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Abstract: Firstly this article presents a multi-level architecture permitting the localization of a mobile platform and 
secondly an incremental construction of the environment’s map. The environment will be modeled by an 
occupancy grid built with information provided by the stereovision system situated on the platform. The 
reliability of these data is introduced to the grid by the propagation of uncertainties managed thanks to the 
theory of the Transferable Belief Model. 

1 INTRODUCTION 

Localization and mapping are fundamental problems 
for mobile robot autonomous navigation. Indeed, in 
order to achieve its tasks, the robot has to determine 
its configuration in its environment. But, if this 
result is necessary, it is not sufficient. An estimation 
of the uncertainty and the imprecision of this 
position should be determined and taken into 
account by the robot in order to enable it to act in a 
robust way and to adapt its behaviour according to 
these two values. 

The two notions of uncertainty and imprecision 
are distinct ones and they must be clearly defined. 
The imprecision results from unavoidable 
imperfections of the sensors, (ie) the imprecision 
representing the error associated to the measurement 
of a value. For example, “the weight of the object is 
between 1 and 1.5 kg” is an imprecise proposition. 
On the other hand, the uncertainty represents the 
belief or the doubt we have on the existence or the 
validity of a data. This uncertainty comes from the 
reliability of the observation made by the system: 
this observation can be uncertain or erroneous. In 
other words, the uncertainty denotes the truth of a 
proposition. For example, “John is perhaps in the 
kitchen” is an uncertain proposition. 

In a mobile robotics context, these two notions 
are paramount. Using several tools and several 

localization algorithms, the mobile robot determines 
its configuration. Knowing an estimation of the 
uncertainty and the imprecision of this computed 
localization, it can adopt an adequate behaviour. For 
example, if one of these two values is too high, it 
would try to improve the localization estimation by 
performing a new localization process. 

 The key tool used in this purpose is the 
Transferable Belief Model (TBM) (Smets , 1998), a 
non-probabilistic variant of the Dempster-Shafer 
theory (Shafer, 1976). Indeed, this theory enables to 
easily treat uncertainty since it permits to attribute 
mass not only on single hypothesis, but also on the 
union of hypotheses. We can thus express ignorance. 
So it has enabled us to manage and propagate an 
uncertainty from low-level data (sensor data) in 
order to get a global uncertainty about the robot 
localization. We treat the imprecision independently 
from the uncertainty because their non-correlation 
have been proved in (Clerentin and all., 2003) 

Our dual approach is particularly adapted to the 
problem of data integration in an occupancy grid, 
used as part of SLAM paradigm. 

We can principally find two types of mapping 
paradigm to take into account the notion of distance. 
The first paradigm consists of computing a cartesian 
representation of the environment which generally 
used the Extended Kalman filtering (Leonard and 
Durrant-Whyte. , 1992). The second approach based 
on occupancy grid maps allows to manage the 
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metric maps, which were originally proposed in 
(Elfes,1987.) and which have been successfully 
employed in numerous mobile robot systems 
(Boreinstein and Koren , 1991). In (Fox  and 
all,1999) Dieter Fox introduced a general 
probabilistic approach simultaneously to provide 
mapping and localization. A major drawback of 
occupancy grids is caused by their pure sub-
symbolic nature: they provide no framework for 
representing symbolic entities of interest such as 
doors, desks, etc (Fox  and all,1999). 

This paper is divided as follows. In a first part, 
we will detail how our grid occupancy is presented 
and our uncertain and imprecise sensorial model. 
Next we will discuss our localization and mapping 
method based on beacon recognizing . Finally we 
will present the experimental results. 

