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Abstract. The domain of Collaborative Time Sensitive Targeting requires 
agents to assess and prioritize tasks, dynamically form heterogeneous teams of 
agents to perform the tightly coordinated tasks, and to complete them within 
time deadlines. In this paper, we describe extensions to market-based, multi-
robot task allocation to allow for these requirements. 

1 Introduction 

The motivation for the research described in this paper is to extend the state of the art 
in market-based multi-robot planning algorithms to handle the challenges presented 
by real world domains with tightly-coordinated and time-constrained tasks. Past 
research into market-based robot coordination algorithms [2, 3, 11] has been 
motivated by an attempt to design an algorithm to reason in an efficient fashion about 
resource utilization and task allocation while preserving the ability to quickly and 
robustly respond to a dynamic environment. 

Prior work has demonstrated the effectiveness of the TraderBots algorithms [2, 3] 
in several domains. It has been used in domains with tightly coordinated tasks 
requiring heterogeneous, dynamically formed teams [7]. It has also been used in 
domains requiring homogeneous teams to perform tasks with time deadlines [8]. 
There are other real world applications that bring together elements from both of these 
areas. The Collaborative Time Sensitive Targeting (TST) problem, for instance, is a 
domain in which agents must assess and prioritize multiple tasks, form heterogeneous 
teams dynamically, and perform tightly-coordinated tasks with tight deadlines. Search 
and rescue is one real-world example of a TST problem. Multiple rescue workers, 
each having different skills, must work together to save the maximum number of 
victims within a limited time period. New information will be discovered during the 
rescue, forcing the workers to reassess and reprioritize. 

The TST domain requires tightly-coupled coordination between agents, as agents 
with complementary capabilities are required to form sub-teams in order to 
successfully perform a task. The TST domain also requires agents to reason about 
tasks with time deadlines. 

 
Section 2 of this paper explains our task domain, a type of TST problem. Section 3 

describes the standard approach of market-based, multi-robot task allocation, as 
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presented in [2]. Section 4 describes our implementation in detail, along with our 
extensions to the standard approach. And in Section 5, we show our results. 

2 Task Domain 

Our task domain is a variant of the TST problem. In our scenario, autonomous robots 
perform a Search and Rescue mission by locating and treating sick sea animals. Over 
the course of an exercise (90 “minutes” long, sped up in the simulation), messages 
come in from outside the system with reports of the general locations where sick 
animals might be found. These animals move over time. The message will list the 
name of the animal (e.g. “Sick Manatee”), the approximate latitude-longitude location 
(either a single point, or an area of ocean), a deadline which the task has to be 
completed by (e.g. cure the manatee within 30 minutes or it will die), and the 
maximum reward offered for completing the task. If a task is completed before the 
deadline, the robots receive the full reward; if the deadline passes, they receive no 
reward, even if they complete the task. The robots already have an incentive to finish 
tasks as quickly as possible; the faster they complete one task, the faster they can 
begin a new one. If we wanted to make finishing as quickly as possible even more 
important, we might allow the maximum reward to drop as the deadline approached, 
gradually falling to zero. 
 
In this domain, all tasks are of equal priority; therefore, the maximum rewards are the 
same for all tasks. If we wanted to indicate that some tasks have higher priority than 
others, we could set some rewards higher than others, making them more valuable to 
perform. 
 
We have a heterogeneous set of robots available to perform these jobs. They are in 
three main groups: 

 
1. Radar Sensors – Planes and boats with radar and sonar sensing capabilities. They 

are very fast and have large sensing range; so they can get to the location quickly 
and easily pinpoint where the animal is located. However, since they are sensing 
electronically, they cannot diagnose the illness. 

 
2. Video Sensors – Planes, boats, and helicopters with video sensing capabilities. 

Because they have video, they are able to diagnose the disease the animal has and 
report it to the rest of the team. However, they are very slow and have limited 
sensing range. 

3. Rescue Workers – Boats or submarines capable of capturing or curing animals in 
distress. They are generally about as fast as radar sensors. However, they have no 
sensors of their own; they must rely on reports from the sensor robots for 
navigation data. Also, they can act only with the proper diagnosis from a video 
sensor. 
 

The robots within each group vary in their specific characteristics, such as speed and 
sensing range. Also, there are three separate areas of ocean to be searched; the set of 
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robots on each map is confined to that area. Initially, some robots are stationary near 
their home base and will remain there until they receive a task; others have initial 
paths that they follow once the clock begins, whether they have a task or not. 
 
To complete a task, there must be a minimum of two robots: a video sensor to find the 
animal and make the diagnosis, and a rescue worker to administer the treatment. A 
radar sensor is not required, but because of its speed and sensor range, it can reduce 
the cost of finding the animal. 

