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Abstract: The dater equalities constitutes an appropriate tool which allows a linear description of Timed Event Graphs in
the field of (max, +) algebra. This paper proposes an equivalent model in the usual algebra which can describe
Timed and P-time Event Graphs. Considering 1-periodic behavior, the application of a variant of Farkas’
lemma allows the determination of upper and lower bounds of the production rate and necessary conditions of
consistency.

1 INTRODUCTION (Gaubert, 1995).

However, the periodical behavior is reached only

Event Graphs are a subclass of Petri nets which canafter a transient that can be extremely long, moreover
be used to model discrete event dynamic systemspresence of perturbations (faults, maintenance oper-
subject to saturation and synchronization phenom- ations,...) can limit the possibility of reaching a pe-
ena, typically, transportation networks, multiproces- riodical behavior. The representativeness of the pro-
sor systems and manufacturing systems. P-time Eventduction rate can be reduced as the effectiveness of the
Graphs are convenient tools to model systems whoseapproaches as resources optimization or control using
operation times are included between a minimum transfert functions.

and a maximum duration. Therefore, P-time Event A possible approach is to generate periodic behav-
Graphs can function at a maximal or a minimal speed iors without transient period as 1-periodic behavior
and, average cycle time is one of the most important Which is defined by

criteria which characterizes the system. An impor- _

tant result about Timed Event Graghs is that a Timed kb +1) = z(k) + A

Event Graph reaches a periodic regime after a tran- This technique assumes that each transition is struc-
sient period (G. Cohen and Viot, 1983) (€lienne, turally controllable (F. Baccelli, 1992).

1985) in the earliest functioning mode (i.e., transi- Considering an 1-periodic behavior, the objective
tions fire as soon as they are enabled). In this case,of the paper is the calculation of the average cycle
the trajectory is said K-periodic. More precisely, if time of P-time Event Graphs. The proposed approach
x(k) represents the date of firings of the transition  introduces a new model based on "daters” in the Sec-
at the number of everit, then there is a constant tion 2. Defined by an inequality, the model com-
(called the cycle time which is the inverse of the pe- pletely describes in the usual algebra the trajectories
riodic throughput) and two integekg in N andc in of different Event Graphs as Timed Event Graphs or
N*(called the cyclicity) such that P-time Event Graphs.

Using a well-known Farkas’'lemma of the linear
programming (Schijver, 1987), the Sections 3 and
4 presents results about cycle time. Two examples
are given in the Section 5 to illustrate the proposed
method.

x(k+c)=xz(k)+ecx X fork>ko

and
_ox(k)
A= klgrolo k
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2 MODEL 2.1 Preliminary Inequalities

Definition 1 A Petri net is a pair (G, M), where
G = (R,V) is a bipartite graph with a finite num-
ber of nodes (the séf) which are partitioned into the
disjoint sets of place® and transitionsl"; R consists
of pairs of the formy;,q;) and (g;,p;) with p; € P and
q; € T . The initial marking)M, is a vector of dimen-
sion| P | whose elem_ents denote the number of initial T+ set of upstream (respectively, downstream) tran-
tokens in the respective places. sitions of¢; is denoted—¢; =* (°t; ) (respectively,
Definition 2 For a Petri Net with| P | places and  ¢;” = ( t?)®). The following assumption alleviates

| T | transitions, theincidence matrix W = [IW;4] the notations. We suppose that for each pair of transi-
isan| P | x | T | matrix of integers and its typical  tions(¢, j), there is at the most a unique place denoted
entry is given byV;; = W, — W whereW [ isthe  p;; between the upstream transitione® p and the
weight of the arc from transitios to its output place ~ downstream transitiony € p*. Each place;; is as-

i andW;; is the weight of the arc to transitionfrom sociated with an intervala,;, b;;], wherea;; is the

its input placei. lower bound and;; the upper bound .

We consider the “dater” type well-known in the
implies a string of successive markings. The charac- (MaX, +) algebra: each variabig(k) represents the

P . . . th £ - ’
teristic vectors of a firing sequence is a vector for ~ date of thex™ firing of transitionz;. If we assume

which each component is an integer corresponding to@ FIFO functioning of the places which guarantees
the number of firings of the corresponding transition. that the tokens do not overtake one another, a correct

Then a marking)/ reached fromiM, by firing of a numbering of the events can be carried out. In this pa-

sequence can be deduced using the fundamental re- P€l, We do not take the assumption of earliest (respec-
lation: tively, latest) functioning which will be the subject of

M= My+W x s other studies.

