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Abstract: In the paper a solution to the sensor network coverage problem is proposed, based on the usage of moving
sensors that allow a larger fields coverage using a smaller number of devices. The problem than moves from
the optimal allocation of fixed or almost fixed sensors to the determination of optimal trajectories for moving
sensors. In the paper a suboptimal solution obtained from the sampled optimal problem is given. First, in
order to put in evidence the formulation and the solution approach to the optimization problem, a single
moving sensor has been addressed. Then, the results for multisensor systems are shown. Some simulation
results are also reported to show the behavior of the sensors network.

1 INTRODUCTION wherebestis often considered with respect to ener-
getic costs (for the deployment as well as for the com-

Distributed sensors systems and networks are grow-munications) or number of sensors.
ing relevance in the scientific and engineering com-  Such a problem has been well studied in a lot of
munity. Their introduction into several applications Works, such as (V. Isler and Daniilidis, 2004; Yung-
for monitoring or surveillance, like for example tem- Tsung Hou, 2006; Zou and Chakrabarty, 2004; Lin,
perature, ground humidity and solar radiation in farms 2005; Huang and Tseng, 2005; Meguerdichian et al.,
or parks, presence and distribution of people in criti- 2001).
cal structures, temperature for fire prevention (build- In (Tan et al., 2004; Howard, 2002) the problem of
ings as well as woods), and so on, together with the self-deploying mobile sensors, able to configure ac-
growth of decentralized control in large and com- cording to the environment, is addressed and some
plex structures (factories, refineries, energy produc- solutions are proposed. In these kind of approaches
tion and distribution, etc) makes the interest of many a common fact is the use of a lot of quasi static sensor
researchers for these kind of problems growing and units to cover a given area.
growing, as proved for example by (Akyildiz et al., An alternative idea is to use a reduced number of
2002; Lewis, 2004). sensor units moving continuously; such an approach
The use of several sensors, suitably deployed, isthe one followed by the authors in the present work.
makes the range of measurements as wide as requiredA result based on the solution of a suitable coordi-
Then, one common features required by sensor net-nated optimal control problem is presented in the se-
works is the full coverage of a given (large) area quel. The only limit of this approach is the impos-
with the union of each single field of measurement. sibility of getting a continuous measure for a given
This problem has been usually faced studying opti- point of the area under monitoring, allowing the user
mal, suboptimal or heuristic solutions to the coverage only to fix the maximum acceptable time between two
problem in terms ofjoodallocation of sensors in the  consecutive measures of the same point. The problem
area under measurement. In other terms, the prob-is than to plan trajectories optimally in sense of area
lem usually has been posed answering the questioncoverage. An optimal control formulation for this
"which are thebestplaces to put the N sensors?”, problem is proposed in (Wang, 2003). In (Tsai, 2004;
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Cecil and Marthler, 2006) the same problem has beenwhere
studied in the level set framework and some subop- 0
timal solutions are proposed. An approach based on 1
space decomposition and Voronoy graphs is proposed A= 0
in (Acar et al., 2006). 0
In the present work we suggest a customizable op-
timal control framework that allow the study of a set 0
of different case of the described problem. C= (
The motion problem both for a single sensor and
for a set of se?]sors, _under_ rIjinriama;@c a_nd dynam_ic once the state vector z(t) =
constraints on the motion, with the objective to maxi- . : T
mize the area covered during the movlement is formu- ( xl(t),xl(t),xz(t),xz(t)T ) andl thep, output
lated as an optimal control problem Since this prob- Y(t) = ( xa(t). x2(t) ) are defined. Clearly,
lem, in the general case, cannot be solved analyti-Y(t) denotes the trajectory followed by the mobile
cally, a discretization of space and time is performed, S€NSOr. _
S0 obtaining a discrete time optimal control problem  |f the workspace M is supposed to be a rectangu-
tractable as a Non Linear Programming (NLP) one. lar subset of R, the trajectory must satisfy the con-

Similar approach to optimal control problems was Straints

[cNeoNoNe)
= O OO
[oNeoNoN
OoOr OO

o
[N
o o
N———

proposed for industrial manipulators control in (Bic- Xlamf“ < X1(t) < X3 max
chi and Tonietti, 2004) and for path planning in (Ma Xzmin < X2(t) < X2max
and Miller, 2006). Moreover, physical limits on the actuators (for the

