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Abstract: Model based predictive control (MBPC) is an optimization-based approach that has been successfully 
applied to a wide variety of control problems. When MBPC is employed on nonlinear processes, the 
application of this typical linear controller is limited to relatively small operating regions. The accuracy of 
the model has significant effect on the performance of the closed loop system. Hence, the capabilities of 
MBPC will degrade as the operating level moves away from its original design level of operation. This 
paper presents an MBPC algorithm which uses on-line simulation and rule-based control. The basic idea is 
the on-line simulation of the future behaviour of control system, by using a few control sequences and based 
on nonlinear analytical model equations. Finally, the simulations are used to obtain the ‘optimal’ control 
signal. These issues will be discussed and nonlinear modelling and control of a single-pass, concentric-tube, 
counter flow or parallel flow heat exchanger will be presented as an example. 

1 INTRODUCTION 

Model Based Predictive Control (MBPC) refers to a 
class of algorithms that utilize an explicit process 
model to compute the control signal by minimizing 
an objective function (Comacho, 1999). The 
performance objective typically penalizes predicted 
future errors and manipulated variable movement 
subject to various constraints. The ideas appearing in 
greater or lesser degree in all the predictive control 
family are basically: 

-explicit use of a model to predict the process 
output in the future; 

-on line optimization of a cost objective function 
over a future horizon; 

-receding strategy, so that at each instant, the 
horizon is displaced towards the future, which 
involves the application of the first control signal of 
the sequence calculated at each step. 

Performance of MBPC could become 
unacceptable due to a very inaccurate model, thus 
requiring a more accurate model. This task is an 
instance of closed-loop identification and adaptive 
control. Here it is important to remember that the 
model is only used as an instrument in creating the 

best combined performance of the controller and the 
actual system, so the model does not necessarily 
need to be a good open-loop model of the system. 
The performance measure should be able to capture 
as much of the closed loop behavior as possible.  

Let’s consider that it is possible to compute: 
- the predictions of output over a finite horizon (N); 
- the cost of an objective function, 

for each possible sequence: 
 

( ) { })(),..,1(),(. Ntututuu ++=            (1) 
 
and then to choose the first element of the optimal 
control sequence. For a first look, the advantages of 
the proposed algorithm (Balan, 2001) include the 
following: 

-the minimum of objective function is global; 
-it is not necessary to invert a matrix, so potential 

difficulties are avoided; 
-it can be applied to nonlinear processes if a 

nonlinear model is available; 
-the constraints (linear or nonlinear) can easily be 

implemented. 
The drawback of this scheme is a very long 

computational time, because there are possibly a lot 
of sequences. For example, if u(t) is applied to the 
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process using a “p” bits numerical-analog converter 
(DAC), the number of sequences is 2 p*N .Therefore, 
the number of sequences must be reduced.  

In the next sections, these issues will be 
discussed and nonlinear modelling and control of a 
single-pass, concentric-tube, counter flow heat 
exchanger will be presented as an example. 

2 THE MODEL OF THE  
HEAT-EXCHANGER 

Heat exchangers are devices that facilitate heat 
transfer between two or more fluids at different 
temperatures. Usually, MBPC uses a linear model 
and an on-line least square algorithm (RLS) to 
determine the parameters.  Heat exchangers are 
nonlinear processes. To apply the standard MBPC 
algorithms it is possible to use multiple model 
adaptive control approach (MMAC) which uses a 
bank of models to capture the possible input-output 
behavior of processes (Dougherty, 2003). Other 
solutions are based on neural networks and fuzzy 
logic (Fischer, 1998), (Fink, 2001).  

In this paper it is used an example from (Ozisik, 
1985): a heat exchanger with hot fluid -engine oil at  
80ºC, cold fluid - water at 20º C, by using a single-
pass counter flow (or parallel flow for some 
experiments) concentric-tube. Other data and 
notations: length (L): 60m, heat transfer coefficients 
(k1=1000 W/(m2 ºC), k2=80 W/(m2 ºC)), the 
temperature profile of fluids and wall ( ),(1 tzθ , 

),(2 tzθ , ),( tzwθ ), specific heat (c1, c2, cw), cross-
sectional area for fluids flow and wall (S1, S2, Sw), 
density of fluids and wall (ρ1, ρ2, ρw),  flow speed of 
fluids (v1, v2), transfer area (S) (fig. 1).  

If physical properties (density, heat capacity, 
heat transfer coefficients, flow speed) are assumed 
constant, the heat exchanger model is described 
using a shell energy balance as (Douglas, 1972): 
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Using general notation θa(i,j) with a=1 (hot fluid), 
a=2 (cold fluid), a=w (wall), i, j discrete elements in 
space respectively time, the discrete equations 
corresponding to partial differential equations 
(2),(3),(4) are: 

 
Figure 1: Temperature distributions. 
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In a control application, these equations can not 
be used directly because v1  and v2 are not constant in 
time. Let’s consider next assumptions: 

 

    -the speed of fluids is limited: 
                          v1(min)<v1<v1(max); 

     v2(min)<v2<v2(max);vmax=max(v1(max),v2(max))        (8) 
 

- the fluids speed is only time-function: 
v1=v1(t) , dv1/dz=0 , v2=v2(t) , dv2/dz=0         (9) 

 

- the length of heat exchanger is divided in n 
intervals:                           L=nΔz;                        (10) 

 

- in an interval Δt, the fluids cover only a part of 
Δz:   nvvmaxΔt=Δz ; Δt < L /(nnvvmax)                  (11) 

 

- two variables Δz1, Δz2 are using to totalize the 
small fluid displacements:  

           Δz1(t+Δt)=Δz1(t)+v1Δt ; 
     Δz2(t+Δt)=Δz2(t)+v2Δt                              (12) 
 

- in simulations, the displacements of the fluids 
become effective only if Δz1>Δz or/and Δz2>Δz; in 
these cases: 

              Δz1← Δz1-Δz or/and Δz2← Δz2-Δz     (13) 
 

In other words, in simulations, the continue moves 
of fluids are replaced with small discrete 
displacements. As a result, the heat exchanger model 
is described by equations: 
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In a practical implementation, there are used 
equations (12), (13), (14), (15), (16).  

