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Abstract: An efficient genetic reinforcement learning algorithm for designing Fuzzy Inference System (FIS) with out 
any priory knowledge is proposed in this paper. Reinforcement learning using Fuzzy Q-Learning (FQL) is 
applied to select the consequent action values of a fuzzy inference system, in this method, the consequent 
value is selected from a predefined value set which is kept unchanged during learning and if the optimal 
solution is not present in the randomly generated set, then the performance may be poor. Also genetic 
algorithms (Genetic Algorithm) are performed to on line search for better consequent and premises 
parameters based on the learned Q-values as adaptation function.  In Fuzzy-Q-Learning Genetic Algorithm 
(FQLGA), memberships (premises) parameters are distributed equidistant and the consequent parts of fuzzy 
rules are randomly generated. The algorithm is validated in simulation and experimentation on mobile robot 
reactive navigation behaviors. 

1 INTRODUCTION 

In the last decade, fuzzy logic has supplanted 
conventional technologies in some scientific 
applications and engineering systems especially in 
control systems, particularly the control of the 
mobile robots evolving (moving) in completely 
unknown environments. Fuzzy logic has the ability 
to express the ambiguity of human thinking and 
translate expert knowledge into computable 
numerical data. Also, for real-time applications, its 
relatively low computational complexity makes it a 
good candidate. A fuzzy system consists of a set of 
fuzzy if-then rules. Conventionally, the selection of 
fuzzy if-then rules often relies on a substantial 
amount of heuristic observation to express the 
knowledge of proper strategies 

Recently, many authors proved that it is possible 
to reproduce the operation of any standard 
continuous controller using fuzzy controller (Jouffe, 
1996), (Watkins, 1992), (Glorennec, 1997), 
(Dongbing, 2003). However it is difficult for human 
experts to examine complex systems, then it isn't 
easy to design an optimized fuzzy controller. 
Generally the performances of a system of fuzzy 
inference (SIF) depend on the formulation of the 
rules, but also the numerical specification of all the 

linguistic terms used and an important number of 
choices is given a priori also it is not always easy or 
possible to extract these data using human expert. 
These choices are carried with empirical methods, 
and then the design of the FIS can prove to be long 
and delicate vis-à-vis the important number of 
parameters to determine, and can lead then to a 
solution with poor performance. To cope with this 
difficulty, many researchers have been working to 
find learning algorithms for fuzzy system design. 
These automatic methods enable to extract 
information when the experts’ priori knowledge is 
not available. 

The most popular approach to design FLC may 
be a kind of supervised learning where the training 
data is available. However in real applications 
extraction of training data is not always easy and 
become impossible when the cost to obtain training 
data is expensive. For these problems, reinforcement 
learning is more suitable than supervised learning. In 
reinforcement learning, an agent receives from its 
environment a critic, called reinforcement, which 
can be thought of as a reward or a punishment. The 
objective then is to generate a policy maximizing on 
average the sum of the rewards in the course of time, 
starting from experiments (state, action, reward). 
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This paradigm corresponds to one of the 
fundamental objectives of the mobile robotics which 
constitutes a privileged applicability of 
reinforcement learning. The paradigm suggested is 
to regard behaviour as a sensor-effectors 
correspondence function. The objective is to favour 
the robots autonomy using learning algorithms. 

In this article, we used the algorithm of 
reinforcement learning, Fuzzy Q-Learning (FQL) 
(Jouffe, 1996), (Souici, 2005) which allows the 
adaptation of apprentices of the type SIF (continuous 
states and actions), fuzzy Q-learning is applied to 
select the consequent action values of a fuzzy 
inference system. For these methods, the consequent 
value is selected from a predefined value set which 
is kept unchanged during learning, and if an 
improper value set is assigned, and then the 
algorithm may fail. Also, the approach suggested 
called Fuzzy-Q-Learning Genetic Algorithm 
(FQLGA), is a hybrid method of Reinforcement 
Genetic combining FQL and genetic algorithms for 
on line optimization of the parametric characteristics 
of a SIF. In FQLGA we will tune free parameters 
(precondition and consequent part) by genetic 
algorithms (GAs) which is able to explore the space 
of solutions effectively.  

