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Abstract: The development of an algorithm to achieve optimal cyclic gaits in space for a thirteen-link biped and twelve
actuated joints is proposed. The cyclic walking gait is composed of successive single support phases and
impulsive impacts with full contact between the sole of the feet and the ground. The evolution of the joints are
chosen as spline functions. The parameters to define the spline functions are determined using an optimization
under constraints on the dynamic balance, on the ground reactions, on the validity of impact, on the torques
and on the joints velocities. The criterion considered is represented by the integral of the torque norm. The
algorithm is tested for a biped robot whose numerical walking results are presented.

1 INTRODUCTION

The design of walking gaits for legged robots and par-
ticularly the bipeds has attracted the interest of many
researchers for several decades. Due to the unilateral
constraints of the biped with the ground and the great
number of degrees of freedom, this problem is not
trivial. Intuitive methods can be used to obtain walk-
ing gaits as in (Grishin et al., 1994). Using experi-
mental data and physical considerations, the authors
defined polynomial functions in time for a prototype
planar biped. This method is efficient. However to
build a prototype and to choose the appropriate actu-
ators or to improve the autonomy of a biped, an op-
timization algorithm can lead to very interesting re-
sults. In (Rostami and Besonnet, 1998) the Pontrya-
gin’s principle is used to design impactless nominal
trajectories for a planar biped with feet. However the
calculations are complex and difficult to extend to the
3D case. As a consequence a parametric optimisation
is a useful tool to find optimal motion.

The choice of optimisation parameters is not
unique. The torques, the Cartesian coordinates or
joint coordinates can be used. Discrete values for the
torques defined at sampling time are used as optimiza-
tion parameters in (Roussel et al., 2003). However
it is necessary, when the torque is an optimised vari-

able, to solve the inverse dynamic problem to find the
joint accelerations and integrations are used to obtain
the evolution of the reference trajectory in velocity
and in position. Thus this approach require many cal-
culation : the direct dynamic model is complex and
many evaluations of this model is used in the inte-
gration process. In (Beletskii and Chudinov, 1977),
(Bessonnet et al., 2002), (Channon et al., 1992), (Zon-
frilli et al., 2002), (Chevallereau. and Aoustin, 2001)
or (Miossec and Aoustin, 2006) to overcome this diffi-
culty, the parametric optimization defines directly the
reference trajectories of Cartesian coordinates or joint
coordinates for 2D bipeds with feet or without feet.
An extension of this strategy is given in this paper for
a 3D biped with with twelve motorized joints. The
dynamic model is more complex than for a 2D biped,
so its computation cost is important in the optimisa-
tion process and the use of Newton-Euler method to
calculate the torque is more appropriate than the La-
grange method usually used. Since the inverse dy-
namic model is used only to evaluate the torque for
the constraints and criterion calculation, the number
of evaluation of the torque can be limited. The de-
sired motion is based on the solution of an optimal
problem whose constraints depend on the nonlinear
multibody system dynamics of the 12 DoF biped and
physical contact constraints with the environment.
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A half step of the cyclic walking gait is com-
posed uniquely of a single support and an instanta-
neous double support that is modelled by passive im-
pulsive equations. This walking gait is simpler that
the human gait, but with this simple model the cou-
pling effect between the motion in frontal plan and
sagittal plane can be studied. A finite time double
support phase in not considered in this work currently
because for rigid modelling of robot, a double support
phase can usually be obtained only when the velocity
of the swing leg tip before impact is null. This con-
straint has two effects. In the control process it will
be difficult to touch the ground with a null velocity,
as a consequence the real motion of the robot will be
far from the ideal cycle. Furthermore, large torques
are required to slow down the swing leg before the
impact and to accelerate the swing leg at the begin-
ning of the single support. The energy cost of such
a motion is higher than a motion with impact in the
case of a planar robot without feet (Chevallereau. and
Aoustin, 2001), (Miossec and Aoustin, 2006).