Therefore, the evolution can be described by the
following inequalities expressing relations between
the firing dates of transitions. An Event Graph can be

For Event Graphs, let us express the firing interval for
each transition of the system guaranteing the absence
of token-dead states. The Skt is the set of input
transitions ofp andp*® is the set of output transitions

of p. The set*t; (respectivelyt?) is the set of the
input (respectively, output) places of the transitign

In a Petri net, from a marking/, a firing sequence

where M, is the initial marking and/V is the inci-
dence matrix.

Definition 3 A Petri net is called arEvent Graph if considered as a set of subgraphs made up of a place
each place has exactly one upstream and one down-p;; linking the upstream transition and the down-
stream transition. stream transition. We denoten,; the corresponding

P-time Petri nets allow the modeling of discrete INitial marking or initial number of tokens.
event dynamic systems with sojourn time constraints ~ For the lower bounds;; of the upstream place of
of the tokens inside the places. Consistently with the transition:, we can write:
dioid R, .. (see ((F. Baccelli, 1992))), we associate a  Vx; €7 x4, agj + x;(k —my;) < xi(k),

temporal interval defined iR+ x (R™ U {+oco}) for or equivalently,
each place. zj(k —my;) — xi(k) < —aij.
Definition 4 A P-time Event Graph is a pair < The weightl of z;(k — m;;) (respectively,—1

R,IS > whereR is an Event Graph and the map- 0f i(k)) is the weight of the entering arc of the place
ping IS: from P to Rt x (Rt U {+oc}) is defined  Pij, from¢; to placep;; (respectively, the outgoing arc
by p; — [as, b;i] with 0 < a; < b;. of the p|aCQ9i_g, from placep;; to transitiont;) which

is equal oW (respectively,—le‘.) if p1 = pij.

The intervalla;, b;] is the static interval of dura- Respectively, for the upper bound of the up-

tion time of a token in the placg; belonging to the e i
set of places?. The token must stay in the plage stream pIEce of transitial we have:

during the minimum residence duratie. Before Va; € T zi(k) < bij +x;(k —mij),

this duration, the token is in a state of unavailability ~ OF equivalently,

to fire the transitiont;. The valueb; is a maximum zi(k) — xj(k —mi;) < byj.

residence duration after which the token must leave  The weightl of z;(k) (respectively—1 of z; (k —
the placep; (and can contribute to the enabling of the m;;)) is the weight of the entering arc of the plage,
downstream transitions). If not, the system falls into a from¢; to placep;; (respectively, the outgoing arc of
token-dead state. So, the token is available to fire thethe placep;;, from placep;; to transitiont;) which is
transitiont; in the time intervala;, b;]. equal toWler (respectively—W,,) if p; = pi;.
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2.2 Matrix Expression

Let m be the maximum number of initial tokens, the

set of the previous inequalities can be expressed as

follows:
H = [HmHm_le_Q ........... HlHo]X
x(k —m)
x(k—m—+1) A
< . Q)
z(k—1) ( B )
z(k)

The matrix H contains the weights of the arcs
entering and outgoing of the places defined above.
Each placep; linking the upstream transition and
the downstream transitioncorresponds to two rows
of H and particularly—A and B are vector of tem-
porizations whered; = a;; andB; = b;;.

Now, we consider the matrix representation in
different cases: the initial marking of all places is
equal to zero; the initial marking of all places is equal
to one; the general case. The two last cases will be
considered in the following sections.

a) The initial marking of all places is null

The evolution can be described by the following
inequalities expressing relations between the firing
dates of transitions:

{

As z(k) corresponds to firing sequenSewe can
deduce from the above description on the weight of

zj(k) — xi(k) < —ay;
—zj(k) +zi(k) < by

the arcs that there is a direct correspondance with the

incidence matri¥/. Therefore, one can write the sys-
tem as follows:

whereH, = <—MI;/> andW =W+ —w-.

