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Abstract: This paper deals with distributed fault diagnosis of discrete event systems (DES). The approach held is 
model based: an interpreted Petri net (IPN) describes both the normal and faulty behaviour of DES in which 
both places and transitions may be non measurable. The diagnoser monitors the evolution of the DES 
outputs according to a model that describes the normal behaviour of the DES. A method for designing a set 
of distributed diagnosers is proposed; it is based on the decomposition of the DES model into reduced sub-
models which require low interaction among them; the diagnosability property is studied for the set of 
resulting sub-models. 

1 INTRODUCTION 

Most of works study the diagnosability property and 
fault detection schemes based on a centralised 
approach using the global model of the DES.   
Recently, fault diagnosis of DES has been addressed 
through a distributed approach allowing breaking 
down the complexity when dealing with large and 
complex systems (Benveniste, et al., 2003; O. 
Contant, et al., 2004; Debouk, et al., 2000; Genc and 
Lafortune, 2003; Jiroveanu and Boel, 2003; Pencolé, 
2004; Arámburo-Lizárraga, et al., 2005). 

In (Debouk, et al., 2000) it is proposed a 
decentralised and modular approach to perform 
failure diagnosis based on Sampath's results 
(Sampath, et al., 1995). In (Contant, et al., 2004) and 
(Pencolé, 2004) the authors presented incremental 
algorithms to perform diagnosability analysis based 
on (Sampath, et al., 1995) in a distributed way; they 
consider systems whose components evolve by the 
occurrence of events; the parallel composition leads 
to a complete system model intractable. In (Genc 
and Lafortune, 2003) it is proposed a method that 
handles the reachability graph of the PN model in 
order to perform the analysis similarly to (Sampath, 
et al., 1995); based on design considerations the 
model is partitioned into two labelled PN and it is 
proven that the distributed diagnosis is equivalent to 
the centralised diagnosis; later, (Genc and Lafortune, 
2005) extend the results to systems modelled by 

several labelled PN that share places, and present an 
algorithm to determine distributed diagnosis. 

Our approach considers the system modelled as 
an interpreted PN (IPN) allowing describing the 
system with partially observable states and events; 
the model includes the possible faults it may occur. 
A structural characterisation and a diagnoser scheme 
was presented in (Ramírez-Treviño, et al., 2004); 
then in (Arámburo-Lizárraga, et al., 2005) we 
proposed a methodology for designing reduced 
diagnosers and presented an algorithm to split a 
global model into a set of communicating sub-
models.  

In this paper we present the formalisation of the 
distributed system model.  The proposed distributed 
diagnoser scheme consists of communicating 
diagnoser modules, where each diagnoser can handle 
two kind of reduced models; the choice of the 
reduced models depends on some considerations of 
the system behaviour.  In some cases the 
communication between modules is not necessary.  

This paper is organised as follows. In section 2 
basic definitions of PN and IPN are included. 
Section 3 summarises the concepts and results for 
centralised diagnosis. Section 4 presents the results 
related to distributed diagnosis analysis.  Section V 
presents the method to get reduced sub-models that 
have low interaction among them. 
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2 BACKGROUND 

We consider systems modelled by Petri Nets and 
Interpreted Petri Nets.  A Petri Net is a structure G  
= (P, T, I, O) where: P = {p1, p2, ..., pn} and T = {t1, 
t2 ,... ,tm} are finite sets of nodes called respectively 
places and transitions, I (O): P × T → ℤ + is a 
function representing the weighted arcs going from 
places to transitions (transitions to places), where ℤ + 

is the set of nonnegative integers. 
 The symbol •tj (tj

•) denotes the set of all places 
pi such that I(pi,tj)≠0 (O(pi,tj)≠0). Analogously, •pi 
(pi

•) denotes the set of all transitions tj such that 
O(pi,tj)≠0 (I(pi,tj)≠0) and the incidence matrix of G is 

