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Abstract: We present a new algorithm, namB$SRT, forRapidly-exploring Random TreéRRT) based on inherent
relations analysis betwed®RTcomponents RRTalgorithms are designed to consider interactions between
these inherent components. We explain properties of known variations and we present some future once which
are required to deal with dynamic strategies. We present experimental results for a wide set of path planning
problems involving a free flying object in a static environment. The results show th&$RiTalgorithm
(whereRSRTstands for Rapidly-exploring Sorted Random Trees) is faster than existing ones. This results
can also stand as a starting point of a motion planning benchmark instances which would make easier further
comparative studies of path planning algorithms.

1 INTRODUCTION sists in exploring the space in order to compute a so-
lution with a determinist algorithm (Latombe, 1991).

Literally, planning is the definition of a sequence of 'N€ specificity of these methods can be summarized

orders which reach a previously selected goal. In a ge-With @ random sampling of the search space, which
ometrical context, planning considers a workspace, an€duces the determinist-polynomial complexity of the
initial position, a final position and a set of constraints '€selution (Schwartz and Sharir, 1983). The increase
characterizing a mobila(. The problem of planning of _co_mputers capacities and the progress of the proba-
could be resumed in two questions: the existence of Pilistic methods, made solvable problems more com-
a solution to a given problem and the definition of a plex during last decades. The pnqmpal alternatives of
solution to a problem that has at least one solution, 'éSearch space are the configuration sfiagezano-

In this paper, the problem of planning is focused on P€reZ, 1983), the state spaXgDonald et al., 1993)
the second oné.e. identifying solutions for problems ~ @nd the state-time spa& (Fraichard, 1993)C is

that have at least one solution. The complexity of such Inténded to motion planning in static environments.
a solution depends on the mobile workspace, its car- X adds differential constraintsST adds the possi-

acteristics (i.enumber of degrees of freedom) and the Pility of & dynamic environment. The concept of
required answer complexity (i.¢he model and the high-dimensional configuration spaces is initiated by
local planner). Each dimension of these three partsJ- Barraquanet al. (Barraquand and Latombe, 1990)
contributes to define the problem dimension. Com- © Use & manipulator with 31 degrees of freedom. P.
plexity is exponential in the problem dimension, so €heng (Cheng, 2001) uses these methods with a 12

probabilistic methods propose to solve geometrical dimensional state space involving rotating rigid ob-

path-planning problems by finding a valid solution 1€CtS in 3Dspace. S. M. LaValle (Lavalle, 2004)
without guarantee of optimality. This particular re- Présents such a space with a hundred dimensions for

lation to optimality associates probabilistic methods €!ther & robot manipulator or a couple of mobiles.
with problems known as difficult (also called non- The probabilistic methods mostly used in such spaces

deterministic polynomial in space (Canny, 1987)). In &re Randomized Path Plannin(RPP), Probabilis-
these methods, solving a path-planning problem con- fic RoadMap(PRM) andRapidly exploring Random
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Trees(RRT). The RPPmethod introduced by J. Bar-
raquandet al. (Barraquand and Latombe, 1991) is a
variation of the gradient method also introduced by
O. Khatib (Khatib, 1985). Random moves make pos-
sible to escape from the local minima and recover the
completeness. These random moves follow a Gaus-
sian law. Each move is independent of the previous

2 RAPIDLY EXPLORING
RANDOM TREES

In its initial formulation, RRT algorithms are de-
fined without goal. The exploration tree covers the
surrounding space and progress blindly towards free

one. With obstacles, moves must remain in free spacespace.

