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Abstract. In this paper, we propose a communication-efficient hybrid task 
scheduling algorithm for a heterogeneous multi-robot system under dynamic 
unknown environment, where each robot makes its own decision through com-
municating with others as well as checking a global task status queue. The pro-
posed hybrid algorithm takes advantage of centralized approaches to improve 
the overall system efficiency and distributed approaches to reduce the commu-
nication overhead, which automatically leads to a reasonable reduction of 
power consumption. This algorithm avoids unnecessary communication by 
broadcasting global information which is in everybody’s interest and mean-
while limits specific information which is in interest of some specific robots 
only. In addition, each robot would dynamically allocate the task to robots 
which are capable and most available. This feature makes the system robust 
against communication failures and robot failures. Simulation results demon-
strate the efficiency and robustness of the proposed approach. 

1 Introduction 

With growing need of building reliable real-time applications coupled with advance-
ment of high-speed networks and high-performance computers, in the past decade 
heterogeneous multi-robot systems have been increasingly used for many real-time 
applications, like urban search and rescue, surveillance, hazardous materials detec-
tion, and reconnaissance, in which the correctness of the systems depend not only on 
the results of a computation, but also on the time which these results are produced [1]. 
To achieve real-time performance of such a complex system, an efficient task alloca-
tion and coordination among the team members is required. Vali Veloso stated in [2] 
that team performance can be drastically increased if the team coordinates well and 
the information is being shared by all teammates in a multi-robot environment. 

Dynamic task allocation for multi-robot systems under dynamic environment is a 
challenging problem, which aims to efficiently finish all of unknown tasks as fast as 
possible while keep the cost as low as possible.  Although some algorithms have been 
proposed to tackle this problem, such as auction-based algorithm like MURDOCH 
[3][4], behavior-based algorithm like ALLIANCE [5][6], and instantaneous greedy 
scheduler based approaches, all of these available methods have a great deal of 
broadcast communication overhead to share information with all of team members. 
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Some of available algorithms are only good for a homogeneous robot team with one 
global task like mapping or exploration of an area, and some of them don’t take con-
sideration of system robustness in the case of communication failure or robot mal-
functions.  

In this paper, we aim at investigating a task scheduling algorithm for a heteroge-
neous multi-robot system under dynamic unknown environment. As we know, a cen-
tralized approach consists of making all decisions in one place, where all the tasks to 
be performed are collected by a central scheduler. This centralized scheduler decom-
poses tasks into programs of actions, order actions when necessary and assigns them 
to robots with respect to their capabilities, work loads, and locations. The centralized 
approach is efficient with small number of agents, but its performance would be de-
graded significantly in a large-scale team. Furthermore, centralized approaches are 
not appropriate for coordinating the action of multiple robots in a dynamic unknown 
environment where unforeseeable events may occur.  

On the other hand, in a decentralized approach, each robot makes its own deci-
sions for a particular set of tasks. No central unit is needed. Some initial decomposi-
tion of the global scheduling may be imposed and robots can negotiate with others to 
make the best of coordination and solve conflicts dynamically. Furthermore, to im-
prove the system robustness, error handling and system recovery are critical issues. 
According to Dias and Zink [7], in a multi-robot environment, system failure can 
occur in three different ways: (1) communication failure; (2) partial robot malfunc-
tioning; and (3) robot death. The scheduling algorithm should take these situations 
into consideration.  

Based on the above observation, we propose a hybrid task scheduling algorithm, 
where each robot makes its own decision through communicating with others as well 
as checking a global status queue to improve the coordination efficiency. This algo-
rithm avoids unnecessary communication by broadcasting global information which 
is in everybody’s interest and meanwhile limits specific information which is in inter-
est of some specific robots only. Therefore, the proposed algorithm takes advantage 
of centralized approaches to improve the overall efficiency and distributed ap-
proaches to reduce the communication overhead. To improve the system robustness 
under dynamic environment, instead of making each robot to adapt to some unex-
pected tasks which may be beyond its own capability due to changed environment, 
the robot would send help signals to those who can handle the tasks. In addition, by 
tracking the communication signal that it has sent and expected to receive, each robot 
would dynamically allocate the tasks to robots which are capable and most available. 
This feature makes the system robust against communication failures and robot fail-
ures.  

