitism. The above mentioned 
modules are externally connected to the remaining 
GA architecture, so as to allow any further fitness 
functions without affecting the rest of the design. 
Furthermore, the module outputs both the sum of 
fitnesses and the maximum fitness of the current 
population as well as the RAM indexes of the elite 
genes. The number of elite genes is parametrically 
set. In order for an individual to become an elite 
gene of the next generation, i.e., to survive in the 
next generation, it has to be the fittest among the rest 
individuals. 

2.3.3 Selection Module 

This section describes the selection module, which 
operates after the fitness evaluation of the individuals 
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of the current population has ended and is controlled by 
the control module. The selection block, connected to 
both RAMs, implements the Roulette Wheel Selection 
Algorithm (RWS) (Koza et al. 1999, Mitchell 1996). 

The selection block will keep on selecting parents 
till the number of them suffices to produce a new 
population with an equal number of individuals like the 
one in the current population. 

2.3.4 Crossover Module 

This section describes the crossover module, which 
runs after the selection module has completed its task 
and applies the crossover operation to the selected 
parents. The crossover method to be implemented is 
parametrically employed. There are diverse crossover 
strategies reported in literature (Koza et al. 1999, 
Tzafestas 1999). The present implementation includes 
three different crossover methods, i.e., single point, two 
point and uniform crossover. 
The crossover module needs a couple of random 
numbers (random crossover points, random mask), 
according to the method employed, in order to apply 
the desired crossover operation. As a result two random 
number generators are used for that reason. The former 
produces the crossover points and the other the mask 
needed for the application of uniform crossover to the 
parents. The crossover block outputs one offspring in 
each execution, produced by two of the selected 
parents. 

2.3.5 Mutation Module 

This section describes the mutation module, which 
functions after the crossover module has completed its 
task and applies the parametrically employed mutation 
method to the crossovered offsprings, i.e., the 
offsprings produced by crossover module. Various 
mutation strategies are reported in literature (Koza 
1999, Tzafestas 1999). The proposed design includes 
three different mutation methods, i.e., single point, 
masked and uniform mutation. 
The mutation module requires a couple of random 
numbers (random mutation points, random mask, 
random numbers pr,i), according to the method 
employed so as to apply the desired mutation operation. 
For this reason two random number generators are 
needed. The former produces the mutation points and 
the other a random binary mask. The latter RNG also 
generates the necessary random number pr, in order to 
decide if mutation operation will be applied, i.e., only if 
its value is less or equal to the parametrically set 
mutation probability pm, will mutation be applied to the 
offsprings. If the mutation method employed is uniform 
mutation, it also generates the essential random 
numbers for uniform mutation. The mutation block 

outputs one offspring in each execution produced by 
processing one offspring, result of crossover, each time. 

2.3.6 Observer Module 

This section describes the observer module, which 
executes each time a new population has been 
formed. This block determines the continuation of the 
algorithm, checking if the parametrically set stopping 
criteria, i.e., maximum generations, fitness value 
limit, have been met. 

2.3.7 Random Number Generators 

This section describes the random number generator 
modules, which feed most of the described modules 
above with random numbers. This block implements 
a Linear Feedback Shift Register (LFSR) generator, 
whose sequence length is parametrically set. Four 
random number generators (RNG) are used to 
produce both the initial random generation and the 
necessary random numbers. The maximum length of 
the random generated sequence is 128 bits, while the 
specific characteristics of the four RNGs used in our 
design are shown in Table 3. 

Table 3: Characteristics of the used RNGs. 

RNG LFSR length 
RNG 0 genom_lngt 
RNG 1 scaling_factor_res 
RNG 2 genom_lngt + mut_res 
RNG 3 2•log2(genom_lngt) 

2.3.8 Random Access Memory (RAM) 

This section describes the Random Access Memory 
(RAM) modules, RAM 1 and RAM 2, which store 
the current population and the selected parents 
respectively. Both the address and data widths are 
parametrically set, as shown in Table 4. 

Table 4: Parameters of RAM 1 and RAM 2. 

RAM Address width Data width 
RAM 1 

(population RAM) genom_lngt genom_lngt 
+ score_sz 

RAM 2 
(parents RAM) 2•(pop_sz-elite) genom_lngt 

3 DESIGN FLOW FOR THE GA 

This section presents the design flow, illustrated in 
Figure 3, in a top-down manner (Deliparaschos et al. 
2006), followed in our design. In a top-down design, 
one first concentrates on specifying and then on 
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designing the circuit functionality (Sjoholm et al. 
1997). The starting point of the design process is the 
system level modelling of the proposed GA, so as to 
evaluate the proposed model and to extract valuable 
test vector values to be used later for RTL and timing 
simulation. Special attention has been paid on the 
coding of the different blocks, since we aim at writing 
a fully parameterized GA code. An RTL simulation 
has been performed to ensure the correct functionality 
of the circuit. Next, logic synthesis has been done, 
where the tool first creates a generic (technology-
independent) schematic on the basis of the VHDL 
code and then optimizes the circuit to the FPGA 
specific library chosen (Spartan-3 1500-4FG676). At 
this point, area and timing constraints and specific 
design requirements must be defined as they play an 
important role for the synthesis result. 