Ctree. In case of collision, moves are reflected on the
obstacles. Th&RM method is introduced simulta-
neously by L.E. Kavraket al. (Kavraki, 1995) and
by P. Svestkeat al. (Svestka, 1997) under the head-
ing Probabilistic Path Planne(PPP). Their resolu-
tion principle divides the path planning problem into
two successive stagesilearning phasehat builds a
graph and ajuery phasehat builds a solution based
on the previous graph. During tHearning phase
the graph is built inCsee Where each node is ran-
domly selected according to a uniform distribution in
Ciree- This uniform distribution is justified by the
need of exploring the entire free space. It is ob-
tained by a random sampling associated to a colli-
sion detector. During thguery phasethe graph
is used to connect two configurationgi: and gobj
included inCsee. At each iteration, a local path
planner seeks a way to connect a new node to the
graph and also tries to conneghiy and dopj. The
RRT method introduced by S.M. LaValle (LaValle,
1998) is based on the construction of a tle@ the
considered space. Starting from the initial position
Oinit ,» the construction of the tree is carried out by inte-
grating control commands iteratively. Each iteration
aims at bringing closer the mobilg{ to an element
e randomly selected ig. To avoid cycles, two ele-
mentse of T cannot be identical. In practic®RT
is used to solve various problems such as negotiating
narrow passages made of obstacles (Ferré and Lau
mond, 2004), finding motions that satisfy obstacle-
avoidance and dynamic balances constraints (Kuffner
et al., 2003), making Mars exploration vehicles strate-
gies (Williams et al., ), searching hidden objects (To-
var et al., 2003), rallying a set of points or play-
ing hide-and-seek with another mobile (Simov et al.,
2002) and many others mentioned in (LaValle, 2004).
Thus by their efficiency to solve a large set of prob-
lems, theRRTmethod can be considered as the most
general one.

In the next section, we present existiR@Talgo-
rithms.

A geometrical path planning problem aims gener-
ally at joining a final configuratioqyj. To solve the
path planning problem, thBRRT method searches a
solution by building a tree (AG. 1) rooted at the ini-
tial configurationg;,ii. Each node of the tree results
from the mobile constraints integration. Its edges are
commands that are applied to move the mobile from
a configuration to another.

The RRTmethod is a random incremental search
which could be casting in the same framework of
Las Vegas AlgorithmsL{VA). It repeats successively a
loop made of three phases: generating a random con-
figuration grang, Selecting the nearest configuration
Oprox, generating a new configuratiame,, obtained
by numerical integration over a fixed time stAp
The mobile M and its constraints are not explic-
itly specified. Therefore, modifications for additional
constraints (such as non-holonomic) are considered
minor in the algorithm formulation.

In this first versionC is presented without obsta-
cle in an arbitrary space dimension. At each itera-
tion, a local planner is used to connect each couples
(Gnew Gprox) in C. The distance between two configu-
rations inT is defined by the time-steft. The local
planner is composed by temporal and geometrical in-
tegration constraints. The resulting solution accuracy
is mainly due to the chosen local planné&rdefines

the maximum depth of the search. If no solution is

found afterk iterations, the search can be restarted
with the previoud without re-executing the init func-
tion (ALG. 1 line 1).

The RRT method, inspired by traditional Artifi-
cial Intelligent techniques for finding sequences be-
tween an initial and a final elemenitg. g, and
Qobj) in @ well-known environment, can become a
bidirectional search (shorten®&i-RRT(LaValle and
Kuffner, 1999)). Its principle is based on the simulta-
neous construction of two trees (call§gy andTop))
in which the first grows frong,ir and the second
from gobj. The two trees are developped towards
each other while no connection is established between
them. This bidirectional search is justified because
the meeting configuration of the two trees is nearly
the half-course of the configuration space separating
Qinit anddop;j. Therefore, the resolution time complex-
ity is reduced (Russell and Norvig, 2003).
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-

rt(qinit ) kv AtaC)

init(Qinit, T);

fori —1ak
Orand < randomStateC);
Qprox < NearbyStat@ang, T);
Onew <— neWStatéQprom Orand, At);
addStat&new T);

addLink(Gprox; tnew T);
returnT;

oO~NO U WNPE

ALG. 1: BasicRRTbuilding algorithm.

RRT-Connec{Kuffner and LaValle, 2000) is a
variation ofBi-RRTthat consequently increase tBie

RRTconvergence towards a solution thanks to the en-
hancement of the two trees convergence. This has

been settled to:

e ensure a fast resolution for “simple” problems (in

a space without obstacle, tRRRTgrowth should
be faster than in a space with many obstacles);

e maintain the probabilistic convergence property.