Therefore a dynamic model is calculated for the
single phase. An impulsive model for the impact on
the ground with complete surface of the foot sole of
the swing leg is deduced from the dynamic model
for the biped in double support phase. It takes into
account the wrench reaction from the ground. This
model is founded on the Newton Euler algorithm,
considering that the reference frame is connected to a
stance foot. The evolution of joint variables are cho-
sen as a spline function of time instead of usual poly-
nomial functions to prevent oscillatory phenomenon
during the optimization process (see (Chevallereau.
and Aoustin, 2001), (Saidouni and Bessonnet, 2003)
or (L. Hu and Sun, 2006)). The coefficients of the
spline functions are calculated as function of initial,
intermediate and final configurations and initial and
final velocities of the robot which are optimization
variables. Taking into account the impact and the fact
that the desired walking gait is cyclic, the number of
optimization variables is reduced. The criterion con-
sidered is the integral of the torque norm. During the
optimization process, the constraints on the dynamic
balance, on the ground reactions, on the validity of
impact, on the limits of the torques, on the joints ve-
locities and on the motion velocity of the biped robot
are taken into account. The paper is organized as fol-
lows. The 3D biped and its dynamic model are pre-
sented in Section II. The cyclic walking gait and the
constraints are defined in Section III. The optimiza-
tion parameters, optimization process and the crite-
rion are discussed in Section IV. Simulation results
are presented in Section V. Section VI contains our
conclusion and perspectives.

2 MODELS OF THE STUDIED
BIPED ROBOT

2.1 Biped Model

We considered an anthropomorphic biped robot with
thirteen rigid links connected by twelve motorized
joints to form a tree structure. It is composed of a
torso, which is not directly actuated, and two identi-
cal open chains called legs that are connected at the
hips. Each leg is composed of two massive links con-
nected by a joint called knee. The link at the extremity
of each leg is called foot which is connected at the leg
by a joint called ankle. Each revolute joint is assumed
to be independently actuated and ideal (frictionless).
The ankles of the biped robot consist of the pitch and
the roll axes, the knees consist of the pitch axis and
the hips consist of the roll, pitch and yaw axes to con-
stitute a biped walking system of two 2-DoF ankles,
two 1-DoF knees and two 3-DoF hips as shown in
figure 1. The action to walk associates single support
phases separated by impacts with full contact between
the sole of the feet and the ground, so that a model in
single support, a model in double support and an im-
pact model are derived.

2.2 Geometric Description of the Biped

To define the geometric structure of the biped walk-
ing system we assume that the link 0 (stance foot)
is the base of the biped robot while link 12 (swing
foot) is the terminal link. Therefore we have a sim-
ple open loop robot which geometric structure can be
described using the notation of Khalil and Kleinfinger
(Khalil and Dombre, 2002). The definition of the link
frames is given in figure 1 and the corresponding ge-
ometric parameters are given in Table I. The frameR0
coordinates, which is fixed to the tip of the right foot
(determined by the widthlp and the lengthLp), is de-
fined such that the axisz0 is along the axis of frontal
joint ankle. The frameR13 is fixed to the tip of the left
foot in the same way thatR0.

2.3 Dynamic Model in Single Support
Phase

During the single support phase the stance foot is as-
sumed to remain in flat contact on the ground,i.e.,
no sliding motion, no take-off, no rotation. Therefore
the dynamics of the biped is equivalent to an 12 DoF
manipulator robot. Letq∈ R

12 be the generalized co-
ordinates, whereq1, ...,q12 denote the relative angles
of the joints, q̇ ∈ R

12 and q̈ ∈ R
12 are the velocity
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Figure 1: The multi-body model and link frames of the
biped robot.