2 PREAMBLE 

2.1 Our Grid Occupancy, Its 
Initialisation 

We choose to model the environment of our mobile 
platform with the occupancy grid tool in 2D. Thus, 
the error of sensors measure will be implicitly 
managed since we will not manipulate a point (x,y) 
but a cell of the grid containing an interval of values 
([x],[y]). We choose to center the grid with the 
initial position of the platform. Then a cell is defined 
by its position in the grid . A cell also contains 
information concerning its occupancy degree by 
some object of the environment. This latter is 
defined by a mass function relative to the 
discernment frame Θ1 = {yes, no}. These two 
hypotheses respectively correspond to propositions " 
yes, this cell is occupied by an object of the 
environment " and " no, this cell is not occupied ". 
So the mass function of the cell concerning its 
occupation is composed of the three values in [0 , 
1], the mass mcell(yes) on the hypothesis {yes}, 
mcell(no) on the hypothesis {no} and mcell(Θ1) on the 
hypothesis  {yes ∪ no} representing the ignorance on 
its occupancy problem. Initially, we have no a-priori 
knowledge of the situation. So to model our total 
ignorance, all the cells are initialized with the neutral 
mass function , that is to say:  mcell{yes ∪ no} = 1 
and mcell{yes} = mcell{no} = 0. 

2.2 Uncertain and Imprecise Sensorial 
Model 

The platform gets a stereovision system composed 
of two omnidirectionnal sensors (see Figure 1.) 

distant of about 50 cm. Every acquisition provides 
two pictures of the environment . 

T h e  t w o  
o m n i d i r e c t i o n a l  
v i s i o n  s e n s o r s  

 
Figure 1: The perception system. 

Left sensor Right sensor 

Figure 2 : An example of an acquisition. 

On Figure 2 all vertical landmarks of the 
environment like doors or walls project themselves 
to the center and form some sectors of different gray 
levels. The positions of these landmarks will permit 
to fill the occupancy grid and so to build a map . To 
get this information, we should associate each sector 
in the first picture with the one that corresponds to it 
on the second picture. This stage needs some 
treatments on the primary data.  

First of all, on each omnidirectional picture, we 
define a signal which represents the mean RGB 
color from a ring localized around the horizon in the 
field of view. In fact, what we want to detect are the 
natural vertical beacons of the environment. 
Omnidirectional vision system project those vertical 
parts of the environment according to radial straight 
lines onto the image. During this computation, it is 
very important that the rings are centered onto the 
projection of the revolution axis of the mirror. 
Otherwise, we will not compute the mean RGB 
color according to the projection of the vertical 
elements of the environment. This centering task is 
automatically done with a circular Hough transform 
(Ballard,1981). In fact, we look for a circle 
corresponding to the projection of the black needle 
situated onto the top of the hyperbolic mirror (see 
Figure 3) which is situated onto the center of the 
mirror. 

Then, the two 1D mean RGB signals are 
computed from the ring( Figure 4) and matched 
together according to a rule of visibility. In fact, if 
an object is detected from one omnidirectional 
sensor, it will be visible in a certain area of the other 
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one, according to the distance between the object 
and the mobile robot. 

 
Left sensor 

 

The 
black 
needle 

 

Right sensor 
 

The 
black 
needle

Figure 3: Center location computed with a circular Hough 
transform. 

Left sensor Right sensor 

Figure 4: Centered rings to compute the mean RGB 
signals. 
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Figure 5: Correspondences between angles from the left 
sensor to the right sensor for objects situated at different 
distances from the mobile robot. 

 mobile 
rob

could be close to another one. So, we only keep the 

Figure 5 shows the correspondences between the 
angle of the left sensor and the angle of the right 
sensor according to different distances. We actually 
notice that the more the object is close to the

ot, the more the two angles are different. 
The detection algorithm is based upon the 

derivative of the signal in order to detect sudden 
changes of color. When we find such value on the 
left sensor, we look for a similar change in the right 
sensor signal with a maximum of correlation criteria. 
In fact, as you can note on the Figure 6, a matching 

most significant matching according to the 
correlation value.  

 
Figure 6 : The two extracted mean color signals from 
omnidirectional pictures (to 0 from 140°) of Figure 4 and 
the matching between the left sensor (upper) and the right 
sensor (bottom). 

We choose to use this indicator (in [0-1]) which 
qualify a very good correlation when is near than 1, 
to build a degree of uncertainty about the matching 
by the way of three masses (see Figure 7 ).  