3 Market-Based Task Allocation 

In a market-based system, such as the one described in [2], the problem space is 
modeled as an economy. The currency may be simply an abstract measure, or it may 
represent something concrete, such as time, fuel, resources, etc. It represents the value 
of performing tasks and achieving goals. 

 
There are a set of tasks which need to be performed. These tasks will generally take 
one or a group of agents to complete. Each task is a source of revenue for the agents; 
each has a monetary reward associated with it, which is given to the agent(s) that 
successfully complete the task. These rewards vary according to a number of 
measures, such as relative priority, difficulty, risk, etc.; they are set at the beginning 
of the exercise, generally by the human assigning the tasks. Performing a task also 
costs an agent a certain amount of money, as resources must be consumed to complete 
them. 

 
The players in this economy are the robots. They may be physical or virtual, 
depending upon the jobs they must do. In a homogenous group, all of the robots have 
the same capabilities and any job may be done by any robot. More complex systems 
may be made up of heterogeneous groups. In these systems, jobs may require several 
robots working together as a team to complete the mission. Individual agents are 
“self-interested”; that is, each agent works to earn as much profit as possibly by 
minimizing its own costs and maximizing its own revenue. The goal of the system as 
a whole is to minimize the cost of resources consumed by the team while maximizing 
the value of the tasks completed. Free market economic theory holds that a collection 
of self-interested agents will self-organize through spontaneous cooperation and 
competition to create an emergent, globally efficient behavior. Market-based planning 
algorithms seek to mimic this behavior with a simulated economy. 
Tasks are distributed through auction. As each task is introduced to the system, it is 
given to a special type agent called an “OpTrader”. An OpTrader sends out an 
announcement to all of the participating robots describing the task and the maximum 
reward available for performing the task. This is the call for bids. Each robot 
interested in placing a bid for the job does three things: 
 
1. Calculate the estimated cost for performing the task. In a domain where there is no 

ambiguity, the robot may be able to determine exactly how much performing the 
task will cost. But in most realistic systems, there will be hidden information that 
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will not be revealed until the task is already under way. For example, there may be 
unknown obstacles between the robot’s current location and the destination; or the 
destination may only be partially defined. 

 
2. Calculate the desired profit. The profit must be high enough to make it worth the 

robot’s time to perform the task. The robot must decide how much payment it will 
require to make the task worthwhile. A common method for calculating a profit 
margin is to use a set percentage of the costs or available revenue.  

 
3. Calculate the bid. This is generally the cost plus the profit margin. If this bid 

amount is lower than the maximum reward available, then send it to the auctioneer. 
 

The OpTrader will gather all of the bids and award the ownership of the task to the 
robot with the lowest bid. The difference between the maximum reward and the 
lowest bid is kept by the OpTrader as its profit. 

 
Once the initial round of bids is completed, and all tasks have been awarded, each 
robot that owns a task may decide to put it up for another round of auction. Now that 
each robot has a plan of where it will be going and what it will be doing, it can have a 
better idea of its costs for performing other tasks. If it has already committed to 
performing a task in a certain location, then it might be relatively inexpensive to also 
perform another task in the same area. Inter-robot trading (reauctioning) allows the 
tasks to be redistributed to the robots that can perform that at lower costs. To 
complete such a deal both robots must be happy with the exchange – the buyer robot 
has a new task at low cost, and the seller robot has a nice profit (the difference 
between the maximum reward it announced and the buyer’s bid) for no extra work. 
 
This inter-robot trading will continue until there are no more mutually profitable deals 
to be made, at which time the robots will begin performing their tasks. As they move 
and explore the environment on their paths, they will be gathering additional 
information on the environment. As new and more accurate data becomes available, 
the robots may periodically put some of the tasks on their agendas up for reauctioning 
again; others may have discovered things that would allow them to more accurately 
estimate cost and buy the tasks from the seller. 

 
When a robot completes a task, it sends a message to the agent it bought the task 
from, requesting payment. That agent will send a message up the chain to the next 
level where it got the task from, and so on. Once it reaches the top (the OpTrader), 
payments will work their way back down the chain, until each robot along the way 
has been paid what it was promised. 
 
Auction-based task assignment and multi-robot coordination allows the system to 
approach an approximation of the optimal solution of minimal cost and maximal 
reward while keeping communication costs relatively low, avoiding single points of 
failure, and robustly handling robot failure and communication difficulties. 
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4 Implementation and Extensions 

We developed our simulation and agent environment entirely in Java using the JADE 
agent framework [1]. Task allocation through auction was handled using inter-agent 
communication. The market-based task allocation is performed using the methods 
described in Section 3, with our extensions. 