This paper is organized as follows. In Section 2, 
overviews of Reinforcement learning, 
implementation and the limits of the Fuzzy-Q-
Learning algorithm is described. The 
implementation and the limits of the Fuzzy-Q-
Learning algorithm are introduced in Section 3. 
Section 4 describes the combination of 
Reinforcement Learning (RL) and genetic algorithm 
(GA) and the architecture of the proposed algorithm 
called Fuzzy-Q-Learning Genetic Algorithm 
(FQLGA). This new algorithm is applied in the 
section 5 for the on line learning of two elementary 
behaviors of mobile robot reactive navigation, “Go 
to Goal” and “Obstacles Avoidance”. Finally, 
conclusions and prospects are drawn in Section 6. 

2 REINFORCEMENT LEARNING 

As previously mentioned, there are two ways to 
learn either you are told what to do in different 
situations or you get credit or blame for doing good 
respectively bad things. The former is called 
supervised learning and the latter is called learning 
with a critic, of which reinforcement learning (RL) 
is the most prominent representative. The basic idea 
of RL is that agents learn behaviour through trial-

and-error, and receive rewards for behaving in such 
a way that a goal is fulfilled. 

Reinforcement signal, measures the utility of the 
exits suggested relative with the task to be achieved, 
the received reinforcement is the sanction (positive, 
negative or neutral) of behaviour: this signal states 
that it should be done without saying how to do it. 
The goal of reinforcement learning is to find the 
behavior most effective, i.e. to know, in each 
possible situation, which action is achieved to 
maximize the cumulated future 
rewards.Unfortunately the sum of rewards could be 
infinite for any policy. To solve this problem a 
discount factor is introduced. 
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∞
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=∑                                   (1) 

Where 0 ≤ γ ≤ 1    is the discount factor. 
The idea of RL can be generalized into a model, 

in which there are two components: an agent that 
makes decisions and an environment in which the 
agent acts. For every time step, the agent perceives 
information from the environment about the current 
state, s. The information perceived could be, for 
example, the positions of a physical agent, to 
simplify say the x and y coordinates. In every state, 
the agent takes an action ut, which transits the agent 
to a new state. As mentioned before, when taking 
that action the agent receives a reward. 

Formally the model can be written as follows; 
for every time step t the agent is in a state st ∈S 
where S is the set of all possible states, and in that 
state the agent can take an action at∈  (At), where 
(At) is the set of all possible actions in the state st. 
As the agent transits to a new state st+1 at time t + 1 
it receives a numerical reward rt+1. It up to date 
then its estimate of the function of evaluation of the 
action using the immediate reinforcement, rt +1, and 
the estimated value of the following state, Vt (St +1), 
which is defined by: 

       ( ) ( )
1
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t t

t t t tu U
V s Q s u

+
+ +∈

=               (2) 

The Q-value of each state/action pair is updated by: 

( ) ( ) ( ) ( ){ }1 1 1, , ,t t t t t t t t t tQ s u Q s u r V s Q s uβ γ+ + += + + − (3) 

Where ( ) ( ),1 1γ+ −+ +r V s Q s ut t tt t the TD error 

and β is the learning rate. 
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This algorithm is called Q-Learning. It shows 
several interesting characteristics. The estimates of 
the function Q, also called the Q-values, are 
independent of the policy pursued by the agent. To 
calculate the function of evaluation of a state, it is 
not necessary to test all the possible actions in this 
state but only to take the maximum Q-value in the 
new state (eq.4). However, the too fast choice of the 
action having the greatest Q-value: 