—A

Hox:c(k)<(B

)

b) The initial marking of all places is equal to
one

In this case, each place initially contains only one
token. One can write:

{

As z(k — 1) andz(k) respectively corresponds to
firing sequence, we can deduce from the above de-
scription on the weight of the arcs that respectively,
there is a direct correspondance with the incidence

zi(k —1) —zi(k) < —ay;
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matricesW+ and —W . Therefore, one can write
z(k—1) —A

the system as follows:
<
)= (5)

( H1 HO ) X (
> andH, = < W >
c) General case

W+
-W W~

Now let us give the explicit form of the system (1)
or in other words, the objective is to build an equiv-
alent model such that each place of the new Event
Graph contains only zero or one token. This new form
will simplify the calculations of the cycle time.

As a place contains a maximum numbemefto-
kens, the general idea is to split each place containing
m tokens intom places, where each place contains
only one token.

Let us introduce the variableg™7—1 for j = 0
tom — 1in the inequations, we have:

2k —m) am=1) () — 1)
z(k—m+1) am=D(k —1)
xz(k —2) a(l)(k‘ -1
x(k—1) a0k —1)

with
A" D (k) = z(k —m+1) = o™ D (k-1
o™ (k) = a(k —m +2) = "D (k- 1)
0(2)(k) =a(k - 2) _ a(l)(k 1)
aV(k) = z(k 1) = (k- 1)
aV(k) = 2(k)

Or equivalently,
amIT () =k —m+j+1) =a™mI"D (k- 1)
foryj=0tom —2
a©@ (k) = (k)
The new state vector is:

X = (am=D om=2) o(m=3) (@) 41 4O
and ( 1) becomes

v ()= ()

where H' contains H with the addition of null
columns.

The system must be completed witfm — 1) x |
T | relations in the worst case: fgr= 0 to m — 2,

alm=i=2(k - 1) —am=I-D(k) <0
—am=I=2)(k — 1) + am=I-D(k) <0
Therefore, one can write the system as follows:

X(k—1)
X (k)

—A
B
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(er ey (") = (o)

with G = ( _Géil ) andGy = ( _GG; ) ’

The matrixG1; of dimension (m — 1)x | T' | x
m) asGa1, is an subdiagonal of identity matrices im-
mediately above the main diagonal, while the matrix
G is a diagonal of identity matrices.

Finally, we can write the algebraic form:

0
5)-(4an=( 4

3 CYCLE TIME

The aim of this part is the determination of the exis-
tence of 1-periodic trajectory in P-time Event Graphs.
Let us consider an Event Graph such tha} = 0 or

1.

z(k) —A\ _
H x (:c(k+1)> < <B)wzthH (

The 1-periodic behavior can be defined by
z(k+1) =X xu+x(k)withu = (1,1,...,1)" and
the average cycle timg.

Hll

Hio
Hs1  Hoo

@)

The following result will be useful.

Corollary 1 Farkas’ lemma (variant) Corollary 7.1.e
in (Schijver, 1987) (Hennet, 1989).

Let A be a matrix and let b a vector. Then the
systemA x x < b of linear inequalities has a solution
X, if and only ify x b > 0 for each row vectoy > 0
withy x A =0

Theorem 1 The system (3) can follow a 1-periodic
behavior for a given cycle timg, if and only if, for
each row vectoy > 0 with

Hy + Hyg

yX(H21+H20>:0’ “)
we have:
(%)
Yy
B, 5)
T o X U
Hoyg
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(%)
Y
B <) (6)
y X o )
Hyyg
Hyg
|fy><<H20>><u<O7
—A
> 7
v () =0 @

Proof: We have
Hyy % z(k)
Ho A xu+ z(k)

ie.,
{ H11 X l‘(k) +H10 X ()\ X u—i—m(k))
H21 X (L’(k}) + H20 X ()\ X U+ fL(k))

ie.,

Hy
Hy

<-A
<B

or equivalently,
e ()

From Farkas’ lemma, we can deduce that the sys-
tem (8) of linear inequalities has a solutienif and

onIyifyx(( A)—( Mo )x)\xu) > 0 for each

Hii + Hio
Ha1 + Hao

B Hy
row vectory > 0 with i x ( Z;Ig;‘o) ) =0
So,y><<_B —yx(ZéS)x(x\xu)ZO
Y X (BA) 2yx<g;2 ) X (Axu)=Ax
Hig

X X 1.
Y Hyy

In this relation, the product by gives the addition

of all columns of( Zm ) From the sign ofy x
20

(i)
Hag
necessary and sufficient conditions of existence of
(7) for the system§) can be deducedli

Let us note that the existence of a solution depends

on X in the two first relations contrary to the last one.

x u, the two cases (6)(5) and the relevant



4 LINKS WITH OTHER RESULTS

We assume that;; = 1, which simplifies the pre-
sentation of the connections with notions of inci-
dence matrix and P-semi flows. S#H;; = W,
Hiyg=-W~,Hy, = —H;; andHyy = —Hyg. The
previous theorem is now applied.