The paper is organized as follows. In Section 2 motion) and/or on the sensors (in terms of velocity in
the mathematical model of the sensor(s) is given, to- the measure acquisition) suggest the introduction of
gether with the constraints to be satisfied. Model and the following additional constraints
constraints are then used to propose a formulation for

the optimal control problem. In Section 3 the discrete X1(t)| < Vmax
problem, obtained by spatial and temporal discretiza- [%2(t)] < Vimax
tion, is formulated in terms of a solvable NLP prob- [u1(t)] < Umax
lem. Section 4 is devoted to the particularization of |u2(t)| < Umax

the problem for some cases, showing the respective |, this work the hypothesis that the mobile sensor

simulation results. Some final comments in Section 5 .t timet can take measures within a circular area of

end the paper. radiusp around its current positioy(t) is considered.
Such an area under sens@ibility will be denoted as

2 PROBLEM FORMULATION M(t) = a(y(t),p)

In other wordsM(t) denotes the area over which the
21 TheMathematical Model sensor can take measures at time

A mobile sensor is modeled, from the dynamic point 2.2 TheMathematical Formulation of

of view, as a material point of unitary mass, moving the Coverage Problem

on a spac&V c R?, called theworkspaceunder the

action of two independent control input forces named According to what stated in subsection 2.1, given a
ui(t) andup(t). Then, the position of the sensor in  time interval® = [0,t;], the geometric expression of
W at timet is described by its Cartesian coordinates the area covered by the measures dungayMe,
(x1(t),x2(t)). The motion satisfies the well known can be easily given by

equations:
Xa(t) = w(t) 0 Me = UM(t) = J oly(t).p) 3)
Xo(t) = ua(t) te® te®
The linearity of 1 allows one to write the dynamics However, such a formulation is not easy to be used
in the form in an analytical optimal control problem formulation.
Then, alternative expressions that gives in an analytic
2(t) = Az(t) +Bu(t) form how a given trajectory reflects on the space cov-
y(t) = Ct) ) erage for the sensor measure must be found.
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The one used in this work is based on the dis- 3 DISCRETE TIME

tanced(y(t), P) between the point§P|P € W} of the FORMULATION
workspace and the trajectory.
Once the distance between a poidtof the In order to overcome the difficulty of solving a prob-
workspace and a given trajectoyft) is defined as lem as (7) due to the complexity of the cost function
. J(-), a discretization is performed, both with respect
d(y(t),P) = min|ly(t) - P|| (4)  to spacew, and with respect to time in all the time

dependent expressions.

and making use of the function The workspace is divided into square cetlg

& if £€>0 with resolution (size)s, and the trajectory is dis-
pog§) = 5) cretized with sample timé@s. The equations of the
0 if £&<0 discrete time dynamics are:

that fixes to zero any nonpositive value, the function Z(k+1)Ts) = Agz(KTs) + Bau(KTs)

9)

d(y(t),P.p) = pos(d(y(t),P) —p) > 0 y(kTs) = CZkTs)

4
can be defined. Then, a measure of how the trajectory ~ WhereAq = €™ andBy = [y Bdt
y(t) produces a good coverage of the workspace can _ The state vectar(t) at the generic time instaht=

be given by NTs depends on the initial statg and on the controls
from timet =0 to timet = (N—1)Ts
) = [ diy(e).Pp) ©) N
Pew

_ AN i i
Smaller is J(y(t), better is the coverage. Z(NTS)_AdZO+i;AdBdu((N_l)Ts_'Ts) (10)

If J(y(t)) = 0 than y(t) covers completely the The following matrices are now defined:

workspace.
. Z(Ts)
2.3 TheOptimal Control Problem 7 = :
Formulation ZANT)
Making use of the element introduced in previous y(0) Ag
subsections, the Optimal Control Problem can be for- Yo — ) Ay = Al
mulated in order to find the best trajectory(t) that N= : I
maximizes the area covered by sensor measurement y(NTs) AdN
during the time interva®, as defined in previous sub-
section, and satisfies the constraints. Then a con- Bd 0 . 0 0
strained optimal control problem is obtained, whose AdBqd B - 0 0
form is Bn = : : . : :
; N-1g, AN-2B A¢By B
minJ(A(u(t))) As Ba Ay Ba . d Bd
u(0) Umax
f(u(t)) =0 @) Uy = : Unnax =
g(U(t)) < 0 U((N — 1)Ts) Umax