Using heuristics modify the probability conver-

gence towards the goal and also should modify

its evolving distribution. Modifying the random

sampling can create local minima that could slow

down the algorithm convergence.

connectTq,At,T)

1 r — ADVANCED;

2 whiler = ADVANCED

3 | r — expandTg,At, T);
4 returnr;

ALG. 2: Connecting a configuratianto a graphrl with
RRT-Connect

In RRT-Connecthe two graphs previously called
Tinit andTop; are called nowl, andT, (ALG. 3). Ty
(respectively §) replacesTint and Top; alternatively
(respectively Jyj andTinit). The main contribution of
RRT-Connecis the ConnectT function which move

towards the same configuration as long as possible

(i.e. without collision). As the incremental nature al-

gorithm is reduced, this variation is designed for non-
differential constraints. This is iteratively realized by

the expansion function (G. 2). A connection is de-

fined as a succession of successful extensions. An ex-

pansion towards a configurati@nbecomes either an

extension or a connection. After connecting success- e
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fully gnew to Ta, the algorithm tries as many exten-
sions as possible towardgey to Ty. The configura-
tion gnew becomes the convergence configuratigg
(ALG. 3 lines 8 and 10).

rrtConnectinit, Jobj, K, At, C)

1 init(Qinit , Ta);

2 init(dobj, To);

3 fori — 1ak

4 Orand < randomStatec);

5 r « expandTQrang, At, Ta);

6 if r # TRAPPED

7 if r = REACHED

8 ‘ Oco <= Qrand:

9 else

10 ‘ Oco <= Onew

11 if connectTqco, At, Tp) =

REACHED

12 SOI N plar(qC07 Ta; Tb)’

13 return sol;

14 | swapTTa, Th);

15  return TRAPPED;
ALG. 3: Expanding two graphk and T, towards them-
selves withRRT-Connectgnew mentionned line 10 cor
reponds to theey variable mentionned line 9 14G. 4.

Inherent relations inside the adequate construction
of T in Ctree Shown in previous works are:

e the deviation of random sampling in the varia-
tions Bi-RRT and RRT-Connect Variations in-
clude in RRT-Connectare calledRRT-ExtCon
RRT-ConCorand RRT-ExtExt they modify the
construction strategy of one of the two trees of
the methodRRT-Connecby changing priorities
of the extension and connection phases (LaValle
and Kuffner, 2000).

o the well-adapted)prox element selected according
to its collision probability in the variatiol€VP
and the integration of collision detection since
Oprox generation (Cheng and LaValle, 2001).

e the adaptation ofC to the vicinity accessibil-
ity of gprox In the variationRC-RRT(Cheng and
LaValle, 2002).

e the parallel execution of growing operations for
n distinct graphs in the variatio®R parallel Bi-
RRTand the growing of a shared graph with a
parallelgnew Sampling in the variatioembarrass-
ingly parallel Bi-RRT{(Carpin and Pagello, 2002).

the sampling adaptation to theRRT
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growth (Jouandeau and Chérif, 2004; Cortes
and Siméon, 2004; Lindemann and LaValle,
2003; Lindemann and LaValle, 2004; Yershova
et al., 2005).

By adding the collision detection in the given
spaceS during the expansion phase, the selection
of nearest neighborpoy is realized in SN Cyree
(ALG. 4). Although the collision detection is expen-
sive in computing time, the distance metric evaluation
p is subordinate to the collision detectdd. defines
the set of admissible orders available to the mabile
For each expansion, the function expandTL¢GA 4)
returns three possible values: REACHED if the con-
figuration gnew is connected td’, ADVANCED if q
is only an extension ofj,ew Which is not connected
to T, and TRAPPED ifj cannot accept any successor
configurationgnew

expandTq,At, T)
1 Oprox < nearbyStatgy, T);
2 min < P(Aprox, d);
3 success— FALSE
4 foreachuec U
5 Gimp < integratéa, u, At);
6 if isCollisionFre€gmp, dprox; M, C)
7 d < P(Gtmp, Orand);
8 if d < dmin
9 Onew <— Gtmp;
10 Omin < d;
11 success— TRUE
12 if success- TRUE
13 insertStat€dprox, Ohews T );
14 if Onew=(
15 return REACHED;
14 | return ADVANCED;
17 return TRAPPED,;
ALG. 4: Expandingrl with obstacles.

