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Abstract: In syntactic pattern recognition an object is described by symbolic data. The problem of recognition is to 
determine whether the describing mathematical structure, for instance a graph, belongs to the language 
generated by a grammar describing the mentioned mathematical structures. So called ETPL(k) graph 
grammars are a known class of grammars used in pattern recognition. The approach in which ETPL(k) 
grammars are used was generalized by using probabilistic mechanisms in order to apply the method to 
recognize distorted patterns. In this paper the next step of the method generalization is proposed. The 
ETPL(k) grammars are improved by fuzzy sets theory. It turns out that the mentioned probabilistic approach 
can be regarded as a special case of the proposed one. Applications to robotics are considered as well. 

1 INTRODUCTION 

The fundamental idea in syntactic pattern 
recognition is using of symbolic data like strings, 
trees and graphs for representation of a class of 
recognized objects (Chen et al., 1991; Fu, 1982; 
Jakubowski, 1997; Jakubowski and Stąpor, 1999). 
The general scheme of syntactic pattern recognition 
and a scene analysis is following (Fu, 1982). After 
pre-processing the recognized object is segmented in 
order to recognize the primitives the pattern consists 
of and relations between them. Decision whether the 
analysed pattern representation belongs to the class 
of objects describing by a given grammar is made 
basing on the parsing algorithm. This classical 
approach can be applied in robotics, for instance in 
vision systems and in manufacturing for description 
and analysis of the production process (Chen et al., 
1991; Yeh et al. 1993). It seems also be effective for 
applying in multi-agent systems, particularly in 
embodied cognitive ones because such agents should 
be equipped with symbolic and explicit 
representation of the surrounding world in order to 

analyse the scene they act on (Ferber, 1999; Scheier 
and Pfeifer, 1999). For instance in (Kok et al., 2005) 
so called coordination graphs are used for solving a 
behaviour management problem in a multi-robot 
system. In this graph a node represents an agent and  
an edge indices that a corresponding agents have to 
coordinate their actions.  

The use of graph grammars for syntactic pattern 
recognition is relatively rare because of difficulties 
in building a syntax analyser of such grammars. 
Therefore every result in building efficient parser for 
graph grammars is valuable. An example of such 
result is a parser for, so called,  ETPL(k) (embedding 
transformation-preserving production-ordered k-left 
nodes unambiguous) grammars introduced in 
(Flasiński, 1993 and 1998). An efficient parsing 
algorithm for ETPL(k) graph grammars, which the 
computational complexity is O(n2), has been 
constructed in (Flasiński, 1993). The so-called IE 
(indexed edge-unambiguous) graphs have been 
defined in (Flasiński, 1993) for a description of 
pattern (scenes) in syntactic pattern recognition. 
Nodes in an IE graph denote pattern primitives. 
Edges between two nodes in an IE graph represent 
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spatial relations between pattern primitives. 
However, in practice, structural descriptions may 
contain pattern distortions. An idea of a probabilistic 
improvement  of syntactic recognition of distorted 
patterns represented by graphs is described in 
(Flasiński and Skomorowski, 1998, Skomorowski 
1998) and (Skomorowski, 1999). To take into 
account all variations of a distorted pattern under 
study, a probabilistic description of the pattern was 
introduced. A random IE graph approach (Flasiński 
and Skomorowski, 1998, Skomorowski, 1999, 
Skomorowski, 2000) is proposed for such a 
description and an efficient parsing algorithm for IE 
graphs is presented. Its computational complexity is 
O(n2) as well.  

 The purpose of this paper is to present an idea of 
approach to syntactic recognition of  fuzzy patterns 
represented by fuzzy IE graphs, followed the 
example of random IE graphs used for distorted 
pattern description. It turns out that, in a way, the 
fuzzy approach is a generalization of the 
probabilistic one. Fuzziness allows us not only 
described distortions in analysed patterns but also 
give us possibility to describe in proper way patterns 
that can not be presented univocally. Furthermore 
there are a wide class of problems in which objects 
and/or spatial relations are described by fuzzy sets.  

2 MOTIVATIONS 

In this section a few example, in which the fuzzy-
syntactic approach seems to be natural, are 
presented.  