Table 1: Geometric parameters of the biped.

j a( j) α j θ j r j d j

1 0 0 q1 l1 d1
2 1 π

2 q2 0 0
3 2 0 q3 0 d3
4 3 0 q4 l4 d4
5 4 −π

2 q5−
π
2 0 0

6 5 −π
2 q6 0 0

7 6 0 q7 0 d7
8 7 π

2 q8−
π
2 0 0

9 8 −π
2 q9 0 0

10 9 0 q10 l10 = l4 d10 = d4
11 10 0 q11 0 d11 = d3
12 11 π

2 q12 0 0
13 12 0 q13 l13 = −l1 d13 = d1

and acceleration vectors respectively. The dynamic
model is computed using the Newton-Euler method
(see (Khalil and Dombre, 2002)) represented by the
following relation

Γ = f(q, q̇, q̈,Ft) (1)

whereΓ ∈ R
12 is the joint torques vector andFt is

the external wrench (forces and torques), exerted by
the swing foot on the ground. In single support phase
Ft = 0 and in double support phaseFt 6= 0.

In order to denote the dynamic model under the
Lagrange form

Γ = Ds(q)q̈+Hs (2)

with
Hs = (Cs(q, q̇)+Gs(q)) (3)

the equation(1) is used. In such calculation the ma-
trix Ds and the vectorHs are needed.Cs ∈ R

12 repre-
sents the Coriolis and centrifugal forces andGs∈ R

12

is the vector of gravity.
The matrix Ds is calculated by the algorithm

of Newton-Euler, by noting from the relation(1),

(M.W.Walker and D.E.Orin, 1982), that theith col-
umn is equal toΓ if

q̇ = 0,g = 0, q̈ = ei ,Ft = 0

ei ∈ R
12×1 is the unit vector, whose elements are zero

except theith element which is equal to 1.
The calculation of the vectorHs is obtained in the

same way thatDs considering thatHs = Γ if q̈ = 0.
Therefore, the dynamic model under the Lagrange
form is denoted by the following matrix equations

Γ = Ds(q)q̈+Hs(q, q̇)

whereDs ∈ R
12×12 is the symmetric definite positive

inertia matrix.
To take easily into account the effect of the reac-

tion force on the stance foot, it is interesting to add 6
coordinates to describe the situation of the stance foot.
Newton variables are used for this link, thus its veloc-
ity is described by the linear velocity of frameR0 : V0
and angular velocityω0. Since the stance foot is as-
sumed to remain in flat contact, the resultant ground
reaction force/momentFR and MR are computed by
using the Newton-Euler algorithm.ω0 = 0, ω̇0 = 0
andV̇0 = −g are the initial conditions of the Newton-
Euler algorithm to take into account the effect of grav-
ity. So, the equation(2) becomes

D(X)V̇ +C(V,q)+G(X) = DΓΓ+DRRFR (4)

whereX = [X0,α0,q]T ∈ R
18, X0 andα0 is the posi-

tion and the orientation variables of frameR0, V =
[0V0,

0 ω0, q̇]T ∈ R
18 and V̇ = [0V̇0,

0 ω̇0, q̈]T ∈ R
18.

D ∈ R
18×18 is the symmetric definite positive iner-

tia matrix,C ∈ R
18 represents the Coriolis and cen-

trifugal forces, G ∈ R
18 is the vector of gravity.

RFR = [FR,MR]T ∈ R
6 is the ground reaction forces

on the stance foot, calculated by the Newton-Euler al-
gorithm, DΓ = [06×12 | I12×12]

T ∈ R
18×12 andDR =

[I6×6 | 012×6]
T ∈ R

6×18 are constant matrices com-
posed of 1 and 0.

In the optimization process, the torques and force
are calculated with the Newton-Euler algorithm and
not with the equation(4) . The Newton-Euler is much
more efficient from the computation point of view,
(Khalil and Dombre, 2002).