In the next section, we examine in detail justifi-
cations of our algorithm and the inherent relations in

Time while Motion Planning in Wide Configuration Spaces

3 RSRT ALGORITHM

Variations ofRRTmethod presented in the previous
section is based on the following sequence :

e generatindyrand;

o selectingprox in T,

e generating each successotgfox defined inJ.

e realizing a colliding test for each successor previ-

ously defined;

selecting a configuration calleghey that is the
closest tograng @among successors previously de-
fined; This selected configuration has to be colli-
sion free.

The construction off corresponds to the repeti-
tion of such a sequence. The collision detection dis-
criminates the two possible results of each sequence:

e the insertion ofgnew in T (i.€. without obstacle
along the path betweegprox anddnew);

o the rejection of eaclyprox successors.g. due to
the presence of at least one obstacle along each
successors path rooteddgox)-

The rejection ofgnew induces an expansion prob-
ability related to its vicinity (and then also gyrox
vicinity); the more the configuratiogpoy is close to
obstacles, the more its expansion probability is weak.
It reminds one of fundamentaRRTparadigm: free
spaces are made of configurations that admit various
number of available successors; good configurations
admit many successors and bad configurations admit
only few ones. Therefore, the more good configu-
rations are inserted ifi, the better theRRT expan-
sion will be. The problem is that we do not previ-
ously know which good and bad configurations are
needed durindRRT construction, because the solu-
tion of the considered problem is not yet known. This
problem is also underlined by the parallel variation
OR Bi-RRT(Carpin and Pagello, 2002).€. to de-
fine the depth of a search in a specific vicinity). For
a path planning problenp with a solutions avail-

the various components used. This study enables us taable aftem integrations starting fromnit, the ques-

synthesize a new algorithm named Rapidly exploring
Sorted Random TredRSRY, based on reducing col-
lision detector calls without modification of the clas-
sical random sampling strategy.

tion is to maximize the probability of finding a solu-
tion; According to the concept of “rational action”,
the response d?3 class to adapt a on-line search can
be solved by the definition of a formula that defines
the cost of the search in terms of “local effects” and
“propagations” (Russell, 2002). These problems find
a way in the tuning of the behavior algorithm like
CVPdid (Cheng and LaValle, 2001).

In the case of a space made of a single narrow pas-
sage, the use of bad configurations (which successors
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generally collide) is necessary to resolve such prob- 4. sortings elements by distance (&. 5 lines 7);
lem. The weak probability of such configurations ex-

L 5. selecting the first collision-free element$and
tension is one of the weakness of RRTmethod.

breaking the loop as soon as this first element is
discovered (AG. 5 lines 16 and 17);

newExpandTq,At, T)

1 Qprox — nearbyStateg, T); 4 EXPERIMENTS

2 S—0;

2 foreacth(_eilr:tegratéq o Uy ) This sect?on presents experimgnts performed on a

5 d—p(q qrand).p T Redhat Linux Cluster that consists of 8 Dual Core
’ 1. processor 2.8 GHz Pentium 4 (5583 bogomips) with

6 S SH{@dk 512 MB DDR Ram

7 gsort§, d); :

8 n«0;

10 whilen< Card9)

11 s« getTuplelrin,S);

12 Onew < firstElementOfs);

13 if isCollisionFre€gnew, dprox, M, C)

14 insertStat@prox, Onew T );

15 if Onew=q

16 | return REACHED,;

17 return ADVANCED;

18 \ n—n+1;

19 return TRAPPED;

ALG. 5: Expandingl and reducing the collision deteg
tion.

