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Abstract: New distributed control architecture for micro- and nanohandling cells is presented. As a modular system it 
is designed to handle micro- and nanorobotic automation tasks at semi- up to full automation level. The 
architecture includes different visual sensors as there are scanning electron microscopes (SEM) and CCD 
cameras for position tracking as well as non-optical force, temperature, etc. sensors for environmental 
control. It allows usage of multiple nanorobots in parallel for combined autonomous fabrication tasks. The 
system provides a unified framework for mobile platforms and linear actors.  

1 INTRODUCTION 

Handling of micro- and nanoscaled objects is an 
important research field in micro system technology 
(MST) and nanotechnology. While most MST 
techniques are concerned with bottom-up batch 
procedures for massive parallel production of micro 
systems (Menz, et al., 2001) micro- and nano-
robotics tackles the nanoassebly task top-down by 
applying adapted macro scale manufacturing and 
control methods (Fatikow and Rembold, 1997). 

This paper introduces general purpose control 
architecture for automated robot-based handling. 

1.1 Microrobot Automation 

Automation in microrobotics encounters many of the 
problems, which have been well studied in the do-
mains of industrial robotics and autonomous service 
robotics for decades. Some of the problems are e.g. 
collision avoidance in path planning, error handling 
due to uncertainty of operations (Bennewitz and 
Burgard, 2000), or timing constraints which need to 
be met for successful automation.  

However, there are some environmental 
challenges while operating in the vacuum chamber 
of an SEM. It takes several minutes to generate a 
high vacuum (10-3 - 10-7 hPa) which is a serious time 
constraint. Therefore, all cell parts of a 
nanofabrication unit need to be inside of the SEM 

before operation starts, including tools and objects to 
be handled.  

All tools, sensors and objects have to be vacuum 
compliant. Depending on the kind of manipulation, 
the materials need to be selected such that no conta-
mination of the workpieces can occur. E.g. actors 
need to have low or even no abrasion. 

For real-time position tracking of nanoobjects 
like carbon nanotubes (CNTs, typical diameter about 
0.4 – 100 nm) only SEM images are available due to 
their high scanning rate and resolution. High 
scanning rates are crucial for image acquisition in 
closed-loop control, but they can only be archived 
with the tradeoff of noisy image data. All this makes 
real-time SEM tracking a challenging two 
dimensional problem (Sievers and Fatikow, 2005).  

Another challenge is that there is only limited 
depth information available due to SEM by now. As 
a result approaching and depth alignment of objects 
and tools need to done in a try an error manner. 

Automation chain planning also needs to take the 
different environment and object scale into account. 
In contrast to large scale objects it is harder to 
release an object than to grip it. The reason for this 
“sticky finger” effect (Fearing 1995) is that adhesive 
forces are stronger at the scale of the gripper jaws 
and samples than gravity. Therefore pick and place 
operations need to be carefully planned.  

One possible solution to overcome this problem 
is to use electron beam induced deposition (EBiD). 
One end of the gripped CNT gets fixated to the 
specimen holder by the deposited material of the 
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EBiD process just before releasing it from the 
gripper (Wich, et al., 2006). 

2 CONTROL OF MICROROBOTS 

Several microrobots have been developed for coarse 
and fine positioning to carry tools and objects. The 
major categories are mobile platforms and fixed 
platforms. Mobile robots are more flexible than 
fixed ones due to their working range, but they are 
harder to control (Ritter, et al., 1992; Hülsen and 
Fatikow, 2005). Linear actors are most often 
combined to a Cartesian microrobot for (x,y,z)-
coarse positioning and additional fine positioning 
axes.  

The control system of the nanohandling cell in 
the SEM is split into two parts: high-level control 
and low-level control. Low-level control 
continuously compares set-point and actual value 
and calculates parameters for actor steering signals. 
Low-level controllers are therefore responsible for 
the control of states and can process tasks as “grip 
object” or “move actor from point A to point B”. 

 Two types of controllers are used: open- and 
closed-loop controllers. Closed-loop controllers have 
continuous feedback of the current system state 
through sensor data while open-loop controllers just 
execute a command due to their internal knowledge 
of the current state. 

High-level control is responsible for planning 
and execution of automation tasks and for 
supporting user input for tele-operation. Error 
handling of low-level tasks, parallelization of 
automation tasks and path planning are also part of 
high-level control.  

The user interacts with the control system via a 
graphical user interface (GUI), which is displaying 
the current system state and is forwarding user input 
to high-level control. 

Several different sensors measure continuously 
data within the vacuum chamber (e.g. cameras, 
pressure sensors, etc.). These measurements are 
collected and provided to low- and high-level 
control. Low-level control directly derives set values 
(e.g. actuation signals) from the sensor data, which 
are applied to the actuators. The update rate of the 
sensor data has direct influence on positioning speed 
and accuracy of the robot. High-level control sets 
configuration values to sensors and actor signal 
generators according to the task that needs to be 
performed. It also provides input for low-level 
control as position data values which are used as 

goal positions for low-level closed-loop control (Fig. 
1).  