4.1 Agents 

The primary type of agent in our system is the TraderAgent. Each TraderAgent is 
associated with a single robot in the simulation environment. When they are first 
initialized, TraderAgents have a back and forth communication with their assigned 
robots to learn their capabilities (what type of robots they are, their speeds, sensing or 
rescue ranges, and so on) and current status (their current locations, their remaining 
fuel, and, in the case of sensors, lists of objects detected and their locations). Each 
clock tick of the environment thereafter, each robot will send its agent the latest status 
report. If the TraderAgent wants its robot to move to a new location, it sends a 
message directing it on the new path. 
 
A TraderAgent’s primary job, as the name implies, is to trade tasks. When a new task 
is announced, an agent may attempt to buy it through auction. This process is 
described in Section 4.2. An agent which owns a task may put it up for auction, either 
to off-load the task to a new robot, or in team building. These re-auctioning methods 
are described in Section 4.3. 
 
When tasks are introduced to the system, they are initially given to the special 
OpTrader agent. This agent differs from a standard TraderAgent only in that it does 
not have a robot associated with it. The OpTrader immediately puts tasks given to it 
up for auction, with a maximum offered reward that is part of the task description. 
When the task is completed, it is responsible for sending the payment for the job to 
the original purchasing agent. Because it is not associated with a robot, it cannot be a 
member of a team. In a system where robustness is essential, there could easily be 
multiple copies of these agents, either ready to take over in the event of a problem or 
performing their jobs in parallel with their counterparts; however, in our system, one 
of each is sufficient. 

4.2 Bidding on Auctions 

When a TraderAgent receives an auction announcement, it follows the three steps 
described Section 3, on standard auction-based systems. 
 
1. The agent calculates its estimated cost for performing the task. In our system, cost 

is based upon the time spent performing the task. The locations given in the 
auction message are general locations, not specific; once sensors arrive there, there 
may need to be some exploration before finding the actual animal. Also, this cost 
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may be affected by other locations that the agent already intends to visit. If the new 
area is nearby somewhere the agent is already headed, the estimated cost for the 
new task would be lower. 

 
2. It calculates the desired profit. The TraderAgent calculates, as its base profit, a 

percentage of the difference between the maximum reward offered and its 
estimated cost. In addition, an opportunity cost for accepting the task is calculated. 
This represents the likelihood that the agent will be able to purchase other tasks at 
a future date. The agents know the locations and capabilities of other nearby robots 
with similar capabilities, since this information is periodically broadcast locally. 
The agent selects a number of random locations on the map and simulates how 
many of these locations it would be likely to win in a hypothetical auction. This 
represents opportunity cost. An agent with a high OC can safely lose out on the 
current auction without fearing for its own economic well-being. Therefore, a high 
OC agent is able to request a higher profit margin. Meanwhile agents in less 
desirable circumstances are willing to lower their profit margin in an attempt to 
win the current auction. This means that the lowest cost agent may not always win 
an auction, particularly in cases where the overall team can benefit by saving a 
high OC agent for future tasks. We apply this opportunity cost function to help 
prevent over-committal of scarce resources. 

 
3. The TraderAgent decides whether or not to place the bid, based upon cost plus 

desired profit. If this value is less than the maximum reward, then it places the bid. 
If the value is higher than the maximum reward, or if the TraderAgent realizes it 
cannot complete the task in the required amount of time (causing the task to be 
finished after the task deadline), it will decide not to place a bid and it sends a “no 
thanks” message to opt out of the auction. 

4.3 Re-Auctioning Tasks 

There are two situations in which an agent will attempt to re-auction a task it owns 
but has not yet completed. The first is in the team building stage. This step is critical 
to robots performing tightly coupled tasks. After a robot wins a task at auction, it is 
sent a list of other robots that already have ownership of the task. These robots make 
up the team that will eventually perform the task. If the team is not yet complete, for 
instance if no rescue worker has joined the team, the robot will place this task on the 
auction block with a caveat that it is only accepting bids from a certain type of buyer. 
At the conclusion of the auction, the winning bidder is assigned ownership of the task, 
but the seller retains ownership as well, and all members of the team update their 
team lists. 

 
Robots will also periodically attempt to place tasks they own up onto the auction 

block for the purposes of offloading the task onto another robot. In this case the task 
can only be sold to a robot with the same capabilities as the seller. If there are no bids 
the seller retains ownership of the task. On the other hand, if new information has 
arrived and cost estimates have been updated, a different robot may choose to buy the 
task. This will occur only when the new robot is willing to charge less to perform the 
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task than the seller’s expected costs, allowing both robots to earn a profit. In this case, 
the winning bidder replaces the seller on the original team list, and the seller is freed 
of its obligation. 