To bypass this weakness, we propose to reduce re
search from the closest elementu@ 4) to the first
free element o€see. This is realized by reversing the
relation between collision detection and distance met-
ric; the solution of each iteration is validated by sub- Figure 1: 20 obstacles problem and its solution (upper cou-
ordinating collision tests to the distance metric; the ple). 100 obstacles problem and its solution (lower couple).
first success call to the collision detector validates a
solution. This inversion induces:

¢ areduction of the number of calls to the collision
detector proportionally to the nature and the di-
mension ofUJ; Its goal is to connect the collision

To perform the run-time behavior analysis for our
algorithm, we have generated series of problems that
gradually contains more 3D-obstacles. For each prob-
L i lem, we have randomly generated ten different in-
detector and the derivative function that produce stances. The number of obstacles is defined by the

€aChOlprox SUCCESSOT. sequence 20, 40, 60,., 200, 220. In each instance,

e an equiprobability expansion of each node inde- all obstacles are cubes and their sizes are randomly
pendently of their relationship with obstacles; varying between(5,5,5) and (20,20,20). The mo-
TheT construction is now based on the following bile is a cube with a fixed siz¢10,10,10). Ob-

sequence: stacles and mobile coordinates are varying between
(—100,—100,—100) and (100,100,100). For each

| ) ) instance, a set of 12Gnx and 120qo,; are gener-

2. _selectlngqpmx .the nearest configuration ®@ang ated inCree. By combinating eachjni and eachygpj,

inT (ALG. 5 line 1); 14400 configuration-tuples are available for each in-
3. generating each successors Gfox (ALG. 5 stance of each problem. For all that, our benchmark is

lines 3 to 6); each successor is associated with its made of more than.% million problems. An instance

distance metric frongang. It produces a couple  with 20 obstacles is shown ini&. 1 on the lower

calleds stored inS; part and another instance with 100 obstaclesit E

1. generating a random configuratigng in C;
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on the left part. On these two exampleg,; and

Qobj are also visible. We used the Proximity Query
PackageRQP) library presented in (Gottschalk et al.,
1996) to perform the collision detection. The mo-
bile is a free-flying object controlled by a discretized
command that contains 25 different inputs uniformly

dispatched over translations and rotations. The per-

formance was compared betweBRT-Connecfus-
ing theRRT-ExtCorstrategy) and ouRSRTalgorithm
(ALG. D).

The choice of the distance metric implies im-

portant consequences on configurations’ connexity in

Ciree. It defines the next convergence naggfor the

local planner. The metric distance must be selected

according to the behavior of the local planner to limit

its failures. The local planner chosen is the straight

line in C. To validate the toughness of our algorithm
regarding taARRT-Conneg¢twe had use three different
distance metrics. Used distance metrics are:

e the Euclidean distance (mentioneHucl in
FIG.2t0 4)

d(a,q) = <kZ)(Ck —c)?+n fzkg(ak - GL)2>

wherenf is the normalization factor that is equal
to the maximum oty range values.

e the scaled Euclidean distance metric (mentioned

Eucl2in FIG. 2t0 4)

i ' 3
kZD(Ck —)?+nfi(1-s) k;(ak 4 aL)2>

wheresis a fixed value ®;

d(g,q) = (s

e the Manhattan distance metric (mentiorddnh
in FIG. 2t0 4)

i i
d(a,q) =S llek—cll+nf 'y [Jak—ayll
kZO kZO

wherecy are axis coordinates aru are angular
coordinates.

For each instance, we compute the first thou-
sand successful trials to establish average resolv-

ing times (FG. 2), standard deviation resolving
times (FHG. 3) and midpoint resolving times (&. 4).

These trials are initiated with a fixed random set of
seed. Those fixed seed assume that tested random

Time while Motion Planning in Wide Configuration Spaces

T T T T
—=&— Rrt with Eucl

25 | —a— Rrtwith Eucl2 7

---=+--- Rrt with Manh o
= new Rrt with Eucl
20 b ~~* new Rrtwith Eucl2 -
---%-- new Rrt with Manh A

15

10

T T T T
30 | —®— Rrtwith Eucl 4
---a--- Rrt with Eucl2
---=+--- Rrt with Manh p
25 | --m- new Rrtwith Eucl B
——a— new Rrt with Eucl2 g
---%-- new Rrt with Manh S
20 o // -

14 T T T T
—&— Rrt with Eucl
| ---4--- Rrt with Eucl2 4
---=+--- Rrt with Manh
= new Rrt with Eucl
[ ——-+- new Rrt with Eucl2 A
---%-- new Rrt with Manh /

12

10

8

0

Figure 4: Midpoint resolving times.

suite are different between each other and are the

same between instances of all problems. As each in-

stance is associated to one thousand trials, each poinOn each graph, the number of obstacles is on x-axis
of each graph is the average over ten instances (andand resolving time irsec.is on y-axis.

then over ten thousands trials).

