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Abstract: The conjugate gradient is the most popular optimization method for solving large systems of linear 
equations. In a system identification problem, for example, where very large impulse response is involved, it 
is necessary to apply a particular strategy which diminishes the delay, while improving the convergence 
time. In this paper we propose a new scheme which combines frequency-domain adaptive filtering with a 
conjugate gradient technique in order to solve a high order multichannel adaptive filter, while being 
delayless and guaranteeing a very short convergence time.  

1 INTRODUCTION 

The multichannel adaptive filtering problem’s 
solution depends on the correlation between the 
channels, the number of channels and the order and 
nature of the impulse responses involved in the 
system. The multichannel acoustic echo cancellation 
(MAEC) application, for example, can be seen as a 
system identification problem with extremely large 
impulse responses (depending on the environment 
and its reverberation time, the echo paths can be 
characterized by FIR filters with thousands of taps). 

In these cases a multirate adaptive scheme such a 
partitioned block frequency-domain adaptive filter 
(PBFDAF) (Páez and García, 1992) is a good 
alternative and is widely used in commercial 
systems nowadays. However, the convergence speed 
may not be fast enough under certain circumstances. 

 
Figure 1: Multichannel Adaptive Filtering. 

Figure 1 shows the working framework, where 

px  represents the p  channel input signal, d  the 
desired signal, y  the output of adaptive filter and e  
the error signal we try to minimize. In typical 
scenarios, the filter input signals px , 1, ,p P= …  

(where P is a number of channels), are highly 
correlated which further reduces the overall 
convergence of the adaptive filter coefficients pmw , 

1, ,m L= …  ( L  is the filter length), 
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The mean square error (MSE) minimization of 

the multichannel signal with respect to the filter 
coefficients is equivalent to the Wiener-Hopf 
equation 

 
=Rw r . (2) 

 
R  represents the autocorrelation matrix and r  

the cross-correlation vector between the input and 
the desired signals. Both are a priori time-domain 
statistical unknown variables, although can be 
estimated iteratively from x  and d .  
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{ }HE=R xx  and { }*E d=r x , with 

1

TT T
P⎡ ⎤= ⎣ ⎦x x x… ; 1

TT T
P⎡ ⎤= ⎣ ⎦w w w…  

and 1

T

p p pLw w⎡ ⎤= ⎣ ⎦w … . In the notation we 

are using a  for scalar, a  for vector and A  for 
matrix; a , A  denotes vector and matrix 
respectively in a frequency-domain: = Faa , 
= FAA . F  represents the discrete Fourier 

transform (DFT) matrix defined as 2j kl M
kl e π−=F , 

with , 0, , 1k l M= −… , 1j = −  and 1−F  as its 
inverse. Of course, in the final implementation, the 
DFT matrix is substituted by much more efficient 

fast Fourier transforms (FFT). Here ( ). T
 denotes 

transpose operator and ( ) ( )( )*. .H T=  the 

Hermitian operator (conjugate transpose). 
The conjugate gradient (CG) method is efficient 

to obtain the solution to (2), however, a big delay is 
introduced (noted that the system order is 
LP LP× ). In order to reduce this convergence 
speed problem we propose a new algorithm which 
employs much more powerful CG optimization 
techniques, but keeping the frequency block 
partition strategy to allow computationally realistic 
low latency situations. The paper is organized as 
follows: Section 2 reviews the Multichannel 
PBFDAF approach and its implementation. Section 
3 develops the Multichannel Conjugate Gradient 
Partitioned Frequency Domain Adaptive Filter 
algorithm (PBFDAF–CG). Results of the new 
approach are presented in Section 4 and 5 followed 
by conclusions. 

2 PBFDAF 

The PBFDAF was developed to deal efficiently with 
such situations. The PBFDAF is a more efficient 
implementation of Least Mean Square (LMS) 
algorithm in the frequency-domain. It reduces the 
computational burden and user-delay bounded. In 
general, the PBFDAF is widely used due to be good 
trade-off between speed, computational complexity 
and overall latency. However, when working with 
long impulse response, as the acoustic impulse 
responses (AIR) used in MAEC, the convergence 
properties provided by the algorithm may not be 
enough. Besides, the multichannel adaptive filter is 

structurally more difficult, in general, than the single 
channel case (Benesty and Huang, 2003). 

