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Abstract: This paper provides a solution of the fractional order system represented by the fundamental linear fractional 

order differential equation, namely, )t(e)t(x
dt

)t(xd)( m

m
m

0 =+τ  whose transfer function is given by 

])s(1[
1

)s(E
)s(X)s(G m

0τ+
==  for 0 < m < 2. Simple methods of approximation, for a given frequency band, of 

the transfer function of this fractional order system by a rational function are presented. Analytical impulse 
and step responses of this system are derived. Illustrative examples are presented to show the exactitude of 
the approximation methods. 

1 INTRODUCTION 

In the recent decades the concepts of fractional order 
derivatives and integrals has been arisen in various 
areas of the engineering fields (Torvik,1984), 
(Ichise, 1971), (Sun, 1983), (Cole, 1941), (Davidson, 
1950). Theses fractional concepts have been 
generally used to model physical systems, leading to 
the formulation of the linear fractional order 
differential equations. So, the dynamic systems 
described by this type of fractional differential 
equation are called fractional linear systems. With 
the growing number of applications system and 
control fields (Manabe, 1961), (Oustaloup, 1983), 
(Charef, 1992), (Podlubny, 1994), (Miller, 1993), 
(Hartley, 1998), (Petras, 2002), it is important to 
establish a clear system theory for these fractional 
order systems, so they may be accessible to the 
general engineering community. 

The fundamental linear fractional order 
differential equation, defined in (Petras et al., 2002), is 
represented by the following equation: 

)t(e)t(x
dt

)t(xdm)( m

m

0 =+τ ,  for 0 < m < 2            (1) 

The transfer function of this type of fractional order 
systems is given by the following irrational function: 

])s(1[
1

)s(E
)s(X)s(G

m
0τ+

== ,   for   0 < m < 2         (2) 

In this paper an effective and easy to use 
methods are presented for the approximation by a 
rational function, for a given frequency band, of the 
transfer function of the fundamental linear fractional 
order differential equation. Analytical impulse and 
step responses of this system are also derived. 
Illustrative examples are presented to show the 
exactitude and the usefulness of the approximation 
methods.  

2  RELAXATION FRACTIONAL 
ORDER SYSTEM 

2.1 Definition 

Relaxation fractional order system is defined in this 
context as the fundamental linear fractional order 
differential equation of equation (1) with the transfer 
function of equation (2) for 0 < m < 1.   

2.2 Rational Function Approximation 

In dielectric studies, Cole and Cole (Cole, 1941) 
observed that dispersion/relaxation data measured 
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from a large number of materials can be modeled by 
the following function: 
 

])s(1[
1)s(G

m
0τ+

= ,   for   0 < m < 1                     (3) 

 
It is also known that the distribution of relaxation 
times function H(τ) can be derived directly from the 
original transfer function as (MacDonald, 1987): 
 

∫ τ
τ+

τ
=

∞

0
d

s1
)(H)s(G                                                     (4) 

 
Cole and Cole (Cole, 1941) applied the above 
method to find the distribution of relaxation times 
function H(τ) for their model of equation (3) to be : 
 

∫ τ
τ+

τ=
τ+

=
∞

0
m

0
d

s1
)(H

])s(1[
1)s(G , for   0 < m < 1     (5) 

with  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

π−−
τ
τ

π−
π

=τ
])m1cos[()]log(mcosh[

])m1sin[(
2
1)(H

0

       (6) 

 
The method of approximation began by sampling the 
distribution of relaxation times function H(τ) of 
equation (6) for a limited frequency band of 
approximation of practical interest [0, ωH] at 
logarithmically equidistant points τi as follows (Sun, 
1992): 
 

∑ τ−τδτ=τ≅τ
−

=

1N2

1i
iis )()(H)(H)(H                            (7) 

 
and the points τi are such that: 
 

iN
0i )( −λτ=τ  for i = 1,2, . . . , 2N-1                       (8) 

 
with τN occurring at the characteristic relaxation 
time τ0, and λ, a constant positive real number 
greater than unity, is chosen such that: 
 

1i

i

+τ
τ

=λ   for   i = 1,2, . . . , 2N-1                           (9)              

Substituting equation (7) into equation (5), we 
obtain: 

∑
τ+

τ=∫ τ
τ+

∑ τ−τδτ
≅

−

=

∞

−

=
1N2

1i i

i

0

1N2

1i
ii

s1
)(Hd

s1

)()(H
)s(G           (10) 