The paper is organized as follows. Section II introduces background and related 
work in the field of task allocation algorithms for multi-robot systems. Section III 
describes the problem statement. Section IV proposes a real-time dynamic task allo-
cation algorithm for heterogeneous multi-robot systems. Extensive simulation results 
are discussed in Section V. The paper is concluded by Section VI.   
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2 Related Work 

Increasing amounts of research have been conducted in the area of dynamic task 
scheduling for multi-robot systems. One of the easiest approaches to work in dynamic 
task assignment is trial and error method, where all robots will try the same task one 
by one until the perfect match is found.  This method is very inefficient and time 
consuming. James McLurkin [8] proposed three different methods of task assignment 
in robot swarms: random-choice algorithm, which is extremely communication exten-
sive and inefficient, card-dealer’s algorithm, which assigns tasks to individual robots 
sequentially, using minimal communications but a great deal of time, and tree-recolor 
algorithm, which is a compromise between extreme-communication and card-
dealer’s, balancing communications use and running time.  

Ashely and Ramprasad [9] proposed a behavior-based planning algorithm for 
multi-robot systems, where each robot predicts the behavior of its companion and 
proceeds for further steps. The main idea of this method is that the robot should not 
try to adapt to the situation but instead should directly transfer that task to an associ-
ated robot who can handle that situation. Brumitt and Stentz [10] proposed a dynamic 
mission planning for multi-robot systems in a dynamic environment, where the plan-
ning system dynamically reassign robots to goals in order to continually minimize the 
time to complete the mission. Trade-offs between robot’s traveling cost and running 
cost of mission planner has to be balanced. Smith and Davis [11] proposed a contract 
net protocol, where the collection of nodes (robot) can be represented as a contract 
net. There are many auction based methods available for handling dynamic task allo-
cation and MURDOCH [3][4] is a popular one among them, which uses contract net 
protocol as its communication protocol. Generally, distributed systems rely on fitness 
based actions and negotiation protocols. MURDOCH uses publish/subscribe messag-
ing for distributed control of multi-robot systems.  

A task-assignment architecture was proposed in [12] for cooperative transport by 
multiple mobile robots in an unknown static environment, which consists of two real-
time planners: a priority-based task-assignment planner and motion planners based on 
short-time estimate. This method is also compared with Stillwell’s algorithm in [13], 
where homogenous robots are ant like objects who try to move a big piece of food 
from one place to their nest. Each of them tries to contribute in the most efficient 
way. The scheduler proposed in [14] is one example of greedy decentralized schedul-
ers. Generally, these kinds of co-operative search approaches are efficient and robust 
in applications like military scouting and automatic trash collection. A novel emotion-
based recruitment approach was proposed in [15] for a multi-robot task allocation 
problem. Affective recruitment is tolerant of unreliable communication channels, and 
can find better solutions than simple greedy schedulers.  

3 Problem Statement 

A simplified proof-of-concept task environment, as shown in Fig. 1, is divided into 3 
different sub-areas: high-pressure sub-area, intensive-light sub-area, and smoking 
sub-area. Different types of robots are defined based on their capabilities.  For exam-
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ple, P type robot, which is only capable of working in high-pressure subarea, but not 
the other two subareas. Here P stands for pressure. Similar definitions are applied to 
L type robot and S type robot. Some robots may have capabilities suitable for multiple 
sub-areas, such as PS type or LS type.  In order to implement the assigned missions in 
a more efficient manner, task preemption is not allowed among the robots in the pro-
posed task allocation approach.  It is assumed that robots are autonomous, are able to 
localize themselves within the environment, can avoid obstacles and plan path to a 
destination.  

Consider that we have N heterogeneous robots and M different tasks randomly 
distributed in different sub-areas.  Here task is a conceptual terminology, which can 
be defined as various physical jobs, such as trash can collection, de-mining, transpor-
tation, construction, or assembling.  The robots are expected to move to the position 
where the tasks are located and process the task.  The environment can be as simple 
as Fig, 1(a) 1 or as complex as Fig. 1(b), which is unknown to robots.  However, it is 
assumed that each robot has on-board sensors capable of detecting different subareas.  
Initially, if some predefined tasks have been stored in a robot, it will move to those 
tasks.  If no predefined task exists, robots would randomly move around to search for 
the tasks in the environment.  The requirement of these tasks may be changed due to 
dynamic environment.  The objective of this project is to develop an efficient task 
scheduling algorithm among heterogeneous robots under dynamic environment so 
that all of the tasks would be completed as soon as possible meanwhile cost (i.e. 
power consumption) can be reduced as low as possible.  