2.1 First Example 

Assume that during a manufacturing process a 
robotic inspection system checks type of a hole in a 
making elements, for instance plates, and spatial 
relations between holes. Assume also that there are a 
few standard types of holes and circular and 
quadratic ones are among them – Fig.1a. Let, 
furthermore, the inspection system be based on a 
syntactic pattern recognition approach in which the 
holes are represented by nodes of graphs and spatial 
relations between holes by graph edges – see Fig.1b.  
A quadratic hole with rounded vertices can be 
regarded as a fuzzy object with partial membership 
to classes of both circular and quadratic holes – see 
Fig.1.  In this  example  nodes  description  as  fuzzy   
sets  is a  natural  approach.  In this case membership 
functions describing fuzzy sets can be define basing 
on axiomatic method (Bielecka, 2006).  

a)                                          b) 

 
 

Figure 1: Holes in plate and their graph representation. 

2.2 Second Example 

Considering the previous example assume that 
robotic inspection of technological process is based 
on statistical distribution of  inaccuracy frequencies 
(Flasiński and Skomorowski, 1998, Noori and 
Radford, 1995). If  a hole is made in a sufficient  
accuracy  it is accept by the system. Not only the 
hole shape but also its location should be taken into 
consider. Since inaccuracies of holes location 
influence each other, the simple statistical analysis 
can be insufficient to make a decision. In such a case 
a fuzzy inference can be applied. Then, holes and 
their locations can be represented by fuzzy sets and 
membership functions can be calculated using the 
statistical distribution according to the methodology 
described in (Bielecka, 2006). Let, like in the first 
example, the inspection system is based on a 
syntactic pattern recognition in which the holes are 
represented by nodes of graphs and spatial relations 
between holes by graph edges. In this example  both 
the graph nodes and its edges would be described as 
fuzzy sets. Automatic focusing vision system for 
inspection of size and shape and positions of small 
holes in the context of precision engineering, 
described in (Han and Han, 1999), is an example of 
a system performing such type of task. 

2.3 Third Example 

Consider an autonomous mobile agent. Assume that 
it has to navigated in an unchanging environment. A 
helicopter flying autonomously  in a textured urban 
environment is an example of such agent (Muratet et 
al., 2005). As it has been already mentioned it 
should be equipped with symbolic representation of 
the surrounding world in order to analyse the scene 
they act on (Ferber, 1999; Scheier and Pfeifer, 
1999). Let its vision system be a syntactic one based 
on graph representation of the spatial relationships 
between obstacles the agent should navigate among. 
Let according to, for instance,  the optimization 
requirements,  the system prefers one direction but 
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admits also another ones allowing to navigate 
without collision. In such a case the scene would be 
represented by a classical (i.e. not fuzzy) IE graph 
but directions the agent can choice would be 
represented by fuzzy sets – see Fig.2. The decision 
making system would be based on fuzzy inference. 

 

Figure 2: Detection of possible directions of motion. 

2.4 Fourth Example 

Let us consider computer-aided analysis and 
recognition of  pathological wrist bone lesions 
(Tadeusiewicz and Ogiela, 2005; Ogiela et al., 
2006). This method consists on analysis of the 
structure of the said bones based on palm 
radiological images. During pre-processing 
operations in the examined X-ray images the bones 
contours were separated and a graph representing 
bones and spatial relation between them was 
spanned. In the beginning, spatial relationships 
given by the graph edges were represented by single 
directions (Tadeusiewicz and Ogiela, 2005) but later 
each basic spatial relationship was represented as 
angular interval (Ogiela et al., 2006). The second 
approach can be interpreted in such a way that every 
basic spatial relationship is described as a fuzzy set 
for which its membership function has positive 
values on the specified angular interval and is equal 
to zero outside this interval. It should be mentioned 
that in (Ogiela et al., 2006) such interpretation was 
not considered.  

Recapitulating, four examples in which various 
aspects of  possibility of  improve syntactic 
approach by fuzzy sets has been discussed. The 
classical IE graphs can be generalized by including 
fuzzy sets to description their nodes (example 1), 
edges (example 4), both the nodes and edges 
(example 2) and fuzzy inference approach can be 

applied to classical graphs (i.e. non-fuzzy ones) – 
example 3. 

3 FUZZY IE GRAPHS 

Recall a definition of  IE graph (Flasiński, 1993). 
 
Definition 3.1 
An IE graph is a quintuple H=(V, E, Σ, Γ, ϕ) where: 
V is a finite, non-empty set of nodes of a graph with                               

assigned indexes in univocally way, 
Σ is a finite, non-empty set of node labels, 
Γ is a finite, non-empty set of edge labels, 
E is a set of graph edges represented by triplet 

(v, λ, w)  where v, w∈V, λ∈Γ and an index of v 
is smaller than an index of w, 

ϕ:V→Σ is a nodes labeling function. 
 