This technique makes a sequential partition of 
the impulse response in the time-domain prior to a 
frequency-domain implementation of the filtering 
operation. This time segmentation allows setting up 
individual coefficient updating strategies concerning 
different sections of the adaptive canceller, thus 
avoiding the need for disabling the adaptation in the 
complete filter. The adaptive algorithm is based on 
the frequency-domain adaptive filter (FDAF) for 
every section of the filter (Shink, 1992). 

The main idea of frequency-domain adaptive 
filter is to frequency transform the input signal in 
order to work with matrix multiplications instead of 
dealing with slow convolutions. The frequency-
domain transform employs one or more DFTs and 
can be seen as a pre-processing block that generates 
decorrelated output signals. 

In the more general FDAF case, the output of the 
filter in the time domain (1) can be seen as a direct 
frequency-domain translation of the block LMS 
(BLMS) algorithm. In the PBFDAF case, the filter is 
partitioned transversally in an equivalent structure. 
Partitioning pw  in Q  segments ( K  length) we 
obtain 

 

[ ] [ ] ( )
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(3) 

Where the total filter length L , for each channel, 
is a multiple of the length of each segment 
L QK= , K L≤ . Thus, using the appropriate data 
sectioning procedure, the Q  linear convolutions 
(per channel) of the filter can be independently 
carried out in the frequency-domain with a total 
delay of K  samples instead of the QK  samples 
needed in standard FDAF implementations. 

Figure 2 shows the block diagram of the 
algorithm using the overlap-save method. In the 
frequency domain with matrix notation, equation (3) 
can be expressed as 

 
= ⊗Y X W . (4) 

 
Where = FXX  represents a matrix of 

dimensions  M Q P× ×  which contains the Fourier 
transform of the Q  partitions and P  channels of 
the input signal matrix X .  
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Figure 2: Multichannel PBFDAF (Overlap-Save method). 

Being X , 2K P× -dimensional  (supposing 
50% overlapping between the new block and the 
previous one). 

It should be taken into account that the algorithm 
adapts every K  samples. W  represents the filter 
coefficient matrix adapted in the frequency-domain 
(also M Q P× × -dimensional) while the ⊗  
operator multiplies each of the elements one by one; 
which in (4) represents a circular convolution. 

The output vector y  can be obtained as the 
double sum (rows) of the Y  matrix. First we obtain 
a M P×  matrix which contains the output of each 
channel in the frequency-domain py , 

1, ,p P= … , and secondly, adding all the outputs 

we obtain the output of the whole system y . 
Finally, the output in the time-domain is obtained by 
using 

 
-1last  components of K=y F y . (5) 

  
Notice that the sums are performed prior to the 

time-domain translation. In this way we reduce 
( )( )1 1P Q− −  FFTs in the complete filtering 
process. As in any adaptive system the error can be 
obtained as 

 
= −e d y , (6) 
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The error in the frequency-domain (for the 
actualization of the filter coefficients) can be 
obtained as 

 

1K×⎡ ⎤
= ⎢ ⎥

⎣ ⎦

0
F

e
e . (7) 

 
As we can see, a block of K  zeros is added to 

ensure a correct linear convolution implementation. 
In the same way, for the block gradient estimation, it 
is necessary to employ the same error vector in the 
frequency-domain for each partition q  and 
channel p . 

This can be achieved by generating an error 
matrix E with dimensions M Q P× ×  which 
contains replicas of the error vector, defined in (7), 
of dimensions P  and Q  ( ←E e  in the notation). 
The actualization of the weights is performed as 

 
[ ] [ ] [ ] [ ]1 2m m m mμ+ = + ⊗W W G . (8) 

 
The instantaneous gradient is estimated as 
 

*= − ⊗G X E . (9) 
 
This is the unconstrained version of the 

algorithm which saves two FFTs from the 
computational burden at the cost of decreasing the 
convergence speed.  As we are trying to improve 
specifically this parameter we have implemented the 
constrained version which basically makes a 
gradient projection. The gradient matrix is 
transformed into the time-domain and is transformed 
back into the frequency-domain using only the first 
K  elements of G  as 

 

K Q P× ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

G
F

0
G . (10) 

3 PBFDAF–CG 

CG algorithm is a technique originally developed to 
minimize quadratic functions, as (2), which was later 
adapted for the general case (Luenberger, 1984). Its 
main advantage is its speed as it converges in a finite 
number of steps. In the first iteration it starts 
estimating the gradient, as in the steepest descent 
(SD) method, and from there it builds successive 

directions that create a set of mutually conjugate 
vectors with respect to the positively defined 
Hessian (in our case, the auto-correlation matrix R 
in the frequency-domain). 