0

1

0 0,7 1
absolute correlation coefficent

m
as

s m(yes)
m(no)
m(yes U no)

 
Figure 7: Uncertainty about the matching computed with 
the correlation coefficient. 

When two sectors are matched, we have two 
pairs of associated angles on the one hand (angles of 
segments that define borders) and on the other hand 
a measure of uncertainty on this association. It is 
directly linked with a landmark which represents it . 
Therefore the pairs define the position of the 
landmark and the uncertainty measure its uncertainty 
on its existence. So this last value is equal to the set 
of three masses coming from the previous fusion in 
the discernment frame Θ2= {yes the sectors are 
associated; no they do not correspond}  

• the mass on the hypothesis  “ yes” mass(yes) 
• the mass on the hypothesis “ no” mass(no)  

the mass on the hypothesis “ I can’t decide about 
this matching” mass(yes ∪ no) = mass(Θ2) , in other 
words this mass  represents ignorance. 

Then the landmark uncertainty is given by the 
following masses in the discernement frame Θ8= 
{yes the landmark exist; no it don't exist}: 

• the mass on the hypothesis  “ yes”  
mland(yes) = mass(yes) 
• the mass on the hypothesis “ no”  
mland(no) = mass(no) 
• the mass on the ignorance hypothesis ie “ I can’t 

decide about the existence ”  

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

440



 

mland(Θ8) =mass(Θ2) 
Only sectors that have been associated will be 

used in the continuation of our survey. The measure 
of uncertainty mland qualifies the landmark but also 
the segment pairs forming borders. Indeed, the 
existence of a landmark is linked with the existence 
of the borders .   

Our data are uncertain but they are also 
imprecise because of sensor measurement errors. 
This imprecision of measure is managed by the way 
of intervals. The second result of this fusion, that is 
to say the matching of two angles (α,β), provides 
information about extremities (xi, yi) of the vertical 
landmarks in question(Figure 8) thanks to equations 
of triangulation (1) and (2). So we transform our 
data in intervals in order to include this imprecision. 
We create a error domain empirically around our 
measures of angle (α , β). Then the operations (1) 
and (2) are computed not between reals but on 
intervals . We obtain the following equations (3) and 
(4): 
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Figure 8 : Sectors matching. 

At this level of data exploitation, we have a set 
of subpaving characterizing the physical extremities 
of each landmark detected, that is to say the object 
of which sectors representing it have been matched. 
These subpavings form the primitive of our sensorial 
model that we will try to link with the beacons 
during the time. They are localized by their 
coordinates ([xi],[yi]) in the frame relative to the 
platform and they have the same measure of 
reliability that the landmark ie mprim = mland. . 

3 LOCALISATION AND 
MAPPING METHOD 

The algorithm consists in matching during the 
platform displacement the primitives of the sensorial 
model with information known from the 
environment that we will call beacons. These 
matching once achieved will permit both to correct 
the position of beacons and the estimated position of 
the platform thanks to the odometry and also to 
confirm the existence of beacons. In short we will 
exploit data of these beacons to build our occupancy 
grid of the surrounding space.  

3.1 Definition and Initialisation of 
Beacon  

A beacon is defined by a set of coordinates in the 
reference frame (Xe, Ye) (thus forming a subpaving 
of localization ) and by a degree of uncertainty about 
its existence composed of three masses as previously 
shown. This set of masses is established in the 
discernment frame Θ3={yes , no}. These two 
hypotheses respectively correspond to propositions " 
yes, this beacon exists " and " no, this beacon does 
not exist". So the function mass concerning its 
existence is composed of the three values, the mass 
mbea(yes) on the hypothesis {yes}, mbea(no) on the 
hypothesis {no} and in short mbea(Θ3) on the 
hypothesis  {yes∪no} representing the ignorance 
about its existence.  

A beacon is born from a primitive observed at 
instant t that cannot be matched with the existing 
beacons at this instant. This new observation is a 
landmark not discovered until now or a false alarm. 
The only information on the existence of a new 
beacon comes from the existence of the primitive 
that gave its birth. Then we choose to give the same 
measure of uncertainty on the beacon, that is to say 
mbea t =mprim. Concerning its relative positioning it is 
equal to the relative localization subpaving of the 
primitive associated. As thereafter we must associate 
this beacon to an observation coming from other 
acquisitions and should use this one in the updating 
of the occupancy grid. So it is more interesting to 
manipulate the absolute position . This one is 
obtained by the change of a frame in relation to the 
configuration of the platform.   