In (7), the cost functional(-) is given by (from [ Vmax ]| [ —Vmax ]|

(6)) X1,max X1,min
B R Vmax —Vmax
anwe) = [ daww)pe)  ® _— _

The optimal solutionu(t) = u*(t) (t € ©)is the o o
control that produces the optimal trajectory(t) = Zmax= : Znin= :
A(U*(t)) (t € ©). . __

In general is not possible to solve analytically the Vinax —Vmax
optimal control problem defined in the precedent sec- X1 max X1min
tion, due the functional form od(-) in (7). In next Vinax —Vimax
section a solvable discrete problem is defined. X2 max | Xomin |
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Making use of such matrices, the sequence of val-
ues for the sampled state vecidkTs), with 0 < K <
(N+1), can be expressed in the simple compact form

Zn = Anzo+BnUn (11)

The cost function can then be written as:
vx Vy

=3 ;6(A<UN>,ci,j,p> (12)
I=1]=

where vy = (Xmax—xmin),

A(UN) =Y.

(Ymax—Ymin)
res

Vy = and

3.1 TheNonlinear Programming
Problem Formulation

The problem of finding the maximum area coverage
trajectory can now be written as a tractable discrete
optimization problem with linear inequality and box
constraints

vx Yy

minzzld(/\(uN),ci,j,m
i=1lj=

UN

AmodeUN < Bmodel
*UmaXS UN < Umax

(13)

B
whereAmodel = { —IglN }
Zmax— A
andBmodel= —;ni)i(n‘f'i&\lNzgo

Suboptimal solutions can be computed using nu-
merical methods. In the simulations performed, the
SQP (Sequential Quadratic Programming) method

has been applied. The obtained model can be cus-

tomized according to the specific task, as shown in
the following section.

4 MODEL CUSTOMIZATION
AND CASE SOLUTIONS

In this section some cases are faced in order to putin Amodel=
evidence the capabilities and he effectiveness of the
proposed solution. The values of parameters used in

all the simulations are:
umax = 05N, Vmax = 15%:,
4AM,Xmin = Ymin = —4m, Ts = 0.5sec

Xmax = Ymax =
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4.1 The Caseof a Single Sensor

Fixed initial state

The formulation adopted allows to find covering tra-
jectories for a single sensor who start from a given ini-
tial state. In figure 1 the corresponding simulation re-
sults, forzo=[ 0 0 0 Q ' are depicted. With

t; = 20secthe sensor covers the B9 of total area.

-4
-4

Figure 1: Suboptimal trajectory for one moving sensor with
arbitrary starting pointa= 0).

Optimal initial state
The initial statezo can be included among the set

of variables of the optimization problem. In fact,
defining
2(0)
u(0)
W = .
U((N-1)Ts))
Ag Byg 0 0
A3 AgBy 0 O
AY AV B AdBd Bq
it is possible to write
Zy = HyW (14)
The new optimization problem is then obtained
setting
H z
|: _l_TN :| and Bmodel= |: _;ni)i(n :|

Leaving the initial condition free, better results are
obtained since the initial state is also optimal, as it is
shown in figure 2.

Here in the same time of the precedent simulation
(tr = 20seq, the sensor covers 7ZB% of total area,
versus the 7@% of the fixed starting state case.
Periodic trajectory

Cyclic trajectories can be very useful in area mon-
itoring or surveillance tasks because this choice, once
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A — 4.2 TheCaseof Multiple Sensors

3 // o —

Z // | The models shown above are very easily extended to

1y ( { ] the case under interest of area coverage with multiple
L0 \\w——//n\\\ moving sensors. The use of multiple sensors instead

4\ ‘j, ] of one allows to reduce the time within the same

ol \ /] coverage or, equivalently, increase the coverage for

. SN the same.

R ‘ If nis the number of the moving sensors, the opti-

4 3% 2 -1 0 1 2 3 4 mization problem can be formulated in the same way

once the following matrices are defined and used in-
Figure 2: Suboptimal trajectory for one moving sensor with  stead of the corresponding ones:
suboptimal starting point.