Let us assume that, due to pattern fuzziness, possible 
IE graphs associated with a given example pattern 
(scene) may look like IE graphs shown in Fig.3.  
 

(a)                                    (b) 
                                       

 
 
 
 

Figure 3: Possible IE graphs describing a given scene. 

In the case of the IE graph shown in Fig.3a fuzziness 
concerns pattern primitives represented by the node 
2 labeled by tree and the node 3 labeled by bus. In 
the case of the IE graph shown in Fig.3b fuzziness 
concerns a pattern primitive represented by the node 
4 labeled by bus and a spatial relation between 
pattern primitives represented by the edge 
connecting the node 3 with the node 4. Assume that 
both labeled objects in nodes of a graph and spatial 
relations are represented by fuzzy sets of a first order 
(Zadeh L.A., 1965) with membership functions μi 
and νi respectively. Let, furthermore, the set of all 
objects Σ be m-elemental and the set of all spatial 
relations be k-elemental. Let us define, informally, a 
fuzzy IE graph as an IE graph in which nodes labels 
are replaced by a vector μ = [µ1,...,µm] of values of 
membership functions μi, i∈{1,...,m} and edges 
labels are replaced by vector ν = [ν1,...,νk] of  values 
of membership functions νj, j∈{1,...,k}. 
     Let propose a formal definition of a fuzzy IE 
graph 
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Definition 3.2 
A fuzzy IE graph is a quintuple H=(V, E, Σ, Γ, Φ) 
where: 
V is a finite, non-empty set of nodes of a graph with 

assigned indices in univocal way,                                                               
Σ is a finite, non-empty set of node labels, 

containing, say, n elements, 
Γ is a finite, non-empty set of edge labels, 

containing, say, k elements,                                                                                                                       
E = V× ×V  is a set of fuzzy graph edges 

represented by triplet  (v, Θ
Θ

s, w) where v, w∈V  
and i(v) < i(w) i.e. an index of v is smaller than an 
index of w,  is represented by 

 where 
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The fuzzy measure of  an outcome IE graph, 
obtained form a given fuzzy IE graph, is equal to the 
value of T-norm of the values components of  the 
node and edge vectors. Recall axiomatic definition 
of T-norms which is given in, for instance, 
(Rutkowski, 2005) - definition 4.22, page 80. 
 
Definition 3.3 
T-norm is a function T:[0,1]×[0,1]→[0,1] satisfying 
the following axioms: 
 (i)   T(a,b) = T(b,a), 
 (ii)  T( T(a,b),c ) = T( a,T(b,c) ), 
 (iii) if a ≤ b and c ≤ d then T(a,b) ≤ T(c,d),         

(iv)  T(a,0) = 0 and T(a,1) = a.    
 

Theorem 
The functions Tm and Tu given by the formulae 
 

Tm(a,b) = min{a,b} and Tu(a,b) = a⋅b  (1) 
 
are T-norms. The function Tw given by the formulae 
 

Tw(a,1) = a, Tw(a,b) = 0 for a≠1 and b≠1 (2) 
is a T-norm as well. Furthermore, for every 
a,b∈[0,1] if a function T is a T-norm then 

 
Tw(a,b) ≤ T(a,b) ≤ Tm(a,b)  (3) 

Thanks to the property (ii) in Definition 3.3 T-norm 

being a function of n variables can be introduced: 
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Having a fuzzy IE graph R the fuzzy measure of an 
outcome graph r is calculated as  
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where α is a number of a regarded node, β is a 
number of an edge, f(α) - is a chosen component 
number of a vector μα whereas g(β) is a number of 
component of a vector νβ. If a product is used as a T-
norm then the presented parsing (see section 4) is 
identical as the random parsing described in 
(Skomorowski, 1998). In calculations presented in 
the next section the minimum Tm-norm is used.  