To summarize, for each row vectgr> 0 with

v () =0 ©
-ifyx(mlﬁ.v)xu>0then
« A)
Yy
Bl s (10)
x —-w X U
Y W
-ify><<_m1ﬁ.v)xu<0then
« A)
Yy
Bl < (11)
X -W X U
Y W-
-ifyx(_vy_)xu—omen
—A
> 0. 12
v () =0 a2

Moreover, we consider particular vectays The
row-vectory can highlights the lower bounds of the
temporizationsd which correspond to a Timed Event
Graph; The row-vectog can also highlight the upper
bounds of the temporizatiort$. However, they give a
rough estimate ok which must be improved by con-
sidering the space of the orthogonal vectprdNow,

CYCLE TIME OF P-TIME EVENT GRAPHS

Calculation of the state

Considering any non-negative row vectgr the
set of the relations defined by (11) (respectively, (10))
gives the lower bound (respectively, upper bound) of
A1. Given an arbitrary cycle tim@; satisfying (11)
and (10), the objective is the calculation of the date of
firing of the transitions for a giveh.

As Hi, = W+, Hyg=-W~,Hyy = —Hy; and
Hyy = —Hjg, from (8),x(k) must satisfy

—_A W
(v )= () - (-
)\1 X U.

This inequality follows the general form x « <
B which can be solved by the Fourier-Motzkin algo-

rithm.
4.1 Link with Karp’s Theorem

The following well-known result is based on circuits
(Gaubert, 1995).

Theorem 2 (Karp’s theorem)

In a strongly connected system, the minimal cycle
time can be defined by the maximum of the ratio of
the sum of the delays to the sum of tokens, for each
elementary circuitCy, i.e.,

sum of delays i},
sum of tokens i@’}

).

minimal cycle time = m]gm(

Let us now consider (13). Its numeratgrx A is
a sum of durations ag > 0 which is the total delay
in Ck.

Consider the denominator of (13); x W~ x u.

As each row of /W~ contains a unique entrie
different from zero which can be associated with
the unique token of the relevant place, the right-
multiplication byu generates a column-vector=
(1,1,...,1)* whose dimension is» and which is the

we successively consider the upper bounds B and theinitial marking M,. So, the denominatgr x W~ xu

lower bounds A.
Upper bounds B
Let us consider a row-vector y such that the

first entries are null. It can be defined by the vector

y = (y1,y2) with y; = 0. From (9), we deduce that

Yo X W = 0. S0,y x W~ xu > O,thenyziﬂw% >

A
Lower bounds A
Let us consider a row-vector y such that the

last entries are null. It can be defined by the vector

y = (y1,y2) with yo = 0. From (9), we deduce that

Yy XxW =0. AW~ >0,y1 X (-W7) xu <0,

then

y1x(=A) gy xA
X (W) xu yx W= xu

X

<\ (13)

is equal toy; x My which is the number of tokens
in C, at My. Therefore, there is a correspondance
between (13) and the expression of the theorem of
Karp.

Strictly speaking, the Karp's theorem can be apply
even if the behavior of the graph is not 1-periodic as
we suppose here.

4.2 Link with (Murata, 1989)

Another result can be found in ((Murata, 1989)). If
we model a Timed Petri Net which is consisteind.(
3z > 0, W.x = 0) by assigning delayl; to each
placep;, then it can be shown that the minimal cycle
time is given by:
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g (247 n(WY _
wherey;, is the P-semi flow: and D is the diago- ¢
nal matrix ofd;,i = 1,2, ..,m (=7 =7 +7 +7 0)
S0,W+.z = v andyy..D.W+.x = y.A which is v " (—A> _
the numerator of (13). B

(-7 —21 +42 428 421 )"
The two first terms lead to lower bounds{ = 1,
5 EXAMPLES =21 = 3), the two successive terms gives the upper

bounds 2 = 6, £2 = 4) and the last one is a

. condition of consistencyt(21 > 0).
5.1 First Example Therefore, the 1-periodic trajectory exists with
max(1,3) = 3 < A < min(6,4) = 4.
Let us consider a simple example based on two ele- For A = 3, a possible trajectory |$0) ( ) —

mentary strongly connected subgraphs. (Z) —
For A\ = 3.5, a possible trajectory i§'’) —
@“ o () = () —
For A = 4, a possible trajectory |§§) — (2) -
(180) —

5.2 Second Example

[3 4]
Now, we consider a P-time Event Graph without di-
[2,5] \ rected circuit.