 
Figure 3: Design Flow. 

Following, the Xilinx ISE place and route (PAR) 
tool accepts the input netlist file (.edf), generated with 
Synplify Pro synthesis tool, translates and maps our 
design on the FPGA device. Finally, it places and 
routes the FPGA producing output for the bitstream 
generator (BitGen). The latter program generates a 
bitstream (.bit) for Xilinx device configuration. 
Before programming the FPGA file, a timing 
simulation is performed to ensure that the circuit 
meets the timing requirements set and works 
correctly. 

4 IMPLEMENTATION RESULTS 

This section describes the implementations results of 
the designed GA. After the synthesis of the design, 
ISE translates, maps, and places and routes our design 

to the FPGA device. The FPGA utilization for both 
the GA and the GA adapted to the TSP produced by 
ISE are shown in Table 5. 

The hardware implementation of the proposed GA 
achieves an internal clock frequency rate of 92 MHz 
(10,8 ns) while the adapted GA to the TSP achieves 
an internal clock frequency rate of 91 MHz (11 ns). 
Moreover, 2.450 ns (2,4 μs) and 14.391 ns (14,3 μs) 
are required to form a new generation of 8 individuals 
in the former and latter version of the GA 
respectively. Finally, the VHDL codes for the GA 
models presented here are fully parameterized, 
allowing us to generate and test the GA models with 
different specification scenarios. 

Table 5: FPGA Utilization for the implemented GAs. 

Logic Utilization GA GA 
(adapted to TSP) 

Slice flip flops 681   (2%) 1045     (3%) 
4 – Input LUTs 1086 (4%) 1630     (6%) 

Logic Distribution   
Occupied slices 892   (6%) 1305     (9%) 
4 – Input LUTs 1116 (6%) 1686     (6%) 
Used as logic 1086 1630 

Used as route-thru 6 4 
Used as 16x1 ram 24 52 

Bonded IOBs 59   (12%) 53         (10%) 
MULT 18x18s 1     (3%) 3           (9%) 

GCLKs 1     (12%) 1           (12%) 

5 EVALUATION RESULTS 

The evaluation of the system performance has been 
made both by solving the TSP problem and by 
optimizing several benchmark functions (Digalakis 
et al. 2000, Zhang and Zhang 2000), which are 
noted in section 5.2.2. In order to evaluate the 
performance of the implemented GA using the TSP, 
we firstly have to adapt the hardware to the TSP 
(section 5.1) and secondly to write a software 
version of the hardware implemented GA, which 
will also be adapted to the TS problem. Both the 
software version of the GA and the one adapted to 
the TSP have been developed on Matlab Platform. 

5.1 GA Hardware Adaptation to the TSP 

According to the definition of the TSP (Pham and 
Karaboga 2000), each city should be visited only 
once. So every gene of the population, which contains 
the towns to be visited in sequence, must contain each 
town only once. Since our genes are unique, we 
cannot possibly use the above mentioned crossover 
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and mutation techniques, but new crossover and 
mutation methods must be developed (explained 
below) (Martel 2006). 

The crossover operator uses a pool of indices of 
the towns. In order to keep the uniqueness of the 
visited cities used indices will be removed from the 
pool. The offspring produced after the application of 
crossover to the parents, is formed via the following 
procedure: In the beginning a random crossover 
point is generated and then the town indices of the 
first parent are added to the offspring starting from 
the crossing site, to the head of the gene. The afore-
mentioned indices are removed from the pool. 
Afterwards the right side of the gene is filled by 
checking whether the town indices in the right side 
of the second parent are contained in the pool. If a 
town index is still free, i.e. exists both in the pool 
and the second parent, we place it in the offspring 
and remove it from the pool; otherwise we skip it 
and leave its place in the offspring empty till we 
reach the tail of the gene. Finally empty places of the 
offspring are randomly filled with the town indices 
remaining in the pool. The developed mutation 
operator utilizes two random generated mutation 
points and simply swaps the town indices stored at 
these points of the gene. The described methods for 
8 cities are depicted in Figure 4. 

 
Figure 4: Crossover and mutation operations for TSP. 