4 PARALLEL PARSING 

Given an unknown pattern represented by a fuzzy IE 
graph R, the problem of recognition of a pattern 
under study is to determine if an outcome IE graph r, 
obtained from the fuzzy IE graph R, belongs to a 
graph language L(G) generated by an ETPL(k) graph 
grammar G. In the proposed parallel and cut-off 
strategy of fuzzy IE graph parsing for an efficient, 
that is with the computational complexity O(n2), 
analysis of fuzzy patterns (scenes) a number of 
simultaneously derived graphs is equal to a certain 
number limit. In this case, derived graphs spread 
through the search tree, but only the best, that is with 
maximum measure value, limit graphs are expanded. 
Let us consider a graph shown in Fig.4a and a 
production shown in Fig.4b. Suppose that the 
embedding transformation for the production shown 
in Fig.4b is  C(r, input)  =  {(d, b, r, input)} and C(u, 
output)  = {(e, B, r, input)}. During a derivation, a 
non-terminal A in the node 2 of a graph shown in 
Fig.4a is removed and the graph of the production 
shown in Fig.4b is put in the place of the removed 
non-terminal A. The first item of the embedding 
transformation for the production: C(r,input) = {(d, 
b, r, input)} means that the edge r of the graph 
shown in Fig.4a should connect the node d of the 
production graph with the node b of the graph shown 
in Fig.4a. The second item of the embedding 
transformation for the production: C(u, output) = 
{(e, B, r, input)} means that the edge u of the graph 
shown in Fig. 4a should be replaced by the edge r 
connecting the node e of the production graph with 
the node B of the graph shown in Fig.4a. Thus, after 
the application of the production shown in Fig.4b to 
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the node indexed by 2 of the graph shown in Fig.4a 
we obtain a graph shown in  Fig.4c. 

 

 
 

 

Figure 4: An example derivation step in an ETPL(k) graph 
grammar.   

Suppose that we analyze an unknown fuzzy pattern 
represented by a fuzzy IE graph shown in Fig.5. (for 
clarity, only non-zero membership functions vectors 
components are specified). 
 

 
Figure 5: An example fuzzy IE graph representing an 
unknown distorted pattern. 

Let us assume that a number of simultaneously 
derived graphs is equal to 2 (that is limit = 2). 
Furthermore let us assume that we are given an 
ETPL(k) graph grammar G with a starting graph Z 
shown in Fig.6 and a set of productions shown in 
Fig.7. 
 
    

 
Figure 6: A starting graph Z of an example ETPL(k) graph 
grammar G. 
 
(1)                                                   
 
C(r, input) = {(b, a, r, input)}  
C(t, output) = {(b, A, t, output), (c, A, r, input)}      
(2)                                             

C(r, input) = {(b, a, r, input)}                                                   
C(t, output) = {(b, A, t, output), (a, A, r, input)} 
 
(3)                                            
  
C(r, input) = {(d, a, r, input)} 
 C(t, output) = {(d, A, t, output), (E, A, r, input)} 

 
(4)                                   
 C(s, input) = {(d, a, s, input)} 
                                                                  
(5)                                                     
 
C(s, input) = {(d, a, s, input)}, C(t, input) = {(d, b, t, input)} 
C(r, output) = {(d, c ,r, output)}, C(v, output) = {(d, D ,v, output)} 
                  
(6)                                                  

 
                                                  

C(s, input) = {(d, a, s, input)}, C(t, input) = {(d, b, t, input)} 
C(r, output) = {(d, c ,r, output), (d, a, r, output)}  
C(v, output) ={(d, D ,v, output)}  
 
(7)                                                   
      
 
C(s, input) = {(b, a, s, input)}, C(t, input) = {(b, b, t, input)} 
C(r, output) = {(b, c, r, output),(b, a, r, output)} 
C(v, output) = {(b, D , v, output)} 

 
(8)                                                   
 
C(s, input) = {(g, b, s, input)} 
C(v, output) = {(g, f, v, output)} 
 
(9)                                                         
 
C(s, input) = {(a, b, s, input)}, C(v, output) = {(a, f, v, output)} 
                                                      
(10)                                                      
 
C(t, input) = {(g, a, t, input)} 
C(v, input) = {(h, d ,u, input), (h, b, u, input)} 
 
(11)         
 
C(t, input) = {(a, a, t, input)} 
C(v, input) = {(b, d, u, input), (b, b, u, input)} 

Figure 7: A set of productions of an ETPL(k) graph. 
grammar G. 