2.4 Dynamic Model in Double Support
Phase

In double support phase, only the forces and moments
of interaction of the left foot with the ground have to
be added. Then, the model(4) becomes

D(X)V̇ +C(V,q)+G(X)+D f Rf = DΓΓ+DRRFR

(5)
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whereRf ∈ R
6 represents the vector of forcesF12 and

momentsM12 exerted by the left foot on the ground.
This wrench is naturally expressed in frameR12 :12

F12, 12M12. The virtual workδW12 of this wrench is :
δW12 =12 FT12

12 d12+12M12
12δ12 (6)

where 12d12 represents an infinitesimal virtual dis-
placement of the link 12 and12δ12 represents an in-
finitesimal virtual angular displacement. The relation
between these virtual displacements,12d12 and12δ12,
and the virtual joints displacementδq12 are the same
that between the velocities12V12,

12ω12 andq̇12.
Usually the velocities of link 12 can be expressed

as
[

V12
w12

]

=

[

V0 +w0×
0 P12

w12

]

+J12q̇ (7)

where0P12 is the vector linking the origin of frameR0
and the origin of frameR12 expressed in frameR0, J12
∈ R

6×12 is the Jacobian matrix of the robot,J12q̇ rep-
resents the effect of the joint velocities on the Carte-
sian velocity of link 12. The velocitiesV12 andw12
must be expressed in frameR12, thus we write(7):
[

12V12
12w12

]

=

[

12A0 −12A0
0P̂12

03×3
12A0

][

0V0
0w0

]

+12J12q̇

(8)
where12A0 ∈ R

3×3 is the rotation matrix, which de-
fines the orientation of frameR0 with respect to frame
R12. Term 0P̂12 is the skew-symmetric matrix of the
vector product associated with vector0P12.

0P̂12 =





0 −Pz Py
Pz 0 −Px
−Py Px 0





Defining matrixD f ∈ R
18×6 as the concatenation

of two matrices such thatD f = [T |12J12]
T , where

12J12 ∈ R
6×12 is the Jacobian matrix of the robot and

T ∈ R
6×6 equals

T =

[

12A0 −12A0
0P̂12

03×3
12A0

]

(9)

Then, the linear and angular velocities of the swing
foot in frameR12 is :

[

12V12
12w12

]

= DT
f V (10)

ThenD f can be defined by applying the virtual prin-
ciple on the second leg. However in order to com-
pute the matrixD f , it is necessary, either to calculate
the matrix12J12 jacobian by a traditional method, by
taking into account the equation(9), or to calculate
this matrix by the algorithm of Newton-Euler, by not-
ing from relation(5) that theith column is equal to
DΓΓ+DRRFR if

V̇ = 0,V = 0,g = 0 andRf = ei

ei ∈ R
6×1 is the unit vector, whose elements are zero

except theith element which is equal to 1.

2.5 Impact Equations for Instantaneous
Double Support

When the swing foot touches the ground, an impact
exists. In reality many possibilities can appear for an
impact (partial contact with the sole on the ground,
elastic deformations of the bodies and the ground).
To simplify our study this impact is assumed to be in-
stantaneous and inelastic with complete surface of the
foot sol touching the ground. This means that the ve-
locity of the swing foot touching the ground is zero
after its impact. We assume that the ground reaction
at the instant of impact is described by a Dirac delta-
function with intensityIRf . Assuming that the previ-
ous stance foot is motionless before the impact and
does not remains on the ground after the impact the
dynamic model during the impact is (see (Formal’sky,
1982) and (M. Sakaguchi and Koizumi, 1995))

D(X)∆V = −D f IRf (11)

DT
f V

+ = 0 (12)
[

0V−
0

0w−
0

]

=

[

03×1
03×1

]

(13)

where ∆V = (V+ −V−) is the change of velocity
caused by the impact andV+ (respectivelyV−) de-
note the linear and angular velocity of the stance foot
and also the joint velocities of the biped after (respec-
tively before) the impact. These equations form a sys-
tem of linear equations which solution allows to know
the impulse forces and the velocity after the impact,
thus they can be applied to the biped walking system.

3 DEFINITION OF THE
WALKING CYCLE

Because biped walking is a periodical phenomenon
our objective is to design a cyclic biped gait. A com-
plete walking cycle is composed of two phases: a sin-
gle support phase and a double support phase which is
modeled through passive impact equations. The sin-
gle support phase begins with one foot which stays
on the ground while the other foot swings from the
rear to the front. We shall assume that the double sup-
port phase is instantaneous, this means that when the
swing leg touches the ground the stance leg takes off.
There are two facets to be considered for this prob-
lem. The definition of reference trajectories and the
method to determine a particular solution of it. This
section is devoted to the definition of reference tra-
jectories. The optimal process to choose the best so-
lution of parameters, allowing a symmetric half step,
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from the point of view of a given criterion will be de-
scribed in the next section.