       
(a)                                                             (b) 

Fig. 1. Possible task environments. 

4 A Hybrid Approach 

To tackle this scheduling problem, a hybrid centralized and decentralized method is 
proposed, where each robot makes its own decision, communicates with others to 
share task information, as well as to check a global task status queue to improve the 
coordination efficiency.  The architecture of the approach is shown in Fig. 2.  

6



Fig. 2. The architecture of the hybrid approach. 

Each robot has a local database to keep all the information it required to make de-
cisions. This database structure, as shown in Fig.2, includes three major parts: robot 
parameters, task parameters, and local task queues. Robot parameters consist of robot 
ID, capability vectors of all robots, current locations of all robots relative to a refer-
ence coordinate system, status of all robots, locations of all tasks. Task parameters 
consist of task ID, task requirement, task status, and task timer.  

Robot ID is a unique identification number for each robot. Capability is robot’s 
ability to perform a task, which is a combination of different sub-areas represented by 
a capability vector. Robot status consists of free (its local task queue is empty), busy 
(some tasks are in its local task queue), or failed. Task ID is represented by its physi-
cal location in a reference coordinate. Task requirements depend on the sub-area 
where the task located. Task status shows whether the task is in progress, completed, 
in-trouble, or time-out. Task timer is used to track how long the task has been proc-
essed. To prevent the system to be hanged by one task forever, if the processing time 
is greater than a predefined threshold, time-out status would be labeled on the task.  

Local task queue keeps a list of tasks a robot will perform sequentially. These 
tasks may be some predefined tasks before the system starts, or tasks detected or 
reassigned on the fly. Once the robot finishes its first task in its task queue, it would 
remove the finished task and go to next one until the last task in the queue. Once this 
queue becomes empty, robot will start moving randomly to search for a new task. 
Since it is difficult to predict all tasks in advance, some predefined tasks may not be 
appropriate for a robot anymore under dynamic environment. If a robot finds out that 
it is difficult for it to process a task in its local queue during execution, it would send 
help request to those robots whose capabilities match the task requirement. If help 
responses are received, the robot will assign the task to the responded robot, and 
delete it from its local queue. Meanwhile the responded robot would add that task in 
its local queue.  

Global task status queue is a queue in which robot keeps the information about all 
tasks being processed or completed. The main purpose of this global task status queue 
is to prevent any unnecessary redundancy among robots to process the same task. 

Global task status queue
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This global queue will be updated by all robots whenever task status has been 
changed.  

Initially, all robots move around randomly in the environment searching for tasks. 
When a robot detects a task, it checks the requirements of the task first. If the re-
quirements of the task match with its own capability, then the robot would perform 
the task and update the global task status queue. When a robot completes a task, it 
would update the global task status queue about its current task state. The states of a 
task include beginning, completion, in-trouble, and time-out. This global status of 
tasks is stored in the global task status queue for all robots. Whenever a robot needs 
help, it only broadcasts helps to those capable robots instead of everyone. Here a 
trade-off between memory capacity of robots and communication overhead among 
robots has to be made. The system stops when the global task status queue is filled up 
with all tasks with status of completion.  

If multiple robots respond to the help requesting signal, the helper needs to make 
decision which robot to pick. On the other hand, if a robot was selected by more than 
one helper, it also need to make decision which task to select (if more than one re-
sponded robots) or which task to put into its local task queue first (if only one robot 
can do these tasks). A fitness function is required for this decision making. Here, a 
auction-based method is applied, which is defined as follows:  
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In other words, if all of the responding robots are busy, the numbers of tasks in 
their local task queues are compared.  The smaller the task number in queue, the 
higher the possibility of the corresponding robot would be selected as the helper.  

Since robots need share task information with others, a specific communicate pro-
tocol is required for this application.  Basically, four types of signal frames are de-
fined in the communication protocol, (1) help requesting signal frame; (2) help re-
sponding signal frame; (3) help accepting signal frame; and (4) global task updating 
signal frame.  The detailed frame definitions are shown in Fig. 3. When a help seek-
ing robot receives help responding signal, it would send help accepting signal back to 
the selected robot.  If responder robot is busy at that time, it would add that task in its 
local task queue and continue working on its current task.  Global task updating sig-
nal is used to update the global task queue.  
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Fig. 3. Communication protocols among robots. 