In each m-block iteration the conjugate gradient 
algorithm will iterate ( )1, , min ,k N K= …  

times; where N  represent the memory of the 
gradient estimation, N K≤ . In a practical system 
the algorithm is stopped when it reaches a user-
determined MSE level. To apply this conjugate 
gradient approach to the PBFDAF algorithm the 
weight actualization equation (8) must be modified 
as 

 
[ ] [ ] [ ]1m m mα+ = +w w v . (11) 

 
Where w  is the coefficient vector of dimension 

1MQP×  which results from rearranging matrix 
W  (in the notation ←w W ). v  is a finite R-
conjugated vector set which satisfies 

0,H
i j i j= ∀ ≠v Rv . The R-conjugacy property is 

useful as the linear independency of the conjugate 
vector set allows expanding the •w  solution as  

 
1

0 0
0

K

k k k k
k

α α α
−

•

=

= + + =∑w v v v" . (12) 

 
Starting at any point 0w  of the weighting space, 

we can define 0 0= −v g  being 0 0←g G , 

( )0 0= ∇G W ,  0 0←p P , ( )0 0 0= ∇ −P W G . 

 

1k k k kα+ = +w w v  (13) 

( )
H
k k

k H
k k k

α =
−

g v
v g p

 (14) 

1 1k k+ +←g G , ( )1 1k k+ += ∇G W      

1 1k k+ +←p P , ( )1 1 1k k k+ + += ∇ −P W G  
(15) 

1 1k k k kβ+ += − +v g v  (16) 

( )
( )

1 1

1

H
k k kHS

k H
k k k

β + +

+

−
=

−
g g g
v g g

 (17) 
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Where kp  represents the gradient estimated in 

k k−w g . For that, it is necessary to evaluate 

( )= ⊗ −Y X W G , (5), (6), (7) and (9). In order to 

be able to generate nonzero direction vectors which 
are conjugate to the initial negative gradient vector, 
a gradient estimation is necessary (Boray and 
Srinath, 1992). This gradient estimation is obtained 
by averaging the instantaneous gradient estimates 
over N  past values. The ∇  operator is an 
averaging gradient estimation with the current 
weights and N  past inputs X  and d , 

 

( )
1

0 , ,

2

k k n k n

N

k k k n
nN

− −

−

−
=

= ∇ = ∑
dW X

G W G . (18) 

 
This alternative approach does not require 

knowing neither the Hessian nor the employment of 
a linear search. Notice that all the operations (13-17) 
are vector operations that keep the computational 
complexity low. The equation (17) is known as the 
Hestenes-Stiefel method but there are different 
approaches for calculating kβ : Fletcher-Reeves 
(19), Polar-Ribière (20) and Dai-Yuan (21) methods. 

 

1 1
H

FR k k
k H

k k

β + +=
g g
g g

 (19) 

( )1 1
H
k k kPR

k H
k k

β + + −
=
g g g

g g
 (20) 

( )
1 1

1

H
DY k k
k H

k k k

β + +

+

=
−

g g
v g g

 (21) 

 
The constant kβ  is chosen to provide R-

conjugacy for the vector kv  with respect to the 

previous direction vectors 1 0, ,k−v v… . Instability 

occurs whenever kβ  exceeds unity. 
In this approach, the successive directions are not 

guaranteed to be conjugate to each other, even when 
one uses the exact value of the gradient at each 
iteration. To ensure the algorithm stability the 
gradient can be initialized forcing 1kβ =  in (16) 

when 1kβ > . 

4 COMPUTATIONAL COST 

Table 1 shows a comparative analysis for both 
algorithms in terms of operations number 
(multiplications, sums) clustered by functionality. 
Note that constants A , B  and C , in the PBFDAF 
computational burden estimation, are used as 
reference for the number of operations in PBFDAF–
CG. For one iteration (k = 1), the computational cost 
of the PBFDAF–CG is 40 times higher than the 
PBFDAF. 