 
Hence, we can write that:   
 

∑
+

≅
τ+

=
−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1N2

1i

i

i
m

0
p
s1

k
])s(1[

1)s(G                        (11)   

 
where the pi ‘s are the poles of the approximation 
which are given as: 
 

0
)Ni(

i
i p)(1p −λ=

τ
=   , for   i = 1,2,...,2N-1         (12) 

such that  p0=1/τ0 and λ = pi+1/pi, the ki ‘s are the 
residues of the poles which are given from equation 
(6), for i = 1,2,...,2N-1, as: 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

π−−
τ
τ

π−
π

=
])m1cos[()]log(mcosh[

])m1sin[(
2
1k

0

i
i           (13) 

 
and for an approximation frequency ω max which can 
be chosen to be 1000ωH, with [0, ωH] is the 
frequency band of practical interest, the number N is 
determined as follows:   
 

N = Integer ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
λ

ωτ
log

log max0  + 1                      (14) 

2.3 Time Responses 

From equation (11), we have that: 
 

∑
+

≅
τ+

==
−

=

⎟
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⎞

⎜
⎜

⎝

⎛

1N2
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k
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1
)s(E
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so,  

∑
+

≅
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=
−

=
⎟⎟
⎠
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⎜⎜
⎝

⎛

1N2

1i

i

i
m

0
)s(E

p
s1

k
])s(1[

)s(E)s(X                (16) 

 
for e(t) = δ(t) the unit impulse E(s) = 1, we will have 
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thus, the impulse response can be obtained as: 

∑ −=
−

=

1N2

1i
iii )tpexp(pk)t(x                                      (18) 

 
For e(t) = u(t) the unit step E(s) = 1/s, will be: 
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thus, the step response can be obtained as: 
 

( )∑ −−=
−

=

1N2

1i
ii )tpexp(1k)t(x                                    (20) 

2.4 Illustrative Example 

For illustration purpose let’s take a numerical 
example for a relaxation fractional order system 
represented by the fundamental linear fractional 
order differential equation with m = 0.65 and τ0 = 10 
as: 
 

)t(e)t(x
dt

)t(xd)10(
65.0

65.0
65.0 =+  

 
its transfer function is given by:  
 

65.0)s10(1

1
G(s)

+
=  

 
For a frequency band [0, ωH] = [0, 100 rad/s], the 
approximation frequency ω max = 1000ωH = 100000 
rad/s, p0 = 0.1 rad/s and the ratio λ = 4, the number 
N, the poles pi and the residues ki of the 
approximation can be easily calculated from section 
(II.2) as: N=10, 0

)Ni(
i p)4(p −= , for i = 1,2,...,19, and  

 

⎥
⎥
⎦
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⎡
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π−

π
= − ])m1cos[()])4log((mcosh[
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2
1k )i10(i  

 
Figures (1) and (2) show the Bode plots of the 
relaxation fractional order system transfer function 
and its proposed rational function approximation. 
We can easily see that they are all quite overlapping 
over the frequency band of interest. Figures (3) and 

(4) show respectively the impulse and the step 
responses of this fractional order system obtained 
from its proposed rational function approximation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Magnitude of the Bode plot. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Phase of the Bode plot. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Impulse response. 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 4: Step response. 
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3 OSCILLATION FRACTIONAL 
ORDER SYSTEM 

3.1 Definition 

Oscillation fractional order system is defined in this 
context as the fundamental linear fractional order 
differential equation of equation (1) with the transfer 
function of equation (2) for 1 < m < 2.    

3.2 Rational Function Approximation 

First, the transfer function of the oscillation 
fractional order system is modeled as: 
                                                 

( )
)s(G)s(G

1)s(2s

)s1(

])s(1[

1
)s(G DN

0
2

0

)m2(
0

m
0

=
+τζ+τ

τ+
≅

τ+
=

−
      (21) 

)m2(
0N )s1()s(G −τ+=                                       (22) 

 
is a fractional power zero (FPZ) with 0 < (2-m) < 1 

( ) 1)s(2s
1)s(G

0
2

0
D +τζ+τ

=                                  (23) 

is a regular second order system. It can be easily 
shown that: 
 
for ω << 1/τ0 ,    11)j(G ≅=ω   
 
for ω >> 1/τ0 ,  
  

for  ω = 1/τ0 ,    ζ

+
≅

+
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−

2j
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)j1(
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)m2(
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ζ
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π
+

