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Abstract: This paper proposes a set approach for the simultaneous localization and mapping (SLAM) in a submarine
context. It shows that this problem can be cast into a constraint satisfaction problem which can be solve
efficiently using interval analysis and propagation algorithms. The efficiency of the resulting propagation
method is illustrated on the localization of submarine robot, named Redermor. The experiments have been
collected by the GESMA (Groupe d’Etude Sous-Marine de l’Atlantique) in the Douarnenez Bay, in Brittany.

1 INTRODUCTION

This paper deals with the simultaneous localization
and map building problem (SLAM) in a submarine
context (see (Leonard and Durrant-Whyte, 1992) for
the general SLAM problem). A set membership ap-
proach for SLAM (see e.g., (Marcoet al., 2000)) will
be considered and it will be shown that this approach
leads us to a constraints satisfaction problem (CSP)
(see e.g., (Jaulin et al., 2001) for notions related CSP
and applications) which can be solved efficiently us-
ing interval constraints propagation. The efficiency of
the approach is illustrated on an experiment where an
actual underwater vehicle is involved. In this prob-
lem, we try to find an envelope for the trajectory of
the robot and to compute sets which contains some
detected sea marks (such as mines).

Set-membership methods have often been consid-
ered for the localization of robots (see, e.g., (Meizel
et al., 1996), (Halbwachs and Meizel, 1996), in the
case where the problem is linear). In situations where
strong nonlinearities are involved, interval analysis
has been shown to be particularly usefull (see e.g.
(Meizel et al., 2002), where one of the first local-
ization of an actual robot has been solved with in-
terval methods). Interval analysis has been shown
to be efficient in several SLAM applications (see
(Drocourt et al., 2005) and (Porta, 2005) where in-
terval analysis has already been used in the context

of SLAM for wheeled robots). But the approach
is here made more efficient by the addition of con-
straint propagation techniques. Note that there ex-
ist many other robotics applications where interval
constraint propagation methods have been success-
ful (see, e.g., (Baguenard, 2005) for the calibration
of robots, (Raissi et al., 2004) for state estimation,
(Gning and Bonnifait, 2006) for dynamic localization
of robots, (Lydoire and Poignet, 2003), (Vinas et al.,
2006) for control of robots, (Delanoue et al., 2006)
for topology analysis of configuration spaces, . . . ).

2 ROBOT

The robot to be considered in our application is an au-
tonomous underwater vehicle (AUV), named Reder-
mor (see Figure 1). This robot, developed by GESMA
(Groupe d’Etude Sous-Marine de l’Atlantique), has a
length of 6 m, a diameter of 1 m and a weight of 3800
Kg. It has powerful propulsion and control system
able to provide hovering capabilities. The main pur-
pose of the Redermor is to evaluate improved naviga-
tion by the use of sonar information. It is equipped
with a KLEIN 5400 side scan sonar which makes it
possible to localize objects such as rocks or mines.
It also encloses other sophisticated sensors such as a
Lock-Doppler to estimate its speed and a gyrocom-
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Figure 1: The Redermor inside the water and the boat from which it has been dropped.

pass to get its Euler angles.

3 METHOD

In the graphSLAM approach (Thrun and Montemerlo,
2005), a criterion is built by taking all constraints into
account. Then, a local minimization method, such
as conjugate gradient, is used to find a good solution
of the SLAM problem. Here, we adopt a similar ap-
proach, but instead of building a criterion, we cast the
SLAM problem into a huge constraints satisfaction
problem (CSP). For our problem, these constraints are
given below.

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 ,

p(t) = (px(t), py(t), pz(t)), p(t +0.1) = p(t)+0.1∗R(t).vr(t),
||m(σ(i))−p(τ(i))|| = r(i),
RT(τ(i))(m(σ(i))−p(τ(i))) ∈ [0,0]× [0,∞]× [0,∞],
mz(σ(i))− pz(τ(i))−a(τ(i)) ∈ [−0.5,0.5]

In these constraints, p = (px, py, pz) denotes cen-
ter of the robot, (ψ,θ,ϕ) denote the Euler angles of
the robot, σ(i) is the number of the ith detected ob-
ject, τ(i) is the time corresponding the ith detection

and m( j) is the location of the jth object. From this
CSP, a constraint propagation procedure (see, e.g.,
(Jaulin et al., 2001)) can thus be used to contract all
domains for the variables without loosing a single so-
lution.