Figure 1: A simple P-time Event Graph.

(e ) ()= ()

[2,11]

a [6 8] [7 9]
with z(k) = ((21(k) zo(k) a3(k) ), Wt = X
1 0 -1 0 . .
1 0 W = odVl=1 _A & Figure 2: A P-time Event Graph.
0 1 0 -1
-1 6 < W+ -W- ) (1’(]6 — 1)) < (—A)
—2 |andB=| 5 |.Wehave -wrowe ) ak) ) \B
-3 4 witha(k) ( 1(k) z2(k)  x3(k) @a(k) as5(k)  =@6(k) )*,
1 0 0 0 0 0
0 0 1 0 0 0 0 0
W = TR wt = 8 (1) (11 8 8 8 w- =
0 0 5 00 16 0
A possible integer matrixt’ > 0 such that 0 10 0 o o) .
0 0 1 0 0 0 —3 5
Y( W ) = 0 is as follows. Y = 01 0 0 0 O —4 14
W 0o 0 0 1 0 0 _A= 0o |andB=| 10
700000 0 0 00 1 0 2 W
0 O 7 0 0 0 0 0 0 0 1 0 -7 9
00000 7 1 0 -1 0 0 0
e W=|0 1 0 -1 0 0
( w- ) X U = 0 1 0 0 0o -1
. 0 0 0 1 -1 0
( -1 -1 -1 1 1 1 ) 0 O 0 0o -1 1
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A possible integer matrixY > 0 such
w .
thaﬁ/.( W ) = 0 is as follows. Yy =
10 0 000 O1 00 O0OO0OO0OTO
6010 0 0 0 O0OOT1TO0OO0O0 OO
06001 0 0 O0OOO0OO0OT1TO0TO0TO0O0
0600 06100 0 0 0O O0OT1TO0O00O0
00 0601 060 0 0 O0O0OT1TO00O
0600 0 001 00 O0O0O0TO0OT1TO0
00 60001 0 O0OO0OO0OO0OO0O 1
10 0 0 00 0 0O 1 1 00 0 O
0601100 0 O0OT1TO0O0OO0OO0OTO0OTOUO
0600 01 01 0 0 O0OO0OO0T1T 0 1
0600 00 1 01 0 O0O0OT1TO0 10
W= y _
W " -
(-1 -1 -1 -1 -1 -1 -1 1 1
1111 1)
Y.( _VI[;V: > X u =
(000000O0+1 -1 0 0)
—-A
Y X =
(5)
(+1 +2 410 +10 +2 49 +2 +18

~5 +15 +10 )"
The 9" term leads to the lower bound$ = 5),

the 8'? term gives the upper boun%@ = 18) and
the last one are conditions of consistency which are
satisfied.
Therefore, the 1-periodic trajectory exists with
A <18

For A = 5~ a possible trajec-
toy is (3 015 4 1) F,
(8 56 10 9 6)° -

(13 10 11 15 14 11 )" — ..

6 CONCLUSION

Using a new incidence matrix, the model we propose
allows the counting of the events in Timed and P-time
Event Graphs. The connections with usual incidence
matrix has been realized. Considering 1-periodic be-
havior, the application of a variant of Farkas’ lemma

leads to the introduction of a generalization of the

P-semi flow vectors for Timed and P-time Event

Graphs, and allows the determination of upper and
lower bounds of the possible cycle time. Each limit

is respectively a complex function of lower and up-

per bounds of the temporizations. Moreover, even if
cycle time) belongs to this interval, the system must

also satisfy conditions of consistency such that the fi-
nite initial dates of firing exist. With the restriction

CYCLE TIME OF P-TIME EVENT GRAPHS

that a 1-periodic behavior has been considered, the
proposed lower bound of the cycle time includes the
Karp’s relation.
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