    ( )
1

1arg max ,
t t

t t tu U
u Q s u

+
+∈

=                 (4) 

can lead to local minima. To obtain a useful 
estimate of Q, it is necessary to sweep and evaluate 
the whole of the possible actions for all the states: it 
is what one calls the phase of exploration (Jouffe, 
1996), (Souici, 2005). In the preceding algorithm, 
called TD (0), we use only the state which follows 
the robot evolution, Moreover only the running state 
is concerned. Sutton (Souici, 2005) extended the 
evaluation in all the states, according to their 
eligibility traces that memorise the previously 
visited state action pairs in our case. Eligibility 
traces can be defined in several ways (Jouffe, 1996), 
(Watkins, 1992), (Souici, 2005). Accumulating 
eligibility is defined by: 

( ) ( )
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   (5)     

The algorithm Q (λ) is a generalization of Q-
Learning which uses the eligibilities truces (Souici, 
2005): Q-Learning is then a particular case of Q (λ) 
when λ=0. 

( ) ( ) ( ) ( ){ } ( ), , , .1 1 1β γ= + + −+ + +Q s u Q s u r V s Q s u e st t t t t t t tt t
  

(6) 

3 FUZZY Q-LEARNING 
ALGORITHM 

In mobile robotics, input and output variables given 
by the sensors and effectors are seldom discrete, or, 
if they are, the number of state is very large. 
However reinforcement learning such as we 
described it uses a discrete space of states and 
actions which must be have reasonable size to 
enable the algorithms to converge in an acceptable 
time in practice. 

 The principle of the Fuzzy Q-Learning 
algorithm consists in choosing for each rule Ri  a 
conclusion among a whole of actions available for 
this rule. Then it implements a process of 
competition between actions. With this intention, the 

actions corresponding to each rule Ri have a quality 
iq which then determines the probability to choose 

the action. The output action (discrete or continues) 
is then the result of the inference between various 
actions locally elected. The matrix q enables to 
implement not only the local policies the rules, but 
also to represent the function of evaluation of the 
overall t-optimal policy.  

For every time step t the agent is in a state st ∈S 
where S is the set of all possible states, and in that 
state the agent can take an action at∈ (At), where 
(At) is the set of all possible actions in the state st. 
As the agent receives a numerical reward rt+1 ∈R at 
time t + 1, and it transits to a new state st+1. It then 
perceives this state by the means of its activated 
degree of its rules. The algorithm FQL uses a Policy 
of Exploration/Exploitation (PEE) (Jouffe, 1996), 
(Souici, 2005), combining a random exploration part 

( )
i

Uρ and determinist guided part ( )
i

Uη . 
The steps are summarized as follows: 
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2. Calculate the TD error 
( ) ( , )1 1 1r Q S Q S Ut t t tt t tε γ ∗= + −+ + +  

3.  Update the matrix  ofQ  values 
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4. Election of the action to be applied  
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Where Election is defined by: 
1 1( ) ( ( ) ( ) ( ))i i i i

U t U U tElection q ArgMax q U U Uη ρ+ ∈ += + +  
5. Update of the eligibility traces 
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And new calculation of the evaluation function.  
( , ) ( ) ( ),1 1 1 1 1 1

1

i iQ S U q U SRt t t t t tR A iti
α= ∑+ + + + + +∈ +

 

This value will be used to calculate the TD error in 
the next step time. However the performances of the 
controller are closely dependent on the correct 
choice of the discrete actions set, witch is 
determined using a priori knowledge about system, 
for complex systems like robots, priori knowledge 
are not available, then it becomes difficult to 
determine a set of correct actions in which figure the 
optimal action for each fuzzy rule. To solve this 
problem and to improve the performances of the 
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reinforcement learning, the genetic algorithms will 
explore the broadest space of solutions to find the 
solution optimal (Dongbing, 2003), (Chia-Feng, 
2005), (Min-Soeng, 2000), (Chia-Feng, 2003), and 
that without any priori knowledge.  