][ ijcC = , where ),(),( jijiij tpItpOc −= . 
 A marking function M: P→ℤ + represents the 
number of tokens (depicted as dots) residing inside 
each place. The marking of a PN is usually 
expressed as an n-entry vector.  
 A Petri Net system or Petri Net (PN) is the pair 
N=(G,M0), where G is a PN structure and M0 is an 
initial token distribution. R(G,M0) is the set of all 
possible reachable markings from M0 firing only 
enabled transitions. 
 In a PN system, a transition tj is enabled at 
marking Mk if ∀pi ∈ P, Mk(pi) ≥ I(pi,tj); an enabled 
transition tj can be fired reaching a new marking 
Mk+1 which can be computed as Mk+1 = Mk + Cvk, 
where vk(i)=0, i≠j, vk(j)=1.  
 This work uses Interpreted Petri Nets (IPN) 
(Ramírez-Treviño, et al., 2003) an extension to PN 
that allow to associate input and output signals to PN 
models.  An IPN (Q, M0) is an Interpreted Petri Net 
structure Q = (G, Σ, λ,ϕ) with an initial marking M0, 
where G is a PN structure, Σ = {α1, α2, ... ,αr} is the 
input alphabet of the net, where αi is an input 
symbol, λ: T→Σ ∪{ε} is a labelling function of 
transitions with the following constraint: ∀tj,tk ∈ T, j 
≠ k, if ∀pi I(pi,tj) = I(pi,tk) ≠ 0 and both λ(tj) ≠ ε, λ(tk) 
≠ ε, then λ(tj) ≠ λ(tk), in this case ε represents an 
internal system event, and ϕ : R(Q,M0)→( ℤ +)q is an 
output function that associates to each marking an 
output vector. Here q is the number of outputs.  In 
this work ϕ is a q×n matrix.  If the output symbol i 
is present (turned on) every time that M(pj)≥1, then 
ϕ (i,j)=1, otherwise ϕ(i,j)=0. 
 A transition tj ∈ T of an IPN is enabled at 
marking Mk if ∀pi ∈ P, Mk(pi) ≥ I(pi,tj). When tj is 
fired in a marking Mk, then Mk+1 is reached, i.e., 

1+⎯→⎯ k
t

k MM j ; Mk+1 can be computed using the 
state equation: 
 Mk+1 = Mk + Cvk 
 yk  = ϕ(Mk) 

(1)

where C and vk are defined as in PN and yk ∈ (ℤ +)q 
is the k-th output vector of the IPN. 

Let ...... kji ttt=σ  be a firing transition sequence 

of an IPN(Q,M0) s.t. ......10 ⎯→⎯⎯→⎯⎯→⎯ kji t
x

tt MMM  
The  set  £(Q,M0) of all  firing  transition  sequences  
is called the firing language 
£(Q,M0)={ ...... kji ttt=σ ∧ ...10 ⎯→⎯⎯→⎯ ji tt MM

...⎯→⎯ kt
xM }.  
According to functions λ and ϕ, transitions and 

places of an IPN (Q,M0) if λ(ti) ≠ ε the transition ti is 
said to be manipulated. Otherwise it is non-
manipulated. A place pi∈P is said to be measurable 
if the i-th column vector of ϕ  is not null, i.e. ϕ (•,i) 
≠ 0. Otherwise it is non-measurable. 

The following concepts are useful in the study of 
the diagnosability property. A sequence of input-
output symbols of (Q,M0) is a sequence ω = 
(α0,y0)(α1,y1)...(αn,yn), where αj ∈ Σ ∪{ε} and αi+1 is 
the current input of the IPN when the output changes 
from yi to yi+1. It is assumed that α0 = ε, y0 = ϕ(M0).  
The firing transition sequence σ ∈ £(Q,M0) whose 
firing actually generates ω is denoted by σω. The set 
of all possible firing transition sequences that could 
generate the word ω is defined as Ω(ω) = {σ | σ ∈ 
£(Q,M0) ∧ the firing of σ produces ω}. 

The set Λ(Q,M0) = {ω | ω is a sequence of input-
output symbols} denotes the set of all sequences of 
input-output symbols of (Q,M0) and the set of all 
input-output sequences of length greater or equal 
than k will be denoted by Λk(Q,M0), i.e. Λk(Q,M0) = 
{ω ∈ Λ(Q,M0) | |ω| ≥ k} where k ∈ ℕ .  

The set ΛB(Q,M0), i.e., ΛB(Q,M0) = {ω ∈ 
Λ(Q,M0) |  σ∈Ω(ω) such that  jMM ⎯→⎯σ

0  and  Mj  
enables  no transition, or when ⎯→⎯ it

jM   then 
C(•,ti)=0} denotes all input-output sequences 
leading to an ending marking in the IPN (markings 
enabling no transition or only self-loop transitions). 

The following lemma (Ramírez-Treviño, et al., 
2004) gives a polynomial characterisation of event-
detectable IPN. 