3.1 Cyclic Walking Trajectory

Since the initial configuration is a double support con-
figuration, the both feet are on the ground, the twelve
joint coordinates are not independent. Because the
absolute frame is attached to the right foot we define
the situation of the left foot by(yl f ,zl f ,φl f ) and the
situation of the middle of the hips(xh,yh,zh,θh), both
expressed inR0 frame. (yl f ,zl f ) is the coordinate, in
the horizontal plane, of the left foot position,φl f de-
notes the left foot yawing motion,(xh,yh,zh) is the
hip position andθh defines the hip pitching motion.
The values of the joint variables are solution of the
inverse kinematics problem for a leg, which may also
be considered as a 6-link manipulator. The problem
is solved with a symbolic software, (SYMORO+, see
(Khalil and Dombre, 2002)).

In order to deduce the final configuration, we im-
pose a symmetric role of the two legs, therefore from
the initial configuration, the final configuration is de-
duced as:

qfDS = EqiDS (14)

where E ∈ R
12×12 is an inverted diagonal matrix

which describes the legs’ exchange.
Taking into account the impulsive impact(11)-

(13), we can compute the velocity after the impact.
Therefore, the velocity after the impact, ˙q+, can be
calculated when the velocity before the impact, ˙q−, is
known. The use of the defined matrixE allows us to
calculate the initial velocity for the current half step
as:

q̇i = Eq̇+. (15)

By this way the conditions of cyclic motion are satis-
fied.

3.2 Constraints

In order to insure that the trajectory is possible, many
constraints have to be considered.

3.2.1 Magnitude Constraints on Position and
Torque

• Each actuator has physical limits such that

|Γi |−Γi,max≤ 0, for i = 1, ...,12 (16)

whereΓi,max denotes the maximum value for each
actuator.

|q̇i |− q̇i,max≤ 0, for i = 1, ...,12 (17)

where q̇i,max denotes the maximum velocity for
each actuator.

• The upper and lower bounds of joints for the con-
figurations during the motion are:

qi,min ≤ qi ≤ qi,max, for i = 1, ...,12 (18)

qi,min andqi,max stands respectively for the mini-
mum and maximum joint limits.

3.2.2 Geometrical Constraints in Double
Support Phase

• The distanced(hip, f oot) between the foot in
contact with the ground and the hip must remain
within a maximal value,i.e.,

d(hip, f oot) ≤ lhip. (19)

This condition must hold for initial and final con-
figurations of the double support.

• In order to avoid the internal collision of both feet
through the lateral axis the heel and the toe of the
left foot must satisfy

yheel≤−a andytoe≤−a (20)

with a >
lp
2 and andlp is the width of right foot.

3.2.3 Walking Constraints

• During the single support phase to avoid colli-
sions of the swing leg with the stance leg or with
the ground, constraints on the positions of the four
corners of the wing foot are defined.

• We must take into account the constraints on the
ground reactionRFR = [RFRx,RFRy,RFRz]

T for the
stance foot in single support phase as well as im-
pulsive forcesIRf = [IRf x, IRf y, IRf z]

T on the foot
touching the ground in instantaneous double sup-
port phase. The ground reaction and impulsive
forces must be inside a friction cone defined by
the friction coefficientµ. This is equivalent to
write

√

R2
FRy

+R2
FRz

≤ µRFRx (21)
√

I2
Rf y

+ I2
Rf z

≤ µIRf x (22)

The ground reaction forces and the impulsive
forces at the contact can only push the ground but
may not pull from ground, then the condition of
no take off is deduced:

Rfx ≥ 0 (23)

IRf x ≥ 0. (24)
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• In order to maintain the balance in dynamic walk-
ing, theZMP≡CoP, (Zero Moment Point equiv-
alent to the Center of Pressure, see (Vukobratovic
and Stepanenko, 1972), point must be within the
support polygon,i.e., the distance from CoP to
support polygon is negative

d(CoP,SP) ≤ 0, (25)

whereSPdenotes the support polygon determined
by the widthlp and the lengthLp of the feet.