Therefore at each instant, new beacons can 
appear, and in this case they join the set of the 
existing beacons to the following acquisition. 
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3.2 The Association Method between 
Beacons and Primitives 

In looking for these matchings, the aim is on the one 
hand to get the redundant information permitting to 
increase the degree of certainty on the existence of 
the beacons and on the other hand to correct their 
positioning. 

So, at any step, we have several beacons that are 
characterized by the center of their subpaving  
([x],[y]). Let us call this point the “beacon center”. 
The uncertainty of each beacon is represented by the 
mass function mbea t. 

In this part, we try to propagate the matchings 
initialised in the previous paragraph with the 
observations made during the robot’s displacement. 
In other words, we try to associate beacons with 
sensed landmarks.  

Suppose we manage q beacons at time n. Each 
beacon is characterized by its “beacon center” 
(expressed in the reference frame). Let us call this 
beacon point (xb, yb). Suppose the robot gets p 
observations at time n+1. As we have explained in 
the previous paragraph, we are able to compute each 
observation localization subpaving ([xi], [yi]) in the 
reference frame. So, for each observation, we have 
to search among the q beacons the one that 
corresponds to it. In other words, we have to match a 
beacon center (xb, yb) with an observation subpaving 
([xi], [yi]) . The matching criterion we choose is 
based on the distance between the beacon center and 
the center of observation subpaving ([xi], [yi]). 

So at this level, the problem is to match the p 
observations obtained at acquisition n+1 with the q 
beacons that exist at acquisition n. To reach this aim, 
we use the Transferable Belief Model (Smets, 1998) 
in the framework of extended open word (Shafer, 
1976) because of the introduction of an element 
noted * which represents all the hypotheses which 
are not modeled, in the frame of discernment. 

First we treat the most reliable primitives, that is 
to say the “strong” primitives by order of increasing 
uncertainty. 

For each sensed primitive Pj (j ∈ [1..p]), we 
apply the following algorithm: 
– The frame of discernment Θj is composed of: 

– the q beacons represented by the hypothesis 
Qi (i ∈ [1..q]). Qi means “the primitive Pj is 
matched with the beacon Qi”) 

– and the element * which means “the primitive 
Pj cannot be matched with one of the q 
beacons”.  

– So: Θj={Q1, Q2, …, *} 
– The matching criterion is the distance between 

the center of the subpaving of observation Pj and 
one of the beacon centers of Qi  

– Considering the basic probability assignment 
(BPA) shown Figure 9, for each beacon Qi we 
compute: 

– mi(Qi) the mass associated with the 
proposition “Pj is matched with Qi”. 

– mi(¬Qi) the mass associated with the 
proposition “Pj is not matched with Qi”. 

– mi(Θj) the mass representing the ignorance 
concerning the observation Pi. 

– The BPA is shown on Figure 9. 

  
Figure 9: BPA of the matching criterion. 

– After the treatment of all the q beacons, we have 
q triplets : 

– m1(Q1) m1(¬Q1)  m1(Θj) 
– m2(Q2) m2(¬Q2)  m2(Θj) 
– … 

– mq(Qq) mq(¬Qq)  mq(Θj) 
– We fuse these triplets using the disjunctive 
conjunctive operator built by Dubois And Prade 
(Dubois and Prade, 1998). Indeed, this operator 
allows a natural conflict management, ideally 
adapted for our problem. In our case, the conflict 
comes from the existence of several potential 
candidates for the matching, that is to say some near 
beacons can correspond to a sensed landmark. With 
this operator, the conflict is distributed on the union 
of the hypotheses which generate this conflict. 