Lemma 1: A live IPN given by (Q,M0) is event-          
detectable if and only if: 
1. ∀ti, tj ∈ T such that λ(ti) = λ(tj) or λ(ti) = ε it holds 
that ϕC(•,ti) ≠ ϕC(•,tj) and 
2. ∀tk ∈ T  it holds that ϕC(•,tk) ≠ 0. 

3 CENTRALISED DIAGNOSIS 

The main results on diagnosability and diagnoser 
design in a centralised approach presented in 
(Ramírez-Treviño, et al., 2007) are outlined below. 

3.1 System Modelling 

The sets of nodes are partitioned into faulty (PF and 
TF) and normal functioning nodes (PN and TN); so P 
= PF ∪ PN  and  T = TF∪TN. N

ip  denotes a  place in 
PN of the normal behaviour ( )NN MQ 0, .  Since   PN  ⊆  
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P then  N
ip  also belongs to (Q,M0). The set of risky 

places of (Q,M0) is PR = •TF.   The post-risk 
transition set of (Q,M0) is TR = PR• ∩ TN.  

Example.  Figure 1 presents an IPN model of a 
system. The model has three faulty states, 
represented by places p16, p17, p18. Function λ is 
defined as λ(t1)=a, λ(t3)=b, λ(t4)=x, λ(t7)=y, λ(t9)=c, 
λ(t10)=z, for others transitions λ(ti)=ε.  Measurable 
places are p3, p5, p8, p12, p15, PR= {p4, p7, p12}, TR = 
{t4, t7, t10}, TF = {t13, t14, t15} and PF = {p16, p17, p18}. 

3.2 Reduced Models 

In a previous work (Arámburo-Lizárraga, et al., 
2005) we stated that the condition of event-
detectability is needed only on tj ∈ •PR and tj ∈ PR•. 
This fact can be exploited in order to obtain a 
reduced model containing the pertinent parts of 
( )NN MQ 0,  regarding the modelled faults in (Q,M0). 
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Figure 1: Global model. 

Definition 1. Let ( )NN MQ 0, be the embedded 
normal behaviour included in (Q,M0).  The  reduced 
model ( )RMRM MQ 0,  of ( )NN MQ 0, is the subnet 
induced by: 
 PRM = Pa ∪ Pb ∪ Pc, where Pa = {pi | pi ∈ PR}, Pb 

= {pj | pj ∈ PR••}, and Pc = {pk | pk ∈ ••PR, pk is a 
measurable place}. The sets Pb and Pc are 
necessary only when ∃pi ∈ PR, such that pi is 
non-measurable. 

 TRM = Tin ∪ Tout, where Tin = {•pi | pi ∈ PRM }, 
Tout = {pi •| pi ∈ PRM }. 

 λRM: TRM →Σ∪{ε},∀ti
’ ∈ TRM, λ(ti

’) = λ(ti), ti∈TN, 
ti

’= ti. 
 ϕRM = ϕ| R(Q

RM
,M0

RM
) 

 M0
RM =M0 |PRM. 

The firing rules of ( )RMRM MQ 0,  are defined: 
 If tj ∈ TRM is fired in (Q,M0) then it must be fired 

in ( )RMRM MQ 0, . 

 If the input symbol λ(tk), tk ∈ PR• is activated in 
the system then it must be activated in 
( )RMRM MQ 0, . 

 If ∃tj ∈ TRM, s.t., tj is not event detectable then tj 
is fired automatically when •tj was marked. 
The reduced model nodes (places and transitions) 

are a copy of the original ones, and they have 
associated the same input-output symbols.  

Figure 2 presents the reduced model of the global 
system model depicted in figure 1. Notice that in this 
example the number of places is reduced and TRM are 
only event-detectable transitions. 

P4

P3t2 t3

P7
P8

t4 t7
b

z

yε

ε

P5

P12

t5 t8

t10
t11

ε

εx  
Figure 2: Diagnoser reduced model. 

3.3 Characterisation of Diagnosability 

The characterisation of input-output diagnosable 
IPN is based on the partition of R(Q,M0) into normal 
and faulty markings; all the faulty markings must be 
distinguishable from other reachable markings.  

Definition 2: An IPN given by (Q,M0) is said to 
be input - output  diagnosable in k < ∞ steps if any 
marking  Mf  ∈ F is distinguishable from any other 
Mk ∈ R(Q,M0) using any word ω ∈ Λk(Q,Mf) ∪ 
ΛB(Q,Mf), where F = {M | ∃pk ∈ PF such that 
M(pk)>0, M ∈ R(Q,M0)}. 

The following result extends that presented in 
(Ramírez-Treviño, et al., 2007). 