4 PARAMETRIC OPTIMIZATION

4.1 The Cubic Spline

To describe the joint motion by a finite set of parame-
ters we choose to use for each joint a piecewise func-
tion of the form

qi = ϕi(t) =















ϕi1(t) i f t0 ≤ t ≤ t1
ϕi2(t) i f t1 ≤ t ≤ t2

...
ϕin(t) i f tn−1 ≤ t ≤ tn

i = 1, ...12

whereϕk(t) are polynomials of third-order such that

ϕik(aik, t) =
3

∑
j=0

aik j(t − tk−1)
j , k = 1, ...,n ∀t ∈ [t0, tn]

(26)
where aik j are calculated such that the position,
velocity and acceleration are always continuous in
t0, t1, ...tn. We usedn = 3, thus the motion is defined
by a specified initial configuration, a final configura-
tion in double support and two intermediate configu-
rations in single support taking into account the initial
and final velocity as boundary conditions.

4.2 Optimization Parameters

A parametric optimization problem has to be solved
to design a cyclic bipedal gait with successive single
and double support phases. This problem depends on
parameters to prescribe the two intermediate configu-
rations,qint1 andqint2, and the final velocity ˙qf in the
single support phase. Taking into account the condi-
tions(14) and(15) the minimal number of parameters
necessary to define the joint motion are:

1. Twenty-four parameters are needed to define the
two intermediate configurations in single support
phase, twelve parameters for the first intermediate
configurationqi,int1 and twelve parameters for the
second intermediate configuration,qi,int2 for i =
1, ...,12.

2. The velocity before the impact is also prescribed
by twelve parameters, ˙q−i (i = 1, ...12).

3. The left foot yawing motion denoted byφl f and its
position(yl f ,zl f ) in the horizontal plane as well as
the situation of the middle of the hips defined by
(xh,yh,zh,θh) in double support phase are chosen
as parameters.

Let us remark that to define the initial and final
configurations in double support nine parameters are
required however we define these configurations with
only seven parameters. The two others parameters,
orientation of the middle of the hips in frontal and
transverse plane, are fixed to zero. The duration of a
half step,Ts, is fixed arbitrarily.

4.3 Criterion

In the optimization process we consider, as criterion
JΓ, the integral of the norm of the torque divided by
the half step length. In other words we are minimizing
a quantity proportional to the energy required for a
motion

JΓ =
1
d

Z Ts

0
ΓTΓdt (27)

whereTs is the time of the half step. This general form
of minimal energy performance represents the losses
by Joule effects to cover distanced.

4.4 Optimization Algorithm

Generally, many values of parameters can give a pe-
riodic bipedal gait satisfying constraints(17)-(24) . A
parametric optimization process, which objective is
to minimizeJΓ under nonlinear constraints, is used to
find a particular nominal motion. This optimization
process can be formally stated as

minimize JΓ(p)
subject to gi(p) ≤ 0 i = 1,2, ..., l

}

(28)

wherep is the vector of parameters,JΓ(p) is the cri-
terion to minimize withl constraintsgi(p) ≤ 0 to sat-
isfy. This constraints are given in section 3.2. The
nonlinear constrained problem is solved using the
Matlab functionfmincon. This optimization function
provide an optimization algorithm based on the Se-
quential Quadratic Programming (SQP). Therefore,
this nonlinear optimization problem with forty-three
variables: twenty-four for the two intermediate con-
figurations in single support, twelve for the velocity
before the impact and seven to solve the inverse kine-
matics problem, subject to the constraints given by
(17)-(24), is solved numerically.
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Table 2: Parameters of SPEJBL.