5 SIMULATION EXAMPLES 

MAEC application is a good example of complex 
system identification because has to deal with very 
long adaptive filters in order to achieve good results. 
The scenario employed in our tests simulates two 
small chambers imitating a typical teleconference 
environment. Following an acoustic opening 
approach, both chambers can be acoustically 
connected by means of linear arrays of microphones 
and loudspeakers. Details of this configuration 
follow. Room dimensions are [2000 2440 2700] 
mm. 

The impulse responses are calculated using the 
image method (Allen and Berkley, 1979) with an 
expected reverberation time of 70ms (reflection 
coefficients [0.8 0.8; 0.5 0.5; 0.6 0.6]). The speech 
source, microphones and loudspeakers are situated 
as in Figure 3. In the emitting room, the source is 
located in [1000 500 1000] and the microphones in 
[{800 900 1000 1100 1200} 2000 750]. Notice that 
the microphone separation is only 10 cm, which 
would be a worse case scenario that provides with 
highly correlated signals. In the reception room the 
loudspeakers are situated in [{500 750 1000 1250 
1500} 100 750] and the microphone in [1000 2000 
750].  

The directivity patterns of the loudspeakers 
([elevation 0º, azimuth -90º, aperture beam 180º]) 
and the microphones ([0º 90º 180º]) are modified so 
that they are face to face. We are considering 5P =  
channels as it is a realistic situation for home 
applications; enough for obtaining good spatial 
localization and significantly more complex than the 
stereo case. 
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Table 1: Computational Cost Comparative ( O PQM= ). 

Alg.\Op. Gradient Estimation and Convolution Updating Constrained Version 
PBFDAF ( ) ( )( )22 log 1 1A P O O P Q M K O= + + + + + +

 

9B O=  22 logC O O=  

PBFDAF–CG ( )( )( )( )( )1 1 1 2 1 1N A k+ + + + +  ( )13 2O k+
 

( )2 1CN k +  

 
The source is a male speech recorded in an 

anechoic chamber at a sampling rate of 16 kHz and 
the background noise in the local room has a power 
of -40 dB of SNR. 

Figure 4 shows the constrained PBFDAF 
algorithm behaviour. For equation (8) we are using a 
power normalizing expression as 

 

[ ] [ ]
m

m
μμ

δ
=

+U
, (22) 

[ ] ( ) [ ] 21 1m mλ λ= − − +U U X . (23) 

 
Where [ ]mμ  is a matrix of dimensions 

M Q P× × , μ  is the step size, λ  is an averaging 
factor, and δ  is a constant to avoid stability 
problems. In our case 0.025μ = , 0.25λ =  and 

0.5δ = . 
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Figure 3: Working environment for the tests. 

Figure 5 shows the result of using the PBFDAF-
CG algorithm with the Hestenes-Stiefel method 
where the difference in convergence can be 

observed. A maximum of N K⎢ ⎥= ⎣ ⎦  or when 

MSE below -45 dB is employed.  
For both algorithms we use 8Q =  partitions, 

1024L =  taps, 128K L Q= =  taps for each 
partition. The length of the FFTs is 

2 256M K= = . Working with sample rate of 16 
kHz means 8 ms of latency (although a delayless 
approach already has been studied) (Bendel and 
Burshtein, 2001). Again in both cases the algorithm 
uses the overlap-save method (50% overlapping). 

The upper part of the figures show the echo 
signal  d  (black) and the residual error e  (grey). 

The centre shows the MSE (dB) and the lower 
picture the misalignment (also in dB) obtained as 
ε = −h w h , being h  the unknown impulse 

response and  1

TT T
P⎡ ⎤= ⎣ ⎦w w w…  the 

estimation. 
 
 

0 1 2 3 4 5 6 7
−1

0

1

d[
n]

(b
),

 e
[n

](
g)

PBFDAF constrained

0 1 2 3 4 5 6 7
−80

−60

−40

−20

0

M
S

E
 (

dB
)

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

m
is

al
ig

nm
en

t (
dB

)

time (s)

Figure 4: PBFDAF Constrained. 
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Figure 5: PBFDAF–CG Constrained. 