Theorem 1: Let (Q,M0) be a binary IPN,   such  
that   ( )NN MQ 0,  is live, strongly connected and event 
detectable on tj ∈ •PR and tj ∈ PR•.  Let {X1,...,Xτ} be 
the set of all T-semiflows of (Q,M0). If ∀ N

ip ∈ PN, 
( )•N

ip  ∩ TF ≠ θ  the following conditions hold: 
1. ∀r, ∃j Xr(j)≥1, where tj ∈ ( )•N

ip  - TF, 
2. ∀tk ∈ ( )•N

ip - TF, •(tk)={ N
ip } and λ(tk) ≠ ε. 

   then the IPN (Q,M0) is input-output diagnosable. 
Proof:  It is similar to that included in (Ramírez-

Treviño, et al., 2007).  
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4 DISTRIBUTED DIAGNOSIS 

4.1 Model Partition 

In order to build a distributed diagnoser, the IPN 
model (Q, M0) can be conveniently decomposed into 
m interacting subsystems where different modules 
share common nodes.  

Definition 3. Let (Q,M0) be an IPN. The 
distributed Interpreted Petri Net model DN of 
(Q,M0) is a finite set of modules ℳ ={μ1, μ2,…,μm}  
such that: 
each  μk ∈ ℳ  is an IPN subnet: μk = (Nk, Σk, λk, ϕk),  
k ∈ {1,2,…,m} modules. 
• Nk = (Pk, Tk, Ik, Ok, M0k) where Pk ⊆ P, Tk ⊆ T, 

Ik(Ok) : Pk × Tk → Z+, s.t., Ik(pi,tj) = I(pi,tj) 
(Ok(pi,tj) = O(pi,tj)), ∀ pi ∈ Pk and ∀tj ∈ Tk and 
M0k = M0 |Pk 

• Σk = {α∈Σ⏐∃ti, ti ∈Tk, λ(ti) = α} 
• λk : Tk → Σk ∪ {ε}, s.t. λk(ti) = λ(ti) and ti ∈Tk 
• ϕk : R(mk, M0k) → (Z+)q, q is restricted to the 

outputs associated to Pk. ϕk = ϕ⏐Pk 
For each μk the following conditions hold: 
a) ∃μl ∈ℳ , s.t. Tk ∩ Tl ≠∅, Pk ∩ Pl = {•ti ∪ ti

•| ti ∈ 
{Tk ∩ Tl}}, Pk ∩ Pl are measurable places. 

b) ∀pi ∈ {Pk – (Pk ∩ Pl)} if pi ∈ PR then pi •• ⊂ Pk. 
c) ICom(OCom): Pk × Tl → Z+, s.t. Ik(pi,tj) = Il(pi,tj) 

(Ok(pi,tj) = Ol(pi,tj)), ∀pi ∈ Pk and ∀tj ∈ Tl.  
ICom and OCom represent the communication 
between modules. The arcs are depicted as a 
dashed line. 
The obtained DN captures the firing language 

£(Q,M0) in a distributed way, ∀tx ∈ ...... kji ttt=σ and 
for every (αx,yx) in ω = (α0,y0)(α1,y1)...(αn,yn) ∃μk ∈ℳ  
where tx is fired and (αx,yx) is also generated in DN.       

Consider the IPN system model depicted in the 
Figure 1 (for the sake of simplicity, we use in the 
examples the same names for duplicated nodes 
(places or transitions) belonging to different 
modules).  Figure 3 presents the distributed IPN, m = 
3 modules, ICom and OCom are represented by the 
dashed arcs.  For example we can get the sets T1 ∩ 
T2 = {t3} and T1 ∩ T3 = {t1}, P1 ∩ P2 = {p3} and P1 ∩ 
P3 = {p15}.   

We are preserving the property of event 
detectability using duplicated measurable places, 
which they establish the outputs that each module 
needs from others modules. 

4.2 Local Reduced Models 

The local models can be reduced following the steps 
of sub-section 3.2 and obtaining a simpler 
distributed model considering the local nodes. 

Definition 4. Let μi ∈ℳ  be an IPN module. The 
local reduced model ( )RMRM MQ 0, i is the subnet 
induced as in definition 1.  

Consider the DN distributed model depicted in 
figure 3, the figure 4 presents the local reduced 
models where the place p3 is duplicated in module 2 
for detecting the firing of t3.  The communication 
between modules is represented by the dashed arcs. 
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Figure 3: Distributed Interpreted Petri Net. 
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Figure 4: Local reduced models. 