π
+

=ω
−

2

)2(

]))m
2

(sin())m
2

cos(1[(

1
)j(G

m2

22

    (24) 

 
In order that the two sides of equation (24) were 
equal, the damping ratio ζ of the regular second 
order system must be given as: 
 

1m2

)]m
2

cos(1[
−

π+
=ζ                                              (25) 

To represent the oscillation fractional order system 
by a rational transfer function instead of the 

irrational function of equation (2), we have to 
approximate the FPZ of equation (22) by a rational 
one in a frequency band [0, ωH]. The method of 
approximation of the FPZ consists of approximating 
its 20(2-m) dB/dec slope on the Bode plot by a 
number of zig-zag lines with alternate slopes of 20 
dB/dec and 0 dB/dec corresponding to alternate 
zeros and poles on the negative real axis of the s-
plane such that z0 < p0  < z1 < p1 < .  .  . <  zN < pN . 
Hence, we can write that:   
 

∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≅τ+=

=

=−
N

0i i

N

0i i)m2(
0N

p
s1

z
s1

)s1()s(G                 (26) 

 
So, equation (21) can be rewritten as: 
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As the same idea of the method used to approximate 
the fractional power pole (Charef, 1992), the 
approximation of the ZPF began with a specified 
approximation error y in dB and an approximation 
frequency band ωmax which can be 100ωH, then the 
parameters a, b, z0 , p0  and N of the approximation 
can be easily determined as follows: 
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Hence, the zeros zi‘s and the poles pi‘s of equation 
(27) can then be derived from the above parameters 
for i=0,1,…,N as: ( )i0i abzz = and ( )i0i abpp = . Then, 
equation (27) can be rewritten as: 
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3.3  Time Responses 

By partial fraction expansion of the rational function 
of equation (28) it is possible to represent the 
transfer function of the oscillation fractional order 
system by a linear combination of elementary simple 
functions, that is: 
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where the ki (i=0,1, …, N) are the residues of the 
poles which can be calculated as: 
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and the constants A and B can also be calculated as:  
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for e(t) = δ(t) the unit impulse E(s) = 1, the impulse 
response of this system is given as: 
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where the constants C and Φ are given as (17): 
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Now, for e(t) = u(t) the unit step E(s) = 1/s,  equation 
(32) we will be 
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the step response of this system can be obtained as: 
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where the constants C1 and Φ1 are given as (Kuo, 
1987): 
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3.4 Illustrative Example 

Let’s take a numerical example for an oscillation 
fractional order system represented by the following 
fundamental linear fractional order differential 
equation with m = 1.7 and τ0 = 0.1 as: 

)t(e)t(x
dt

)t(xd
)1.0(

7.1
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its transfer function is given by:  
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First, G(s) is modeled by the following function: 
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For a frequency band of practical interest [0, ωH] = 
[0, 1000 rad/s], the approximation of the fractional 
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power zero )3.0()s1.01( +  by a rational function is 
given as:  
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for an approximation error y = 1 dB and an 
approximation frequency band ω max =100ωH = 
100000 rad/s, the parameters a, b, z0 , p0  and N of the 
above equation can be easily calculated as follows : 
a = 1.389, b = 2.154, z0 = 14.678 rad/s, p0  = 20.395 
rad/s and N = 9, so: 
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Figures (5) and (6) show the Bode plots of the 
system transfer function and its proposed rational 
function approximation. Figures (7) and (8) show 
respectively the impulse and the step responses of 
the system obtained from its proposed rational 
function approximation. 

4 CONCLUSION 

In this paper I have presented some effective 
methods for approximating the irrational function 

given by 
])s(1[

1)s(G m
0τ+

= , for 0 < m < 2, 

representing the transfer function of the fundamental 
linear fractional order differential equation 

)t(e)t(x
dt

)t(xd)( m

m
m

0 =+τ  by a rational function, in 

a given frequency band.  The impulse and step 
responses of this type of systems are derived. 
Illustrative examples have been treated to 
demonstrate the usefulness of the approximation 
methods.  

Theses approximations can very suitable for 
analysis, realization and implementation of 

fractional order systems. The expressions for 
characteristics and usual time and frequency 
specifications can also be derived. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Magnitude Bode plot. 

 
 
 
 
 
 
 
 
 

 

Figure 6: Phase of the Bode plot. 

 
 
 
 
 
 
 
 

 
 

Figure 7: Impulse response. 

 

 

 
 
 
 
 

Figure 8: Step response. 
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