For example, on Figure 10 , the beacon center P1 
and P2 are candidates for a matching with the 
primitive subpaving ([x], [y]). So m1(P1) is high (the 
expert concerning P1 says that P1 can be matched 
with ([x], [y])) and m2(P2) is high too. If the fusion is 
performed with the classical Smets operator, these 
two high values produce some high conflict. But, 
with the Dubois and Prade  operator, the conflict 
generated by the fusion of m1(P1) and m2(P2) is 
rejected on m12(P1 ∪ P2). This means that both P1 
and P2 are candidates for the matching. 

– So, after the fusion of the q triplets with this 
operator, we get a mass on each single hypothesis 
mmatch(Qi), i ∈ [1..q], on all the unions of hypotheses 
mmatch(Qi ∪ Qj…∪ Qq), on the star hypothesis 
mmatch(*) and on the ignorance mmatch(Θj). 

– The final decision is the hypothesis which has 
the maximal pignistic probability (Smets, 1998). If it 
is the * hypothesis, no matching is achieved. This 
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situation can correspond to two cases: either the 
primitive Pj is an outlier, or Pj can be used to initiate 
a new beacon since any existing track can be 
associated to it.  

 
Figure 10: An example of two beacons that generate some 
conflict. 

Once a matching is achieved, the uncertainty of 
the concerned beacon has to be updated. This 
uncertainty is denoted by the mass function mbea 
defined on the frame of discernment Θ3. This 
updating has to take the reliability of the matched 
primitive (mass function mprim) and also the 
uncertainty of the matching into account. This 
matching uncertainty is deduced from the pignistic 
probability of the selected matched primitive by the 
mass function m2 shown on Figure 11. For example, 
if the pignistic probability is equal to 0.75, the 
matching uncertainty is denoted by the following 
mass function m2: m2(yes)=m2({yes, no})=0.5 ; 
m2(no)=0. 

Finally, the beacon uncertainty at time t (denoted 
by the mass function mbea t) is updated by fusing the 
beacon uncertainty at the previous time t-1, the 
primitive uncertainty (mprim) and the matching 
uncertainty (m2): mbea t = mbea t-1 ∩ mprim ∩ m2 , 
where ∩ is the fusion operator of Smets. 

Let us recall that this mass function is composed 
of three values: mbea t(yes), mbea t(no), mbea t(Θ3). 

3.3 The Management of non Associated 
Beacons 

Concerning the beacons that have not been matched 
at this instant, our first reflection was the following. 
As no observation can be associated, it implies that 
our beacon has not been detected to this acquisition. 
Therefore the first idea was to put in doubt its 
existence in decreasing its degree of existence. But 
even if the beacon is no more visible from instant t 
for example because the mobile platform is moving , 
the object nevertheless exists. It is necessary not to 
lose this information at the level of the map. Then 
we decide not to modify the degree of existence of a 
beacon which was not matched. 

 

3.4 The Consequences on our Grid 

A new beacon or a beacon that have been associated 
to an observation provide two kinds of information 
both on the occupied space and on the empty space 
of our grid. Let us examine the case of one of these 
beacons at time t to explain this phenomenon. As we 
have already said, this beacon has a measure of 
uncertainty on its existence. It is defined by the mass 
function mbea t . 

3.4.1. The Occupied Space 

The existence of a beacon is directly bound to the 
occupation of cells containing its localization 
subpaving. Therefore the degree of occupation of 
these cells must take the degree of existence of the 
beacon into account. It is achieved thanks to the 
fusion with the operator of Smets of these two mass 
functions. So if the mass function of the beacon 
indicates rather a certain existence then this fusion 
will increase the degree of occupation of concerned 
cells. On the contrary, if it indicates an existence 
which is somewhat unreliable, the fusion will 
reverberate this doubt on these same cells. A cell is 
concerned by the fusion if its intersection with the 
localization subpaving is not empty, they appear in 
gray on Figure 12a. 
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Figure 11: Mass function m2 of the matching uncertainty. 

 
 

 
Figure 12: a) Occupied Space, b) Free Space. 
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The fusion is the following: 
mcell t = mcell t-1 ∩ mbea t 

3.4.2 The Free Space 

On the other hand, since this beacon has been 
associated to an observation, it implies that the space 
between the point of observation in this case the 
mobile platform and the beacon does not contain any 
obstacle. This space is therefore free. But it is free in 
relation with the existence of the beacon.  