4.4 Collecting Payment for Completed Tasks 

As described earlier, the tasks in this system must be performed by a team of robots 
including at least one video sensor and rescue worker. This team can also optionally 
include a radar sensor. The rescue worker is the robot that actually finishes the task, 
which it accomplishes by administering medicine curing the animal. Once the rescue 
worker has done this, its TraderAgent reports the fact to its teammates. Each 
teammate then requests payment from the agent that it purchased the task from.  
 
Our system varies in this regard, however, from the standard auction-based algorithm. 
In our task the teams are made up of robots that perform their jobs at greatly different 
speeds. Even though the estimated cost for a radar sensor may be very low, the actual 
cost is greatly increased by having to wait around while the slow video sensor travels 
to the location and does its own part of the job. Since the agents associated with fast 
robots generally win the tasks before the slower ones, there is no way to know ahead 
of time what the additional costs might be. 
 
There are a number of ways that this inefficiency could be dealt with. For example, 
we could include information about slower robots in the cost estimation functions of 
each TraderAgent. Another option would be to have the agents, once a team is 
completed, share their cost estimates and allow the faster ones to recalculate. We 
chose a method that requires a lower amount of inter-robot communication, in which 
agents incur penalties on the agents below them in the chain. 
 
The request for payment is the same. Each agent requests the amount of money it bid 
for the task from the agent it bought the task from. However, as the payments are 
distributed down the chain, each agent compares the actual cost to the estimated cost 
it had initially planned upon. The difference between these is deducted from the 
amount paid to the next agent. This agent adds, as a penalty to the next agent down, 
the difference in its actual cost and the cost estimate, plus the amount it was penalized 
by its seller. This penalty will move down the chain, until it finally winds up where it 
belongs, on the slowest member of the team. These payments reflect the amount of 
money the original agents would have bid if they had known the true cost based upon 
the slowest robot. See an example in Figure 1. This example assumes that there was 
no inter-robot trading or adding and removing of team members, but the details would 
be essentially the same even with other agents in the chain. Future versions of the 
algorithm may be able to use these penalties to learn the hidden costs of working with 
certain other robots. 
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Fig. 1. Task Completion. 

5 Results 

The TST domain provides an ideal testbed for the market-based task allocation 
algorithm, since completion of each TST task requires effective communication and 
task assignment strategies. Furthermore the TST problem provides clear metrics for 
evaluating group performance, as we can measure both the percentage of tasks 
completed and the time needed to complete each task. We use this domain to 
demonstrate our hypothesis that as the self-interested agents earn money in the virtual 
economy, they also contribute toward the team goals and overall group performance, 
even when performing tightly coupled tasks under pressure of time deadlines. 
 
We built a test problem for our robot planning algorithm by performing a direct 
translation of tasks used in a set of human experiments we performed into our own 
modified aquatic TST domain. The translation was completely isomorphic, meaning 
that the speeds, positions, and other attributes of all elements of the environment were 
identical. Only the labels and images were changed for the purposes of the demo. The 
robots planned and executed their own actions for 90 simulated minutes while 
following the rules of the team-based economic system outlined above. A total of six 
tasks were fed electronically at timed intervals into the robot auction environment. 
 
The results of the robot and human teams are displayed in Table 1. The results show 
that the robots were able to demonstrate effective team building and task assignment 
strategies. The team of robots completed five of the six tasks with plenty of time to 
spare before the task deadlines.  
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Table 1. Time (hh:mm:ss) to complete each task, comparing market-based robot task allocation 
algorithm and human team performance. 

Task: Manatee Killer 
Whale 

Blue 
Whale Dolphin Sea 

Turtle 
Toxic 
Leak 

Robot 
Completion 
Time 

0:42:00 0:40:00 1:22:00 1:09:00 1:07:00 N/A 

Avg 
Human 
Team 
Completion 
Time 

0:56:12 0:59:39 1:21:24 N/A 1:20:36 N/A 

 
The robot team results also compare very favorably to the human teams’ results. The 
robots completed five of six tasks, while no human team completed more than four.  
The agents were able to complete the Dolphin task, which none of the ten human 
teams had successfully prosecuted. The robots were also significantly faster than the 
best human teams in three of the four tasks that were solved by both humans and 
robots. The simulated agents did fail to complete one task, but none of the human 
teams were able to successfully complete that task either. For more details on the 
human version of the experiment, and comparing human/robot results, see our paper 
submitted to the main conference. 

6 Conclusion 

We have shown that market-based multi-robot task planning can be successfully 
extended into domains requiring tightly-coordinated actions to solve tasks with time 
deadlines. In the case of our simplified TST domain, teams of autonomous robots 
were able to provide significant gains over the performance of teams of humans. 

 
We are not suggesting removing humans from the loop of the TST process. In real 
world TST of any kind, there are many decisions that cannot possibly be made 
without humans. Instead, our hope is that lessons learned from this research that can 
be applied to real world problems.  
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