The speech input signal to MAEC application is 
an inappropriate perturbation signal due to a 
nonstationary character. The speech waveform 
contains segments of voiced (quasi-periodic) sounds, 
such as “e,” unvoiced or fricative (noiselike) sounds, 
such as “g,” and silence. 

Besides it is possible a double-talk situations 
(when the speech of the at least two talkers arrives 
simultaneously at the canceller) that made 
identification much more problematic than it might 
appear at first glance. 

A much more conditioned application is an 
adaptive multichannel measure of impulse response. 
In this case, it is possible to select the best 
perturbation signal, with the appropriate SNR, for 
system identification and adapt until the error signal 
falls below a MSE setting threshold. 

The maximum length sequences (MLS) are 
pseudorandom binary signals which autocorrelation 
function is approximately an impulse.  

In an industrial case it is probably the most 
convenient method to use because it is simple and 
allows system identification without perturbing the 
system operation or stopping the plant (Aguado and 
Martínez, 2003). In this case it is necessary 
superimpose the perturbation signal to the input 
system with a power enough to identify the system 
while guaranty the optimal functioning. 

6 CONCLUSIONS 

The PBFDAF algorithm is widely used in 
multichannel adaptive filtering applications such as 
MAEC commercial systems with good results (in 
general for stereo case).  
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Figure 6: PBFDAF–CG iterations versus time. 
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However, especially when working in 
multichannel, high reverberation environments (like 
teleconference) its convergence may not be fast 
enough. In this article we have presented a novel 
algorithm: PFDAF–CG; based on the same structure, 
but using much more powerful CG techniques to 
speed up the convergence time and improve the 
MSE and misalignment performance. 

As shown in the results, the proposed algorithm 
improves a MSE and misalignment performance, 
and converges a lot faster than its counterpart while 
keeping the computational convergence relatively 
low, because all the operations are performed 
between vectors in the frequency-domain. We are 
working on better gradient estimation methods in 
order to reduce computational cost. Besides, it is 
possible to arrive to a compromise between 
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complexity and speed modifying the maximum 
number of iterations. 

Figure 6 shows the PBFDAF–CG iterations 
versus time. The total number of iterations for this 
experiment is 992 for PBFDAF and 1927 for 
PBFDAF–CG (80 times higher computational cost). 

Figure 7 shows the result of PBFDAF–CG with 
MLS source (identical settings) and Figure 8 the 
iterations versus time. Notice that more uniform 
MSE convergence and best misalignment. The 
computational cost decrease while time the 
increases. A better performance is possible 
increasing the SNR and diminishing the MSE level 
threshold. 
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APPENDIX 

The “conjugacy” relation 0,H
i j i j= ∀ ≠v Rv  

means that two vectors, iv  and jv , are orthogonal 

with respect to any symmetric positive matrix R. 
This can be looked upon as a generalization of the 
orthogonality, for which R is the unity matrix. The 
best way to visualize the working of conjugate 

directions is by comparing the space we are working 
in with a “stretched” space. 

Figure 9: Optimality of CG method. 

The SD methods are slow due to the successive 
gradient orthogonality that results of minimize the 
recursive updating equation (8) respect to [ ]mμ . 
The movement toward a minimum has the zigzag 
form. The left part in Figure 9 shows the quadratic 
function contours in a real space (for ≠r 0  in (2) 
are elliptical). Any pair of vectors that appear 
perpendicular in this space would be orthogonal. 
The right part shows the same drawing in a space 
that is stretched along the eigenvector axes so that 
the elliptical contours from the left part become 
circular. Any pair of vectors that appear to be 
perpendicular in this space is in fact R-orthogonal. 
The search for a minimum of the quadratic function 
starts at 0w , and takes a step in the direction 0v  

and stops at the point 1w . This is a minimum point 
along that direction, determined in the same way for 
SD method. While the SD method would search in 
the direction 1g , the CG method would chose 1v . 

In this stretched space, the direction 0v  appears to 
be a tangent to the now circular contours at the point 

1w . Since the next search direction 1v  is 

constrained to be R-orthogonal to the previous, they 
will appear perpendicular in this modified space. 
Hence, 1v  will take us directly to the minimum 
point of the quadratic function (2nd order in the 
example). 
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