The fitness evaluation function implemented here, is 
the computation of the sum over the number of 
towns (N) of the square of the Euclidean distances 
between two adjacent towns according to the 
computed tour, as shown in equation (1). We 
compute the square of the Euclidean distance in 
order to avoid the hardware implementation of the 
square root, since it is not necessary as we do 
nothing but merely compare the fitnesses among the 
chromosomes.  
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Since we seek the optimal minimum path 

connecting the given towns and the GA is designed to 
result in the gene with the maximum fitness instead, 
i.e., with the maximum sum of Euclidean distances, 
we have either to invert the computed fitness or to 
subtract the fitness from its highest value, according 
to the resolution of bits adopted for the binary coding 
of it, i.e. 2score_sz-1 (See Table 1), in order to get higher 
values for smaller path lengths. The method for the 
inversion of the fitness to be implemented is selected 
through a generic in the VHDL code (inv_type). 

5.2 Results 

The performance evaluation of the proposed GA using 
the TSP and various benchmark functions follow. 

5.2.1 TSP 

The performance evaluation of the proposed GA 
using the TSP has been performed by comparing the 
time needed for the software version developed and 
the one needed for the hardware implementation to 
find the optimal solution. The results for eight cities, 
60 generations and 32 individuals are summarized in 
Table 6, where an impressive speedup ratio of 11.035 
can be observed. Figure 5 depicts the map of the 8 
cities used, which are existing cities of the greek 
territory. The algorithm was also tested using the 
benchmark burma14 derived from the TSPLIB 
(Gerhard n.d.), and the result is depicted in Figure 6. 

Table 6: Software vs. Hardware GA. 

GA version Time (msec) 
Hardware (11 nsec) 1,702 

Software 
(Pentium 4 3,2 GHz 1Gb RAM ) 18.783 

 
Figure 5: Map of the cities used in the TSP. 
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Figure 6: TSP solution of burma14 benchmark. 

5.2.2 Benchmark Functions 

Several benchmark functions are known in the 
literature (Digalakis and Margaritis 2000, Zhang et 
al. 2000) for evaluating the performance of a GA, 
i.e. its ability to reach the optimum of an objective 
function. In our case we have tested the proposed 
GA using the following functions, which are noted 
in Table 7 and depicted in figures 7–9. 

Table 7: Benchmarking functions. 

Name Function type 

F1: 
Zhang Zhang 
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Figure 7: Zhang Zhang function (F1). 

 
Figure 8: Rastrigin function (F2). 

 
Figure 9: Easom function (F3). 

In the following figures the results of a number of 
experiments using the above mentioned functions are 
presented. Figure 10 shows the effect of the 
chromosome length (genom_lngt) on the optimal 
solution found, while Figure 11 depicts the effect of the 
population size (pop_sz) on the generations needed by 
the algorithm to converge. Finally the influence of the 
population size on the calculation time is shown in 
Figure 12. We also have to note that the precision of the 
optimum value found by the proposed GA depends on 
the chromosome length adopted in each experiment. A 
length of 16 and 32 bits for evaluating one and two-
variable benchmark functions, respectively, is observed 
to give high accuracy on the result in relatively low 
calculation times. 

 
Figure 10: Estimated optima vs. chromosome length. 

 
Figure 11: Estimated generations vs. population size. 

 
Figure 12: Estimated calculation time vs. population size. 
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6 CONCLUSION 

In this work we presented a fully parameterized 
Genetic Algorithm IP in terms of the number of 
population individuals (pop_sz) and their resolution in 
bits (genom_lngt), resolution in bits of the fitness 
(score_sz), number of elite genes in each generation 
(elite), method used for crossover (cross_method) and 
mutation (mut_method), number of maximum 
generations (max_gen), mutation probability (mr) and 
its resolution in bits (mut_res), as well as the resolution 
in bits of the scaling factor used by the RWS algorithm. 
This parameterization allows the adaptation of the GA 
to any problem specifications without any further 
change to the developed VHDL code. Furthermore, the 
proposed hardware implemented GA operates at a 
clock rate of 92 MHz (10,8 ns) and achieves a 
noteworthy speedup when compared to its software 
version. Additionally, the hardware area required for 
the implementation and the requirements of RAM are 
kept small according to the PAR report (see Table 5). 
Compared to other GAs hardware implementations 
(Zhu et al. 2006, Aporntewan and Chongstitvatana 
2001, Lei et al. 2002, Tang and Yip 2002), our design 
operates at a clock frequency up to five times faster and 
implements more than one crossover and mutation 
methods, which can be changed during its execution. 
Moreover, our design utilizes more parameters and is 
evaluated not only by using benchmarking functions 
but also by solving the NP-complete Travelling 
Salesman Problem. 
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