4 GENETIC REINFORCEMENT 
ALGORITHM 

Genetic Algorithms (GA) are stochastic optimization 
algorithms, founded on species evolution 
mechanisms (Goldberg, 1994). In GA, a candidate 
solution for a specific problem is called an 
individual or a chromosome and consists of a linear 
list of genes. Each individual represents a point in 
the search space and, hence, a possible solution to 
the problem. A population consists of a finite 
number of individuals. Each individual is decided by 
an evaluating mechanism to obtain its fitness value. 
Based on this fitness value and undergoing genetic 
operators, a new population is generated iteratively, 
with each successive population referred to as a 
generation. 

 Genetic Reinforcement Learning enable to 
determine the best set of parameters of (antecedents 
/ consequences) starting from a random initialization 
of these parameters and in each iteration, only one 
action is applied on the system to the difference of a 
traditional genetic algorithm GA use three basic 
operators (the selection, crossover, and mutation) to 
manipulate the genetic composition of a population: 
• Reproduction: Individuals are copied according to 
their fitness values. The individuals with higher 
fitness values have more offspring than those with 
lower fitness values.  
• Crossover: The crossover will happen for two 
parents that have high fitness values with the 
crossover probability pc. One point crossover is used 
to exchange the genes. 
• Mutation: The real value mutation is done by 
adding a certain amount of noise (Gaussian in this 
paper) to new individuals to produce the offspring 
with the mutation probability pm. For the ith variable 
in jth individual, it can be expressed as: 

( ). (0, )1a a i Ntt β σ= ++                       (7) 
Where N denote a Gaussian noise, and 

( ) exp( )i iβ = −  for the thi generation. 

4.1 FQLGA Algorithm  

Because of its simplicity, a Takagi-Sugeno Fuzzy 
inference system is considered, with triangular 
membership function. The structure (partition of its 
input space, the determination of the number of IF-
THEN rules) of the SIF is predetermined. 

 
i
ja  is a vector representing the discrete set of K 

conclusions generated randomly  for the rule 

iR with which is associated  a vector i
jq  

representing the quality  of each action (i= 1 ~N and 
j= 1 ~ K). 

The principle of the approach is to use a 
population of K (SIF) and to treat the output of each 
one of them as a possible action to apply on the 
system. FQL algorithm exploits local quality 
function q witch is associated with each action of a 
fuzzy rule (équat.6) whereas FQLGA algorithm uses 
as function fitness the sum of local qualities q given 
by: 

( )f Ind j = ( , )1 1 1

N iQ S S IF qt t ji
= ∑+ + =

         (8)     

To reduce the training time, the quality matrix Q 
is not initialized after each iteration but undergoes 
the same genetic operations as those applied to the 
set of the individuals (selection, crossing).  

4.2 Optimization of the Consequent 
Part of a FIS 

A population of K individuals of a predetermined 
structure is adopted. The size of an individual is 
equal to number N of the FIS’s rules. The 
architecture of FQLGA algorithm proposed for the 
optimization of the conclusions is represented on the 
figure (1).  

 

Figure 1:Representation of the individuals and qualities of 
the actions in FQLGA algorithm. 
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4.3 Optimization of the Antecedent 
Part of a SIF 

To find the best set of premises generated by GA, a 
population made up of M SIF is created.   Each 
individual (FIS) of the population encode the 
parameters of the antecedents i.e. the modal points 
of the FIS and his performance is evaluated by the 
fitness function of Q (global quality). 

 The conclusion part of each individual SIF 
remains fixed and corresponds to the values 
determined previously. The coding of the 
membership functions of the antecedent part of a 
FIS (individual) is done according to the figure (2). 
To keep the legibility of the SIF, we impose 
constraints during the evolution of the FIS to ensure 
the interpretability of the FIS. 

 
Figure 2: Coding of the parameters of the antecedent part. 

Input N :    1
1N nm N

m
− +

 < …. < 1
-2  Nmm < 1 Nmm  

The fitness function used in by genetic 
algorithm for the optimization of the antecedent part 
is the global quality of the FIS which uses the degree 
of activation of the fuzzy rules; this fitness function 
is given by the following equation: 

( ( )). ( )
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 (9)     

 
Figure 3: General architecture of FQLGA algorithm. 