In the first step of the derivation, after the 
application of the production (1), shown in Fig.7, to 
the node indexed by 2 of the starting graph Z, shown 
in Fig.6, we obtain a graph q1 shown in Fig.8a. 
Similarly, after the application of the production (2) 
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to the node indexed by 2 of the starting graph Z we 
obtain  a  graph  q2  shown  in  Fig.8b. The graphs q1  

                     
(a)                                                (b)                  
 
 
 
 

 

Figure 8: Derived graphs q1 and q2. 

and  q2 (Fig.8) are admissible for further derivation, 
that is they can be outcome graphs obtained from the 
fuzzy IE graph shown in Fig.5. The application of the 
production (3) to the node indexed by 2 of the 
starting graph Z does not lead to a graph which can 
be an outcome graph obtained from the fuzzy IE 
graph shown in Fig.5. Thus, a graph obtained after 
the application of the production (3) to the node 
indexed by 2 of the starting graph Z is not 
admissible for further derivation. As in the analyzed 
example a number of simultaneously derived graphs 
is equal to 2 we expand the graphs  q1 and  q2  in the 
second step of derivation.  
    
In the second step of derivation, after the application 
of the productions (6) and (7) (Fig.7) to the node 
indexed by 3 of the graph q1 (Fig.8a) we obtain 
graphs  q1,6 and  q1,7 shown in Fig.9. Similarly, after 
the application of the productions (6) and (7) to the 
node indexed by 3 of the graph q2 (Fig.8b) we obtain 
graphs  q2,6  and  q2,7  shown in Fig.10. The 
application of the production (5) to the node indexed 
by 3 of the graphs q1 and q2  (Fig.8) leads to graphs 
which can not be outcome graphs obtained from the 
fuzzy IE graph shown in Fig.5, as they miss the node 
indexed by 7 and labeled by f of the fuzzy IE graph 
shown in Fig.5. Thus, graphs obtained after the 
application of the production (5) to the nodes 
indexed by 3 of the graphs q1 and  q2  (Fig.8) are not 
admissible for further derivation. The graphs q1,6,  
q1,7 (Fig.9) and  q2,6,  q2,7  (Fig.10) are admissible for 
further derivation,  that is they can be outcome 
graphs obtained from the fuzzy IE graph shown in 
Fig.5.  
   Because in the analyzed example a number of 
simultaneously derived graphs is equal to 2 we 
should choose only two graphs from among the 
graphs q1,6,  q1,7 (Fig.9) and  q2,6,  q2,7  (Fig.8) for 
further derivation. In order to do it,  compute the 
following values: λ(q1,6) = 0.7 and  λ(q1,7) = 0.3. 

The contributions of nodes indexed by 6 of the 
graphs q1,6 and q1,7 are not taken into account in this 
case as the node indexed by 6 and labeled by F in 
the graph q1,7 is not a terminal one. Consequently, 
the contribution of the edge connecting nodes 
indexed by 3 and 6 as well as the contribution of the 
edge connecting nodes indexed by 6 and 7 in the 
graphs q1,6 and q1,7  are not taken into account. 
Similarly, we compute the following values: λ(q2,6) 
= 0.2 and λ(q2,7) = 0.2. As λ(q1,6) > λ(q1,7) > λ(q2,6) 
= λ(q2,7) we choose the graphs  q1,6  and  q1,7  for 
further derivation, that is we choose two graphs with 
maximum value (limit = 2). Similarly, in two next 
steps of derivation the final outcome IE graph is 
obtained – see Fig.11. The derived graph q1,7,10,8 is 
also an outcome IE graph obtained from the parsed 
fuzzy IE graph shown in Fig.5. 
 

 
Figure 9: Derived graphs  q1,6  and q1,7. 

 
Figure 10: Derived graphs  q2,6  and q2,7.  

 

Figure 11: A derived graph q1,7,10,8. 
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5 CONCLUSIONS 

In this paper we have proposed an idea of a new 
approach to recognition of fuzzy patterns 
represented by graphs. The problem has been 
considered in the context of pattern recognition and 
scene analysis with references to robotics (Han and 
Han, 1999; Kok et al., 2005; Muratet et al., 2004; 
Petterson, 2005) and applications in medicine 
(Tadeusiewicz and Ogiela, 2005, Ogiela et al., 
2006). To take into account variations of a fuzzy 
pattern under study, a  description of the analysed 
pattern based on fuzzy sets of the first order was 
introduced. The fuzzy IE graph has been proposed 
here for such a description. The idea of an efficient, 
that is with the computational complexity O(n2), 
parsing algorithm presented in (Flasiński, 1993) is 
extended, so that fuzzy patterns, represented by fuzzy 
IE graphs, can be recognized. In the algorithm a T-
norm is used for calculation of value of membership 
measure of output graphs. Such solution makes that 
the algorithm is very flexible. In particular if 
arithmetic product is used as a T-norm, the 
algorithm is the same as the random one described in 
(Skomorowski, 1998). 
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