This operation is achieved in the same way as 
previously, that is to say merging with the operator 
of Smets. But this time, we fuse its current 
occupation degree with a mass function m3 built as 
being the “contrary” of the mass function mbea t. 
Because the more the beacon is denoted by a high 
mass on the hypothesis {yes, I exist} , the more the 
mass on the hypothesis {no, this cell is not 
occupied} for the cell of the free space (Figure 12 b) 
must increase . This function m3 is the next one: 

m3{ no} = mbea t {yes}, m3{ yes ∪ no} = mbea t  { 
yes ∪ no} and m3{yes} = mbea t { no}. 

And this fusion is given by the following 
expression : mcell t = mcell t-1 ∩ m3 

To resume we get a set of beacons and a 
occupancy grid of obstacles of the surrounding 
space.  

3.5 The Correction Method 

Now we use these data to correct the position of 
beacons at first and then the estimated position of 
the mobile platform . These stages are under 
development. We currently use the correction 
modules presented below that will be to improve in 
future works. The beacons are characterized by an 
error domain of center (x,y). We notice that this 
center, disposed on the grid, is surrounded with the 
cells of different occupation levels. To take account 
of the information we modify the position of the 
beacon. In fact, we choose the center of gravity of a 
window 5 x 5 cells around the center pondered by 
their respective mass mcell(yes) , as the point that 
now characterizes the position of the beacon. 

Let us remember that the configuration of the 
mobile platform is estimated with odometric 
information. Or we know the classical phenomena of 
cumulative error if no correction method is achieved 
(Delafosse and all , 2005). Our correction module is 
based on the cumulative error minimization. We 
limit the real possible positions of the platform to 
centers of cells of a window 3 x 3 around the 
position estimated by odometry. The kept position 
among the nine will be the p position that minimizes 

the accumulated sum of distances between beacons 
and primitives observed since the p position. 

4 EXPERIMENTAL RESULTS 

We present experimental results obtained in a 
structured indoor environment on Figure 13 . The 
platform is stopped to every stereoscopic acquisition 
achieved every 30 cms. The managed trajectory is a 
large boucle represented in yellow on the Figure 14. 
The natural landmarks mainly observed are the 
framings of doors, corners , walls and pillars .In 
Figure 14 we present the obtained map building. The 
blue cells correspond to the empty space and the red 
one to the occupied space. The intermediate colors 
highlight the merging of the occupied and free state. 
We can notice that the method is robust since most 
observable landmarks are integrated to the map 
according to the real map presented in grey on the 
graphs. We can easily detect for example the corners 
of the “cross” hall and the free space between each 
others. We can also notice the certainty of the free 
space is clearly represented by the color purple. Our 
approach complementary to the probabilistic one, 
form an alternative to the SLAM paradigm based on 
the occupancy grid. We can observe the correlation 
between the uncertainty of a landmark position 
estimation and the updating cell values. 

5 CONCLUSION 

In this article we have presented an architecture of 
fusion and integration of data for the SLAM 
paradigm. It is based on a representation of 
occupancy grid type. The originality of the 
proposition is on the one hand the propagation of 
uncertainties on several levels of treatments and on 
the other hand the management uncoupled of 
imprecision and uncertainty. The association of 
these two concepts permits an important reliability 
in the process of new primitive integrations in the 
map. This step is crucial since it conditions the 
global consistency of the cartographic representation 
on an important number of acquisitions. Moreover 
our approach permits to solve the problem of 
“primitive number explosion” which generally 
implies a divergence of the SLAM process. Besides 
the precision obtained on the position estimation of 
observable landmarks is relatively important. So the 
«symbolic» approach presented constitutes an 
interesting alternative to methods classically used in 
this domain that are generally probabilistic. 
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Figure 13: The experimental environment (scale 1m x 
1m). We focus on the part of the corridor which represente 
a cross.  

 
Figure 14 : The resulting map. 
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