Figure 2 shows that average resolving time of our
algorithm oscillates between 10 and 4 times faster
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than the originalRRT-Connectlgorithm. As the Cortés, J. and Siméon, T. (2004). Sampling-based motion

space obstruction grows linearly, the resolving time of \F/)\llanpi?]g Unde;‘ki'r&?matir(]: |90|p:;)0|03ur§ ConSftch;iirE)ts.. In
RRT-Connecgrows exponentially whil&RSRTalgo- orkshop on the Algorithmic Foundations of Robotics
Y P y g (WAFR'04)

rithm grows linearly. Figure 3 shows that the standard
deviation follows the same profile. It shows tiRgRT ~ Donald, B., Xavier, P., Canny, J., and Reif, J. (1993). Kino-
algorithm is more robust thaRRT-ConnectFigure 4 dynamic Motion PlanningJournal of the ACM

shows that midpoints’ distributions follow the aver- Ferré, E. and Laumond, J. (2004). An iterative diffusion
age resolving time behavior. This is a reinforcement algorithm for part disassembly. Int. Conf. Robotics

of the success of thRSRTalgorithm. This assumes and Automation (ICRA04)

that half part of time distribution are 10 to 4 times Fraichard, T. (1993). Dynamic trajectory planning with dy-
namic constraints: a "state-time Space approach. In
faster tharRRT-Connect

Int. Conf. Robotics and Automation (ICRA'93)

Gottschalk, S., Lin, M., and Manocha, D. (1996). Obb-tree:
A hierarchical structure for rapid interference detec-

5 CONCLUSION tion. In Proc. of ACM Siggraph’96
Jouandeau, N. and Chérif, A. A. (2004). Fast Approxima-
tion to gaussian random sampling for randomized mo-

We have described a né®RTalgorithm, theRSRTal- tion planning. Innt. Symp. on Intelligent Autonomous

gorithm, to solve motion planning problems in static Vehicules (IAV'04)

environments. R.SRTaIgorllthm. accelerates Cf’”se' Kavraki, L. (1995). Random networks in configuration
quently the resulting resolving time. The experiments space for fast path planning PhD thesis, Stanford
show the practical performances of tRSRTalgo- University.

rithm, and the results reflect its classical behavior. ypaiin, 0. (1985). Real-time obstacle avoidance for manip-
The results given above( have been evaluated on a  ylators and mobile robots. Iimt. Conf. on Robotics

cluster which provide a massive experiment analysis. and Automation (ICRA'85)
The challenging goal is now to extend the benchmark Kuffner, J. and LaVvalle, S. (2000). RRT-Connect: An effi-
that is proposed to every motion planning methods. cient approach to single-query path planning.lrin

The proposed benchmark will be enhanced to specific Conf. on Robotics and Automation (ICRA’00)

situations that allonRRTto deal with motion plan-  Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., and In-

ning strategies based on statistical analysis. oue, H. (2003). Motion planning for humanoid robots.
In Int'l Symp. Robotics Research (ISRR’03)

Latombe, J. (1991)Robot Motion Planning (4th edition)
Kluwer Academic.

LaValle, S. (1998). Rapidly-exploring random trees: A new
tool for path planning. Technical Report 98-11, Dept.
Barraquand, J. and Latombe, J. (1990). A Monte-Carlo of Computer Science, lowa State University.

Algorithm for Path Planning with many degrees of . . .
3 3 LaValle, S. (2004).Planning Algorithms [on-line book].
Freedom. Inint. Conf. on Robotics and Automation http://msl.cs.uiuc.edu/planning.
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