Physical Parameters Mass(kg) Length(m)

Torso 0.3967 d7 = 0.140
Right Leg

Hip 0.2604 linked to torso
Thigh 0.1224 d4 = 0.120
Shin 0.0558 d3 = 0.120

Ankle 0.1278 d1 = 0.042
Foot 0.3045 Lp = 0.178

5 SIMULATION RESULTS

To validate our proposed method, we present the re-
sults of an optimal motion for the biped shown in fig-
ure 2. The desired trajectory was obtained by the op-
timization process presented in Section IV, with the
minimization of the criterion(27) satisfying the con-
straints given by(17)-(24) . The figure 4 shows the
evolution of the optimal motion for a half step with
duration, of a single support, which is equal to 0.58
s. For the simulation, we use the physical parameters
of the SPEJBL1. The physical parameters of SPEJBL
are collected in Table 2. Figure 2 shows the photo
of SPEJBL and also the dimensional design drawn by
VariCAD software.

Figure 2: Dimensional drawing of SPEJBL.

The results shown have been obtained withTs =
0.58s. The optimal motion is such that the step length
is 0.366 m and the optimal velocity is 0.6323 m/s.
These values are results of the optimization process.

The normal components of the ground reactions,
in function of time, of the stance foot during one half
step in single support are presented in figure 3. The
average vertical reaction force is 20N, which is co-
herent with the weight of the robot which the mass
equals 2.1385Kg. The chosen friction coefficient is
0.7.

The figure 4 shows the evolutions of joint vari-
ablesqi(t) i = 1, ...,12, defined by the third-order
spline function presented in Section III, in the single

1SPEJBL is a biped robot designed in the Department of
Control Engineering of the Technical University in Prague.
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Figure 4: Evolution of joint positions.

support phase during one half step. Let us remark that
the evolution of each joint variable depends on the
boundary conditions(q̇i,ini , q̇i, f in for i = 1, ...,12) and
also on the intermediate configurations(qi,int1, qi,int2
for i = 1, ...,12 ) whose values are computed in the
optimal process.

The figure 5 shows the CoP trajectory which is al-
ways inside the support polygon determined bylp =
0.11 m andLp = 0.17 m., that is, the robot maintains
the balance during the motion. Because the minimal
distance between of CoP and the boundary of the foot
is large, smaller foot is acceptable for this cyclic mo-
tion.
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Figure 5: The evolution of CoP trajectory.

For a set of motion velocities, the evolution ofJΓ
criterion is presented in figure 6. With respect to the
evolution ofJΓ we can conclude that the biped robot
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Figure 6:JΓ in function of several motion velocities for the
biped.

consumes more energy for low velocities to generate
one half step. Due to the limitations of the joint ve-
locities we could not obtain superior values to 0.73
m/s. The energy consumption increases probably
for higher velocity (see (Chevallereau. and Aoustin,
2001)). The robot has been designed to be able to
walk slowly, this walk require large torque and small
joint velocities. Its design is also based on large feet
in order to be able to use static walking, as a conse-
quence the feet are heavy and bulky, thus the resulting
optimal motion is close to the motion of a human with
snowshoes.

6 CONCLUSION

Optimal joint reference trajectories for the walking of
a 3D biped are found. A methodology to design such
optimal trajectories is developed. This tool is useful
to test a robot design or for the control of the robot. In
order to use classical optimization technique, the opti-
mal trajectory is described by a set of parameters: we
choose to define the evolution of the actuated relative
angle as spline functions. A cyclic solution is desired.
Thus the number of the optimization variables is re-
duced by taking into account explicitly of the cyclic
condition. Some inequality constraints such as the
limits on torque and velocity, the condition of no slid-
ing during motion and impact, some limits on the mo-
tion of the free leg are taken into account. Optimal
motion for a given duration of the step have been ob-
tained, the step length and the advance velocity are the
result of the optimization process. The result obtained
are realistic with respect to the size of the robot under
study. Optimal motion for a given motion velocity
can also be studied, in this case the motion velocity is
consider as a constraint. The proposed method to de-
fine optimal motion will be tested on other prototype
with dimension closer to human.
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