The reliability of closed-loop low-level control 
nowadays has increased up to a level where single 
tasks can be done semi-automatically, and even full 
automation of various handling steps can be taken 
into account. The latter is a hierarchical process 
which takes place at the high-level control layer, 
where the sensors for tracking can be selected, and 
the sequence of process primitives is controlled. 
Execution and reliability of single process primitives 
is the responsibility of the low-level control layer 
(Fatikow, et al., 2006). 

 
Figure 1: Control dataflow with different sensors for 
continuous feedback of the current system state. Actuation 
signals are generated by low-level control from sensor 
input, high-level control processes user input and sends 
steering signals to all components. 

3 CONTROL ARCHITECTURE 

3.1 Control Architecture Requirements 

The rough dataflow schema for experimental setups 
in figure 1 needs to be met by any control 
architecture. All the actuators and sensors of the cell 
need to be included into a modular control system 
for successful automation. In order to be 
independent of a particular experimental setup this 
control system architecture needs to fulfill certain 
requirements: 
 

 New actors can be integrated with low effort, 
independent of the low-level control algorithm 
of the actor. 

 New sensors can be integrated with low effort, 
without the need of restructuring other parts of 
the architecture. 

 Sensors and actors can be accessed through a 
common interface to prevent changes in high-
level control. 
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 The time from data acquisition till actuation 
needs to be sufficiently low to be able to 
archive the required low-level control results. 

 Communication between units needs to be 
done asynchronous in order not to block parts 
of the systems while waiting for others. 

 All commands issued by high-level control 
have to be executed providing feedback about 
the operation result for reliable error handling. 

 The architecture is able to be scaled up, such 
that enough actors and sensors can be 
integrated for any automation sequence. 

 The architecture has to allow parallel 
execution of several automation tasks. 

 Depending on the process’ power 
requirements parts of the architecture may be 
distributed throughout several PCs. 

 
This set of requirements leads to a distributed 
system on a common client server basis, described 
below.  

3.2 Distributed Control Architecture 

The system architecture applied consists of high-
level control, sensor, vision and several low-level 
control server (Fig. 2) following a “Black Box 
Design” (Fatikow, et al. 2006). Every server offers 
an individual service which is defined by a public 
interface. Therefore every component in this 
modular control system can be easily replaced or 
updated independently of the other components.  

 
Figure 2: Software architecture connection chart. 
Rectangles are servers (e.g. sensor programs SePro, low-
level controller LoLeC, etc.) and circles are hardware 
components. Automation module is part of the high-level 
control server. 

Visual feedback is provided by the vision server. It 
is responsible for collecting images from different 
sources and extracts position and orientation data 
(poses) of tracked objects in real-time. These poses 
are transmitted to the sensor server. All sensor data 
(e.g. pose, touchdown, force, temperature, etc.) are 
collected by the sensor server which is supplied by 
different sensor service programs (e.g. vision 

server). This data is provided to low- or high-level 
control, which act as client of the sensor server. It 
represents therefore an abstraction layer for sensors 
and builds a common interface for further process-
ing. The different sensors may acquire their data at 
different update rates. 

In contrast to the previous architecture (Fatikow, 
et al. 2006) the newly developed one has one low-
level control server for every single actor. Each of 
the low-level control server requests the data needed 
for closed-loop control from the sensor server. There 
is a uniform interface for commands from high-level 
control. The advantage of this lean low-level control 
server approach is that single servers can be easily 
distributed among several PCs.  

Their good maintainability is another important 
feature. Furthermore, it is easy to include different – 
e.g. fixed and mobile – robot platforms, because 
only the internal structure of the low-level controller 
has to be changed.  

On the high-level control level still only poses 
have to be submitted through the command 
interface. Actors with internal sensors are included 
into this architecture in a way that the low-level 
control server provides the internal sensor readings 
to the sensor server and receives high-level 
commands. 

In order not to adapt the high-level control server 
to every change in an automation sequence, a script 
language has been developed, which is described in 
more detail in section 4.2. These scripts get inter-
preted by the high-level control server and then 
mapped to low-level control tasks and steering 
signals (Fig. 1). Low-level control tasks can either 
be closed-loop for positioning or open-loop (e.g. 
gripping objects) tasks. The latter have to be 
monitored to check the operation results.  

The proposed system architecture uses the 
Common Object Request Broker Architecture 
(CORBA) as communication framework, which is 
an object oriented middleware defined by the Object 
Management Group (OMG), and which is platform- 
and language-independent. There are several 
implementations of the CORBA standard, including 
some for real-time applications.  