4.4 Optimization of the Consequent 
and Antecedent Part of FIS 

A SIF consists of a set of fuzzy rules each one of it 
is made of an antecedent and a consequent part. 
Optimize the antecedent and the consequent part of 
the fuzzy controller at the same time is a complex 
problem which can admit several solutions which 
are not acceptable in reality, the great number of 
possible solutions makes the algorithm very heavy 
and can lead to risks of instability.  

 FQLGA algorithm proposed in (fig.3) for the 
optimization of the premises and the conclusions 
allows the total parametric optimization of the FIS in 
three stages represented in the flow chart (fig.4). 

 
• At the beginning of the learning process, the 

quality matrix is initialized at zero, and then 
traditional algorithm FQL evaluates each action 
using an exploration policy. This step finishes 
when a number of negative reinforcements is 
received.  

• After the evaluation of the individuals, the genetic 
algorithm for the optimization of the consequent 
part of the fuzzy rules creates a new better adapted 
generation. This stage is repeated until obtaining 
convergence of the conclusions or after having 
reached a certain number of generations. The 
algorithm passes then to the third stage: 

• Once the conclusions of the FIS are optimized, the 
second genetic algorithm for the optimization of 
the antecedent part is carried out to adjust the 
positions of the input membership functions of the 
controller which are initially equidistant on their 
universe of discourse. 

 
Figure 4: Flow chart of FQLGA algorithm. 
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5 EXPERIMENTAL RESULTS 

To verify the performance of FQLGA two 
elementary behaviors of reactive navigation of a 
mobile robot: "Go to Goal" and "Obstacles 
Avoidance" are presented in this section; the 
algorithm was adopted in the experiments for both 
simulations (Saphira simulator) and real robots 
(Pioneer II).  

5.1 «Go to Goal» Behaviour 

The two input variables are:  the angle" Rbθ " 
between the robot velocity vector and the robot-goal 
vector, and the distance robot-goal " bρ ".They are 
respectively defined by three (Negative, Zeros, 
Positive) and two (Near, Loin) fuzzy subsets (fig.5). 
The two output variables are the rotation speed, 
Vrot_CB and the translation speed Vtran_CB each 
output is represented  by nine actions initialised 
randomly. 

 
Figure 5: Membershipfunctions of the input space. 

The reinforcement functions adopted for the two 
outputs are respectively given by: 

_
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The parameters of FQL algorithm and the 

genetic algorithms are as follows: 

 
LP and Lc respectively indicate the sizes of the 

chromosomes for the antecedents and the 
conclusions part, Np, Nc respectively represent the 
size of the population of the parameters of 
antecedent and the conclusions and Pm the 
probability of mutation. 

The simulation results are given of the first 
behaviour "Go to Goal" are presented in the figure 
(6), 28 generations were sufficient to find the good 
actions. 

 
Figure 6: Go to goal: Training/Validation. 

Figure (7) shows the convergence of the fitness 
values of the genetic algorithms for the two output 
variables Vrot_CB and Vtran_CB obtained during 
experimental test. 

 
Figure 7: Fitness functions for the two output variables. 

5.2 «Obstacles Avoidance» Behaviour 

The Inputs of the FIS are the distances provided by 
the ultrasounds sensors to in the three directions 
(Frontal, Left and Right) and defined by the three 
fuzzy subsets: near (N), means (M), and far (F) 
(fig.8). 

 
Figure 8:Memberships Functions of the inputs variables. 

The conclusions (rotation speeds) are initialized 
randomly. The translation speed of Vtran_EO is 
given analytically; it is linearly proportional to the 
frontal distance: 

max
_ .( _ )

max

V
Vtran EO Dis F Ds

D
= −        (11)             

maxV is the maximum speed of the robot equal to 
350mm/s. 
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maxD is the maximum value measured by the 
frontal sensors and estimated to 2000mm and Ds is 
a safe distance witch is fixed at 250mm. 