4 RESULTS

A constraints propagation procedure has been used to
contract all domains of our CSP. The results obtained
are represented on Figure 2. Subfigure (a) represents a
punctual estimation of the trajectory of the robot. This
estimation has been obtained by integrating the state
equations from the initial point (represented on lower
part). We have also represented the 6 objects that have
been dropped at the bottom of the ocean during the ex-
periments. Subfigure (b) represents an envelope of the
trajectory obtained using an interval integration, from
a small initial box, obtained by the GPS at the begin-
ning of the mission. In Subfigure (c) a final GPS point
has also been considered and a forward-backward
propagation has been performed up to equilibrium. In
Figure (d) the constraints involving the object have
been considered for the propagation. The envelope is
now thinner and enveloping boxes containing the ob-
jects have also been obtained (see Subfigure (e)). We
have checked that the unknown actual positions for
the objects (that have been measured independently
during the experiments) all belong to the associated
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box, painted black. In Subfigure (f), a zooming per-
spective of the trajectory and the enveloping boxes
for the detected objects have been represented. The
computing time to get all these envelopes in less than
one minute with a Pentium III. About ten forward-
backward interval propagations have been performed
to get the steady box of the CSP.

In the case where the position of the marks is
approximately known, the SLAM problem translates
into a state estimation problem. The envelope for the
trajectory becomes very thin and a short computation
time is needed. The capabilities of interval propaga-
tion methods for state estimation in a bounded error
context have already been demonstrated in several ap-
plications (see e.g., (Gning, 2006), (Bouron, 2002),
(Baguenard, 2005), (Gning and Bonnifait, 2006),
(Jaulin et al., 2001)).

Figure 3 contains the reconstructed waterfall
(above) and one zoom (below). Each line corresponds
to one of the six seamarks (i = 0, . . . ,5) that have been
detected. The gray areas contains the set of all fea-
sible pairs (t,‖p−mi‖), associated to the migration
hyperbola. The twelve small black disks correspond
to the detected marks. From each disk, we can get
the time t at which the mark has been detected (x-
axis), the number of the mark (corresponding to the
line), and the distance ri between the robot and the
mark (y-axis). Black areas correspond to all feasible
(t,ri). Some of these areas are tiny and are covered
by a black disk. Some are larger and do not contain
any black disk. In such a case, an existing mark may
have been missed by the operator during the scrolling
of the waterfall. As a consequence, with the help of
Figure 3, the operator could scan again the waterfall
and find undetected marks much more efficiently. If
the operator (which could be a human or a program) is
able to detect at least one more mark, then, the prop-
agation algorithm could be thrown once more to get a
thinner envelope for the trajectory, thinner black areas
in the reconstructed waterfall and thus a higher prob-
ability to detect new marks on the waterfall, . . . The
operator can thus be seen as a contractor ((Jaulin et
al., 2001)) inside a constraint propagation process.

5 CONCLUSION

In this paper, we have shown that interval con-
straints propagation could be applied to solve effi-
ciently SLAM problems. The approach has been
demonstrated on an experiment made with an actual
underwater robot (the Redermor). The experiment
lasted two hours and involved thousands of data. If
all assumptions on the bounds of the sensors, on the

Figure 2: Results obtained by the interval constraint propa-
gation.

flat bottom, on the model of the robot, . . . are satis-
fied, then their exists always at least one solution of
our problem: that corresponding to the actual trajec-
tory of the robot.

When outliers occur during the experiment, our
approach is not reliable anymore and one should
take care about any false interpretation of the results.
Consider now three different situation that should be
known by any user of our approach for SLAM.

Situation 1. The solution set is empty and an
empty set is returned by the propagation procedure.
Our approach detects that their exists at least one out-
lier but it is not able to return any estimation of the
trajectory and the positions of the marks. It is also
not able to detect which sensor is responsible for the
failure.

Situation 2. The solution set is empty but
nonempty thin intervals for the variables are re-
turned by the propagation. Our approach is not ef-
ficient enough to detect that outliers exist and we can
wrongly interpret that an accurate and guaranteed es-
timation of the trajectory of the robot has been done.
Other more efficient algorithms could be able to prove
that no solution exists which would lead us to the sit-
uation 1.
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Figure 3: The reconstructed waterfalls can help to find undetected marks.

Situation 3. The solution set is not empty but
it does not contain the actual trajectory of the robot.
No method could be able to prove that outliers occur.
Again, our approach could lead us to the false conclu-
sion that a guaranteed estimation of the trajectory of
the robot has been done, whereas, the robot might be
somewhere else.

Now, for our experiment made on the Redermor,
it is clear that outliers might be present. We have ob-
served that when we corrupt some data voluntarily (to
create outliers), the propagation method usually re-
turns rapidly that no solution exists for our set of con-
straints. For our experiment, with the data collected,
we did not obtain an empty set. The only thing that we
can conclude is that if no outlier exist (which cannot
be guaranteed), then the provided envelope contains
the actual trajectory for the robot.
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