CORBA’s Interface Definition Language (IDL) 
is used as common language for all communication 
interfaces between different network components. 
Therefore the servers and clients in the system 
architecture only need to implement the required 
IDL interfaces to be able to communicate to each 
other via simple method calls.  

A major advantage of IDLs is that they can be 
translated into different programming languages, 
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which enables heterogeneous software design. The 
communication overhead in a closed loop cycle has 
been evaluated to be sufficient low (< 5 µs) in a 
local full switched Ethernet network. Therefore the 
limiting time factor still remains to be the image 
acquisition time. 

The interfaces of the client server architecture 
are designed to provide asynchronous 
communication. All control commands return 
unique process IDs so that delayed control feedback 
can be matched with the corresponding command. 
This part of the control feedback is crucial for 
successful, reliable automation. The automation 
scheduler will wait at synchronization points for this 
feedback (Section 4.1). To avoid dead-locks a time-
out is issued after a sufficient time. The system has 
also a common time base enabling low-level control 
servers to decide whether sensor data is outdated or 
not. The clock synchronization is periodically 
triggered by a master clock. 

Every network component is designed in a way 
that it can be run on different PCs, which makes the 
system fairly flexible. The distribution of low-level 
control servers is especially useful for control cycles 
that run in parallel because the distributed 
controllers do not compete for the same PC 
hardware resources. The control architecture may 
contain several sensor servers for different data, to 
overcome possible data acquisition bottle necks. It is 
possible to organize the sensor data traffic shaping a 
minimum update interval so that the inbound traffic 
of any single sensor server can be controlled.   

The problem of keeping several low-level control 
programs maintainable is tackled by common low-
level server templates which are available for 
different actor types.  This also enables rapid design 
and integration of new actors. Similar templates will 
also be provided to sensor data acquisition server. 

4 HIGH-LEVEL CONTROL 

The purpose of high-level control is to processes an 
automation sequence or to receive tele-operation 
commands from a user via graphical user interface 
(GUI). Input information is translated into low-level 
command tokens called tasks and steering signals for 
the selection of certain sensors.  

4.1 High-Level Control Design 

Based on the description above the high-level 
controller provides tele-operation, automation, path 
planning, error handling and parallel execution of 

tasks. These different tasks are addressed in different 
units in our high-level control design (Fig. 3).  

Main trigger for high-level control is a human 
controller, who inputs a tele-operation, semi- or full-
automation command using the GUI.  

 
Figure 3: Components of a high-level controller. 

If an automation command is received by the 
automation units of the high-level controller e.g. 
start or stop automation, a preloaded automation 
sequence is processed. The sequence of automation 
tasks is executed one by one or in parallel. 

Every task has a defined set of pre- and post-
conditions (Section 4.2). The automation unit 
decides based on required resources (e.g. sensors 
and actors) and pre- and postconditions, whether two 
consecutive tasks can run in parallel. These 
postconditions should not be contradictive. If 
resource conflicts arise, a barrier approach is taken 
so that all parallel tasks are finished before 
automation of the resource critical task starts (Fig. 
4).  

For SEM automation these resource-critical tasks 
are often tasks which use the SEM as tracking sensor 
for two objects on different heights or if the SEM 
acts as sensor and actor at the same time (e.g. EBiD 
and a concurrent positioning task). 

 
Figure 4: Schematic view on an arbitrary automation task. 
Parallel tasks are finished before resource critical tasks get 
started. 
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At the automation unit level only goal positions are 
visible. The main task of the path planning unit is to 
break down goal positions into a discrete set of 
intermediate positions that approximate the 
trajectory of the robots. This trajectory should be 
time efficient since bad trajectories may lead to poor 
automation cycle times (e.g. rotating to the left 
might be slower that moving in x, y direction.). 
Another goal of path planning is to avoid collisions 
with objects or other robots. For collision avoidance 
an environmental model is required. Path planning 
can be performed during the automation sequence 
design phase or online.  

On the current development state of the system 
only offline path planning is supported, which is 
sufficient in most cases but delegates more 
responsibility to the designer of the automation 
sequence. 

Subgoal positions calculated by the planning unit 
are sent to the execution unit as well as steering 
commands of the automation unit. The execution 
unit is responsible for execution of single actuation 
commands.  

First for every command received, all necessary 
steering signals are sent to the involved programs. 
These steering signals prepare all components in the 
system for the low-level control command that 
follows. For example the right camera is selected or 
actor subcomponents are turned on or off.  

After receiving an acknowledgment for every the 
steering signal the low-level control command is 
issued to the corresponding LoLeC. 