It is possible to obtain local reduced models 
where the communication is eliminated, since TRM

n 
can be event-detectable only by the local outputs. 

4.3 Modular Fault Detection 

The error between the system output and the local 
diagnoser model output is Ekn= ( )kMϕ - ( )RM

kn Mϕ . 
The following algorithm, devoted to detect which 
local faulty marking was reached in DN, is executed 
when Ekn ≠ 0 in μn ∈ℳ. 
 
Algorithm 1. Detecting Local Faulty Markings 
Inputs: ( )RM

kn Mϕ , RM
nM , λ(ti),  ti ∈ TRM

n, Ekn  
Outputs: pn

F   
1.Constants: RM

nCϕ -- local reduced normal 
behaviour 
2.Repeat 
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  2.a. Read ( )RM
kn Mϕ and λ(ti) 

  2.b. If λ(tj) ∈ λ(PR•) then computes  
         δ = ( )RM

kn Mϕ - ( )RM
kn M 1−ϕ  (a column of RM

nCϕ ) 
  2.c. i = index of the column of RM

nCϕ , s.t., 
        RM

nCϕ  (•,i) = δ, i.e. ti was fired; 
   2.d. If Ekn ≠ 0 then 
  -  ∀pn ∈ (•ti) •• ∩ PF

n,  Mfn(pn)=1 
  -  Return (pn

F )  
      - Sends to all modules the message “A fault  
          occurred in module μn in place (pn

F )”.  
 
Since ( )RMRM MQ 0, n is event detectable in •PR and 

PR•, then step 2.b. will compute just one column 
index; moreover, since ( )NN MQ 0, n fulfils the 
conditions of theorem 1, then step 2.c. will compute 
just one place. 

4.4 Distributed Input-output 
Diagnosability 

The results of centralised diagnosability are applied 
to the modules issued from the partition.   

The nodes of every μk ∈ℳ  are partitioned into 
local faulty nodes and normal nodes, i.e., Pk = PF

k ∪ 
PN

k  and  Tk = TF
k ∪ TN

k. 
R(μk, M0k) denotes the reachability set of a 

module μk and LF = {Mk | ∃pj ∈ PF
k, such that 

Mk(pj)>0, Mk∈R(μk, M0k)} denotes the set of the 
local faulty markings. 

Λint
k (μk, M0k) denotes the set of all input-output 

sequences that lead to a marking which puts a token 
into a duplicated place in other module μn, Λint

k (μk, 
M0k) = {ω| ∃σm, such that σm generates ω,  and  

jmm MM m⎯→⎯σ
0  then  Mjm  marks a pj s.t. pj ∈ PRM

m 
in some module μm}. 

Now, we introduce two notions for describing 
degrees of diagnosability in the modules of a 
distributed model. 

A module is locally diagnosable if, for every 
local fault we can detect it only through local 
information, else it is conditionally diagnosable.  

Definition 5.  (Local Diagnosability) A module 
μn ∈ℳ given by DN is said to be locally input-
output diagnosable in k < ∞ steps if any marking Mfn 
∈ LF is distinguishable from any other Mkn ∈ R(μn, 
M0n) using any local word ωn ∈ Λk

n(μn, M0n) ∪ 
ΛBn(μn, M0n). 

Definition 6.  (Conditional Diagnosability) A 
module μn ∈ℳ given by DN is said to be conditional 
input-output diagnosable in k < ∞ steps if any 
marking Mfn ∈ LF is distinguishable from any other 
Mkn ∈ R(μn, M0n) using any local word ωm∈ Λk

n(μn, 
M0n) ∪ ΛBn(μn, M0n) and any word ωm∈ Λint

n (μn, 
M0n). 

Proposition 1. Let (Q,M0) be an IPN and DN its 
corresponding distributed IPN as stated in definition 

3. If (Q,M0) is input-output diagnosable as in 
theorem 1 then DN  is distributed input-output 
diagnosable. 
Proof. Assume that (Q,M0) is input-output 
diagnosable. There exists a finite sequence of input-
output symbols ω, s.t., ω ∈Λk(Q,Mf) ∪ ΛB(Q,Mf), 
and σ = titjtk...tm is the firing transition sequence 
whose firing generates ω s.t. kMM ⎯→⎯ ωσ

0 ,  Mk ∈ F. 
By theorem 1 Mk is distinguishable from any other 
Mk ∈ R(Q,M0) and (Q,M0) is input-output 
diagnosable.  