5 Simulation Results 

To evaluate the proposed algorithm, a simulator is developed using C/C++ language 
under Windows environment, and a snapshot of the simulation screen is shown in 
Fig. 4. Six robots are employed in the simulation including 2 P-type (represented as 
Rp1 and Rp2), 2 L-type (RL1 and RL2), and 2 S-Type (Rs1 and Rs2). Eight tasks are 
generated, which are represented by the location coordinate within a reference frame. 
T1(X1,Y1), T2(X2,Y2) and T3(X3,Y3) are in high-pressure sub-area, T4(X4,Y4), 
T5(X5,Y5) and T6(X6,Y6) in smoking sub-area, and T7(X7,Y7) and T8(X8,Y8) in 
intensive-light sub-area. The local task queue is located on top-left, and the global 
task status queue is listed on top-right. The bottom-left part indicates the communica-
tion signals sent or received by robots. Various geometric shapes in the task environ-
ment represent static obstacles. 
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Fig. 4. A snapshot of the simulation screen. 

Most task allocation problems among robots have applied group-wide broadcast 
communication to share the information and negotiate with team members. This kind 
of broadcast communication usually requires more communication overhead, power, 
time and cost, especially for a heterogeneous team where only some specific members 
can conduct specific types of tasks, not all of them. In our algorithm, instead of 
broadcast to everyone, the help information is only broadcasted to those which have 
the capability for the task. The communication cost comparison results are shown in 
Fig. 5, where the communication cost of our approach (i.e. 23 times) has been signifi-
cantly reduced compared with the group-wide broadcasting method (i.e., 35 times). 
Communication overhead is directly proportional to task processing time and power 
consumption. In other words, our approach would be more power efficient and spend 
less time to finish the tasks than the group-wide broadcasting method. For this simple 
example with 6 robots and 8 tasks, the time required to finish all tasks are shown in 
Fig. 5(c).  

A simple auction-based method using broadcasting is applied for comparison, 
where robots randomly search for tasks and broadcast the task information to all team 
members. If one robot needs help and more than one response received, the robot 
which is closest to the task will be selected. Four cases of different task distributions 
are designed in the simulation, where 8 task locations are re-distributed in different 
cases. The time required to finish all tasks under different task configuration cases are 
recorded and shown in Fig. 6. The proposed algorithm obviously outperforms the 
random searching one. The proposed method selects the helper robot not only de-
pends on its current distance to the task, but also its current status. If there is a long 
list of tasks in its local task queue of a robot, even if it is closest one to the task, it 
may end up selecting other robot with a much shorter list of tasks in local queue.   
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Fig. 5. Comparison of communication overhead. 

To evaluate the robustness of the proposed algorithm under the failure situations, 
such as communication failure and robot failure, another set of simulation results with 
the same four task distributions as in previous experiments are shown in Fig. 7. It is 
assumed that the communication failure happens once for a while due to the envi-
ronment or temporary traffic jam. It can be seen that the communication failure didn’t 
affect the system performance extensively. This is because once a robot detects a 
communication failure, it would send signals again in next cycle until the acknowl-
edgement is received, which prevents the signal loss due to the communication fail-
ure. In this simulation, it is assumed that Rs2 is dead, which means that all of tasks in 
smoking sub-area have to be conducted by Rs1. The simulation results show that the 
system performance degraded at some level with a failure robot instead of being stuck 
forever. 
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6 Conclusions and Future Work 

In this paper, a hybrid task scheduling approach has been proposed, which signifi-
cantly reduces communication overhead while improving the overall system perform-
ance through dynamic task allocation. This algorithm avoids unnecessary communi-
cation by broadcasting global information which is in everybody’s interest and mean-
while limits specific information which is in interest of some specific robots only. 
Each robot would dynamically allocate a task which is difficult for itself to other 
capable and most available robots, and keeps tracking the help requests, which makes 
the system robust against communication failures and robot failures. Simulation re-
sults show robot communication overhead can be significantly reduced, which auto-
matically leads to reduction of power consumption and time consumption. In our 
future work, more dynamic situations will be considered, such as malicious agents, 
dynamically adding to or removing agents from the current team, global update fail-
ures. Furthermore, the method will be implemented to a real-world multi-robot sys-
tem, where robot dynamics, kinematics, robot-robot interaction and sensors would 
have to be considered.  
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