One of the major problems in micro- and 
nanorobotic is the high error rate of single 
automation tasks. Due to environmental and scale 
effects operations that are simple in macro 
automation as positioning do have a high error rate. 
E.g. there might well be endless positioning tries 
because of a too low low-level control error 
threshold, which was correct at a different humidity 
or temperature level. 
 

∏
∈

−−=
taskst

tseq )1(1 εε  (1) 

 
As in macro automation the error of a sequence is 
the multiplied error rate of every single automation 
task (Eq. 1). E.g. for a sequence consisting of 7 task 
each having an complimentary error rate of 10% the 
error rate of the automation sequence is higher then 
50%.  

The first step to deal with these high error rates is 
a reliable error detection which is the task of the 
feedback unit in the high-level controller. This unit 
receives all error conditions which occurred in the 

components of the system (e.g. a LoLeC) and 
presents them to the right abstraction level. 

Another yet not implemented task for the 
feedback unit would be the observation of certain 
environmental states. E.g. a carbon nanotube (CNT) 
escaping from a gripper needs to be detected through 
visual feedback since there is no other sensorial 
information for this event. To cover this kind of 
errors the feedback unit could track the CNT 
through a vision sensor and rise an error condition if 
the CNT gets lost. 

Error conditions get handled by different units in 
a different manner. If a collision is detected the 
planning unit might generate a new trajectory.  

On automation unit level the error handling is 
performed by sweeping backwards in the automation 
sequence and looking for the first task with pre-
conditions that meet the current system status. 

If there is no possible way of handling an error 
automatically the automation sequence is interrupted 
and needs to be handled by a human controller.  

The lowest level of automation i.e. tele-operation 
is provided by the tele-operation unit, which directly 
receives commands from a human controller. These 
commands are directly provided to the 
corresponding LoLeC servers. It is in the 
responsibility of the human controller to avoid 
collisions and move the robots to certain positions 
using “save” trajectories.  

4.2 Script Language for Automation 
Sequences 

Modeling a suitable automation sequence for a given 
handling task can be performed in three steps. First, 
the hardware setup has to be defined according to 
the requirement analysis. Then robot-based process 
primitives and their pre- and post-conditions have to 
be defined (e.g. move robot to target position if it is 
in range of the vision sensor). Finally, an automation 
sequence is to be found, which meets all pre- and 
post-conditions of the process primitives, avoids 
collisions and eventually accomplishes the auto-
mation task. Additional constraints as e.g. executing 
time can be taken into account as well. 

The differences in process primitives between 
different nanohandling robot cells (hardware setups) 
impose the problems of how to avoid 
reimplementation and hard coding of process 
primitives and how to change the automation 
sequence without changing the program code.  

A flexible script language has been developed, 
following the script based approach of Thompson 
and Fearing (2001). The different commands of the 
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language are the process primitives itself. They are 
implemented as sub-classes of a common task base 
class. This avoids reimplementation of common 
concepts as error handling or message protocols. 

 Composition and iteration are provided as 
general language constructs. Positions as e.g. 
parking or working positions for different actors can 
be defined as constants and later on be used in all 
commands. 

Based on this script language arbitrary 
automation sequences on the predefined operators 
can be defined as plain text files (Fig. 5). 

These sequence files gets interpreted and 
executed by the high-level controller automation 
unit. This way the automation sequences can take 
advantage of the underlying closed-loop control. The 
concept enables rapid development of different 
automation sequences for the same set of process 
primitives, while the high-level control program 
keeps unchanged. 

Figure 5: Automation sequence that lifts the specimen 
holder, moves the robot into the focus of the electron 
beam an grips an object. 

The language design has been chosen with regard to 
future application of a planning algorithm like 
Metric-FF (Hoffmann, 2003) to find the optimal 
automation sequence for given automation task.  

5 CONCLUSIONS AND 
FUTUREWORK 

This paper has presented a new distributed system 
architecture for controlling micro- and nanorobotic 
cells competitive to the system of Fatikow et al. 
(2006). However it scales up easier due to the lean 
low-level control design. 

In contrast to the micro handing setup in 
Thompson and Fearing (2005) this system 
architecture is designed for micro- and nanohandling 
and full automation inside and outside a SEM 
chamber. 

Aside of all positive design aspects the full 
capabilities of the system needs to be evaluated 
carefully and applied to different kind of nano-
handling cells. So far only partial tests of 

components and component interaction have been 
performed.  

Nevertheless subcomponents as there are the 
high-level controller automation unit, the sensorial 
parts and two low-level controllers for linear actors 
have shown decent control behavior. 

More attention also needs to be paid to 
automation tasks reliability and detection of error 
conditions apart from positioning tasks as described 
in 4.1. 
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lift(TOUCHDOWN_DIST); 
move(EC,WORKING_POS); 
grip(TRUE); 
lift(SECURITY_DIST); 
move(DROP_POS);  
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