Since DN is the distributed behaviour of (Q,M0), 
we suppose that the sequence σ can be fired in some 
modules μk … μl, μm  ∈ℳ  of DN, and the sequence 
generates the following local markings Mik ∪… ∪ 
Mil ∪ Mim, then Mk = Mik ∪… ∪ Mil ∪ Mim, s.t. Mik 
… Mil ∈ LN and Mim ∈ LF. Let σ1, σ2,…, σm  
sequences s.t. σ = σ1σ2…σm, suppose that σ1 is fired 
in a module μk ∈ ℳ s.t. 

ikk MM ⎯→⎯ 1

0
σ , σ2 is fired 

in μl ∈ ℳ, s.t. 
ill MM ⎯→⎯ 2

0
σ … , and σm is fired in 

μm ∈ ℳ, s.t. 
im

m
m MM ⎯→⎯σ

0
, and σ occurs if the 

sequence σ1 followed by a sequence σ2,… followed 
by a sequence σm occur in the corresponding 
modules. Then by definition 5 and 6 μm can 
distinguish any Mim ∈ LF from any other Mkm ∈ 
R(μm, M0m). Hence there exists a module μm ∈ℳ  
that can distinguish the corresponding faulty 
marking Mim; as μm can be any module and μm can 
be local or conditional input-output diagnosable, 
therefore DN is distributed input-output diagnosable.   

� 
 Proposition 1 considers both cases (local and 
conditional diagnosable modules) for establishing 
the distributed input-output diagnosability of DN. 

5 REDUCING INTERACTIONS  

In Section 3.2 we explained how to build reduced 
models.  Now, let us consider the following 
assumption: 
 The manipulated input symbols λ(tk) ≠ ε are not 

activated arbitrarily, only when they are enabled 
at the marking Mk(pk)>0, s.t. pk ∈ •tk. 

This assumption regards for building smaller 
reduced models. 

Definition 7. Let ( )NN MQ 0,  be the embedded 
normal behaviour included in (Q,M0). When the 
following condition holds: ∀λ(tk) ≠ ε, tk ∈ PR• are 
fired only when it is necessary, then the reduced 
model ( )RMRM MQ 0,  of ( )NN MQ 0,  of definition 1 is 
modified considering the following sets: 
 PRM = Pa ∪ Pb, where  Pa = {pi | pi ∈ PR} and Pb = 

{pj | pj ∈ PR••};   
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 TRM = Tin ∪ Tout ∪ Taf, where Tin = {•pi | pi ∈ 
PRM}, Tout = {pi •| pi ∈ PRM } and Taf = {tedx| tedx ∈ 
•pi and/or tedx ∈ pi

•, tedx 
 is a new transition, x = 1, 

2, …, z transitions non event-detectable}, Taf is 
necessary only when pi ∈ PRM, such that pi is  
non-measurable. 

 λRM: TRM →Σ∪{ε},∀ti
’ ∈ {Tin ∪ Tout}, λ(ti

’) = λ(ti), 
ti∈TN, ti

’= ti. If ti
’ ∈ Taf, ti

’ has no input symbols. 
 ϕRM = ϕ| R(Q

RM
,M0

RM
) 

 M0
RM =M0 |PRM. If  ∃pk ∈ PRM, s.t., Mk(pk) = 0, but,  

pk∈ ted • then Mk(pk) > 0. 
The firing rules of ( )RMRM MQ 0,  are defined as in 
definition 1 besides the following new firing rule:  
 The transitions that belongs to Taf are fired 

automatically, i.e, M(•ted) > 0 or M(ted •)= 0. 
Figure 5 presents the distributed reduced model 

when we consider that the input symbols are not 
activated of an arbitrary way. We can see that the 
transition t3 is not part of the reduced model of 
module 2, it is replaced by a transition ted1, λ(ted1) = 
ε. The goal for building smaller reduced models is to 
guarantee the observation of the system in critical 
situations.  

P4

P3t2

P7
P8

t4 t7
b

z

yε
ε ε

ε

P5

P12

P16 P17

t5 t8

t10
t11

t13 t14

ε

εx

ted1
t3

Module 3

Module 1 Module 2  
Figure 5: Reduced models for the centralised diagnoser. 

6 CONCLUSIONS 

A method for designing distributed diagnosers has 
been presented. The proposed model decomposition 
technique preserves the diagnosability of the global 
model into the distributed one and reduces the 
communication among the diagnosers. Current 
research addresses reliability of distributed 
diagnosers. 
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