The function of reinforcement is defined as 
follows (Souici, 2005): 
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with Dmin=min (Dis_L, Dis_F, Dis_R) 
 
The parameters of FQL algorithm and the 

genetic algorithms are identical to the preceding 
behaviour except for the sizes of the chromosomes 
Lp=12 and Lc=27. 

Figure (9) represents the trajectories of the robot 
during the learning phase with FQL algorithm and a 
random initialization of the consequents part for the 
27 fuzzy rules. Several situations of failures are 
observed, this example show the limits of traditional 
FQL algorithm when priory knowledge about the 
system are not available. 

 
Figure 9: Trajectories of the robot obtained by FQL 
algorithm using a random initialization of parameters. 

The trajectories of figure (10) show the 
effectiveness of the association of the reinforcement 
learning FQL and the genetic algorithm as stochastic 
tool for exploration. FQLGA Algorithm enables to 
find an optimal FIS for the desired behaviour 
(obstacles avoidance). The duration of learning 
depend to the genetic algorithm parameters and the 
obstruction density of the environment. We observe 
that after each generation the quality of the FIS (sum 
of local qualities) increases, which give more chance 
to the best individuals to be in the next generations. 

 
Figure 10: Learning/Validation Trajectories of the robot 
with FQLGA algorithm for various environments. 

Figure (11) shows the performances of FQLGA 
algorithm compared to the FQL algorithm which can 
be blocked in a local minimum when the optimal 
solution is not present in the randomly generated set 
of actions.  On the other hand FQLGA algorithm 
converges towards the optimal solution 
independently of the initialized values. 
 

 
 
 

 
 
 

Figure 11: Evolution of the quality of the Fuzzy controller 
with FQL and FQLGA algorithms. 

5.3 Experimental Results with the Real 
Robot Pioneer II 

Figure (12) represents the results of the on line 
learning of the robot Pioneer II for the behaviour 
"Go to goal". During the learning phase, the robot 
does not follow a rectilinear trajectory (represented 
in green) between the starting point and the goal 
point because several actions are tested 
(exploration). Finally the algorithm could find the 
good actions, and the robot converges towards the 
goal marked in red colour, the necessary time to find 
these good actions is estimated at 2mn. Each 
generation is generated after having noted twenty 
(20) failures. The learning process requires 
respectively 32 and 38 generations for GA to 
determine rotation and translation speed. 
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Figure 12: On line learning of the real robot Pioneer II, 
"Go to goal" behaviour. 

Figure (13) represents the results of the on line 
learning of the "Obstacles Avoidance" robot 
behaviour. For reasons of safety, we consider that 
the minimal distances detected by the frontal sonars 
and of left/right are respectively 408 mm and of 345 
mm a lower value than these distances is considered 
then as a failure and involves a retreat (represented 
in green) of the mobile robot. A generation is 
created after 50 failures. The genetic algorithms 
require 14 generations to optimize the conclusions 
and 24 generations to optimize the parameters of the 
antecedents. The duration of on line learning is 
estimated at 20 min, this time is acceptable vis-à-vis 
the heaviness of the traditional genetic algorithms. 

 
Figure 13: On line learning of the real robot Pioneer II, 
behaviour "Obstacle Avoidance». 

Figure (14) represents the evolution of the fitness 
function obtained during this experimentation. 

 
Figure 14: Fitness function evolution, "Obstacles 
avoidance" robot behaviour. 

6 CONCLUSION 

The combination of the reinforcement Q-Learning 
algorithm and genetics Algorithms give a new type 
of hybrid algorithms (FQLGA) which is more 
powerful than traditional learning algorithms. 
FQLGA proved its effectiveness when no priori 
knowledge about system is available. Indeed, 
starting from a random initialization of the 
conclusions values and equidistant distribution for 
the membership functions for antecedent part the 
genetic algorithm enables to find the best individual 
for the task indicated using only the received 
reinforcement signal. The controller optimized by 
FQLGA algorithm was validated on a real robot and 
satisfactory results were obtained. The next stage of 
this work is the on line optimization of the structure 
of the Fuzzy controller. 
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