Una
the maximum timeNTs between measures on the up = :
same point is fixed, allows to repeat the measure in i
the same point periodically. ’

According to the present formulation, the sampled whereUy ; stands for the control sel) of thei —th

dynamics ovelN sampled instants has a periodic be- sensor.
havior if and only if

z(N+1)Ts) = z(0) (15) Amodeir 0 ... 0

Observing that the computation of tfil¢ + 1) —th Ahodel= : LT :
sampled values for the state gives 0 0 ... Anodeln

AN+1T) =[ AT .. AdBy Bg W
while Brmodel1

z0)=[1 0 .. 0 O]w BnmodeI:
condition (15) can be rewritten as Bmodeln
[ Ay =1 .. ABy Bs Mv=0  (16)  where Amodei and Bmogeii are the Anoder and the

Equation (16) must be added as a new constraint Bmodel Matrices of the —th single sensor model.

in the optimization problem in order to get periodic In_flgure_4the resglt for the multi-sensor case with
solutions. n=2is depicted. In timg = 25secthe 9986% of the
The figure 3 shows the results obtained by simu- workspgce area is covere_d. T_he gain of time respect
lations for this case. to the single sensor case is evident.
With t; = 40secthe 98 17% of the workspace area
is covered. T T e
3t/ ]
4 . , \/ 7 =
| S - -
| \ / LR
i ( ) R ;‘/ s /
2- 3 / \ { PR /
\ / SN AY 7 / /
1 \ AT N / S
‘ \ { A —1'// \ b
&0 \ o \ ( S LN
h j J \\\ ///// | K ‘\ ARN
[ X /’/ -3 \\ ? \\\\ /,
2K / / \\ \\N (,/ / N
SO MNA KA O [ AR 775 [ R S — x01 1 2 3 4
4l L L L L
W 2 A o 1 2 3 4 Figure 4: Sub-optimal cyclic trajectories for moving sensor

1 (blue) and moving sensor 2 (green), the yellow circles
Figure 3: Sub-optimal trajectory for one moving sensor. ~ show the measures area.
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5 CONCLUSIONSAND FUTURE
WORKS

In the present paper a measurement system compoself'®9

by several sensors moving within the area under mea-

sure has been considered. This system has been called

dynamic sensor networlEor this kind of system the
formulation for an optimal solution to the area cov-

Ma, C. and Miller, R. (2006). Milp optimal path planning

for real-time applications. IAmerican Control Con-
ference, 2006page 6pp.

uerdichian, S., Koushanfar, F., Potkonjak, M., and Sri-

vastava, M. (2001). Coverage problems in wireless ad-
hoc sensor networks. INFOCOM 2001. Twentieth
Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. |IEE&-
ume 3, pages 1380-1387vol.3.

erage problem has been provided. The complexity of Tan, J., Lozano, O., Xi, N., and Sheng, W. (2004). Mul-

the cost function makes very hard (actually impossi-
ble) the computation of the optimal solution. Then, in
order to get a solution, a sampled model has been con-
sidered, bringing to a nonlinear programming prob-

tiple vehicle systems for sensor network area cover-
age. Inlintelligent Control and Automation, 2004.
WCICA 2004. Fifth World Congress prolume 5,
pages 4666—4670Vol.5.

lem that has been solved numerically. The results for T5&i €heng, O. B.-S. (2004). Visibility and its dynamics in

a single sensor with different choices for initial con-
ditions (freely given or optimal) and for behavior of
the trajectory (non periodic or periodic) show the e
fectiveness of the proposed procedure. The case of a

n-sensors systems has also been considered and, for

f- V. Isler, S. K. and Daniilidis, K. (2004).

a pde based implicit frameworldournal of Computa-
tional Physics199:260-290.

Sampling
based sensor-network deployment. Rroceedings
of IEEE/RSJ International Conference on Intelligent
Robots and Systems IROS

n = 2 has been simulated in order to show the re- Wang, P. K. C. (2003). Optimal path planing based on vis-

sults when more sensors are present. The problem at
present under investigation concerns the inclusion of

ibility. Journal of Optimization Theory and Applica-
tions 117:157-181.

non collision constraints, where non collisions are t0 vyng-Tsung Hou, Tzu-Chen Lee, C.-M. C. B. J. (2006).

be considered both between moving sensors and with
fixed obstacles that can be present in the measurement
area.

Zou, Y. and Chakrabarty, K. (2004).
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