It is important the number and position of 
temperature sensors. Here, it is considered that only 
the inlet and outlet temperatures (hot fluid, cold fluid 
and wall) and the flow rate of fluids are measured. 
The temperatures inside heat exchanger are 
estimated. The quality of heat exchange depends 
especially by the heat transfer coefficients. These 
parameters depend by temperatures, accumulation of   
deposits of one kind or another on heat transfer 
surface, shape of tube, etc. The temperature 
distributions inside heat exchanger (process and 
model) are presented in fig. 2 using notations θa(i,j). 
for process and Mθa(i,j) for the model.  
 

 
Figure 2: Process and model (counter flow) – diagrams. 

 
Figure 3: Step reply- counter flow. 

To underline the main characteristics of the heat 
exchangers that are used in simulations, there are 
presented the step replies in some cases (counter 
flow - fig. 3; parallel flow – fig. 4).  First, the 
temperatures of fluids are 20º C, than it is changed 
the inlet temperature of hot fluid (input of the 
process). There are different conditions for inlet 
temperatures and flow rate fluids. Flow rate of hot 

fluid is a parameter and permits to obtain a family of 
step replies. 

 
Figure 4: Step reply- parallel flow. 

 
Figure 5: Counter flow- gain factor. 

 
Figure 6: Parallel flow- gain, dead time. 

Figures 5 and 6 present the dependence of gain 
factor and dead time by flow rate. These simulations 
underline the non-linear features of processes and, 
for parallel flow, a dead time, which is dependent 
especially by flow rate of hot fluid. 

3 CONTROL ALGORITHM  

A model based adaptive-predictive algorithm which 
uses on line simulation and rule based control, 
designed for linear processes, is developed in 
(Balan, 2001), (Balan, 2005).  This algorithm can be 
applied with some modifies to nonlinear processes. 
The nonlinear equations of the process can be used 
directly in the control algorithm. The predictions of 
system output are calculated by integrating the 
nonlinear ordinary differential equations of the 
model over the prediction horizon, by using a few 
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control sequences (Balan, 2005). For a first stage, 
are used, the next four control sequences:  
 

( ) { }minminmin1 ,..,, uuutu =  
( ) { }minminmax2 ,..,, uuutu =
( ) { }maxmaxmin3 ,..,, uuutu =  
( ) { }maxmaxmax4 ,..,, uuutu =      (17)  

 

where umin and umax are the limits of the control 
signal, limits imposed by the practical constraints. 
These values can depend on context and can be 
functions of time. There are two pair sequences: 
(u1(t), u2(t)) and (u3(t), u4(t)) which are different 
through  the preponderance of  umin or umax in the 
future control signal. The pair sequences are 
different only through the first term.  

Using these sequences results four output 
sequences y1(t), y2(t), y3(t), y4(t). The control signal 
is computed using a set of rules based on the 
extreme values ymax0, ymax1, ymin0, ymin1 (fig. 7- d is 
dead time, t1=N, yr is setpoint) of the output 
predictions. In the followings, considering processes 
with positive sign, it can be put in evidence four 
usual cases: 

 
Case 1:   If  ymax0<yr (corresponding to u1(t) 

sequence)  and  ymax1>yr (corresponding to u2(t) 
sequence)  Then (using a linear interpolation):     
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Case 2:   If  ymin0<yr (corresponding to u3(t) 

sequence)  and  ymin1>yr (corresponding to u4(t) 
sequence)   Then (using a linear interpolation): 
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Case 3:   If:  ymax0>yr       Then u(t0)=umin             (20)  

                                            
Case 4:   If: ymax1<yr       Then  u(t0)=umax           (21) 
In fig. 7, every output prediction curve is marked 

with a number which correspond to the number of 
control sequence from relations (17). Similar to case 
3 and case 4, there are two similarly cases if dy/dt<0 
for t<t0. If the algorithm uses only these 6 rules, the 
variance of u(t) will be large (Balan, 2001).  

So, in the second stage, depended by behaviour of 
the control system, are used next methods: 

-an algorithm that modifies the limits of control 
signal: 

umin ≤ uminst(t) ≤ u(t) ≤ umaxst(t) ≤ umax 
 Δumin≤ Δu≤ Δumax            (22) 

For example: 

( ) ( ) ( ) ( ) ( )( )tytytutuftu r,,1,1 maxstminst1minst −−=            (23) 
( ) ( ) ( ) ( ) ( )( )tytytutuftu r,,1,1 maxstminst2maxst −−=             (24) 

where f1, f2 are functions which decrease or increase 
(depended by behavior of the control system) the 
difference between umaxst(t) and uminst(t). 
 

 
Figure 7: Examples of output predictions. 

 
In relations (18)..(21), the values of umax, umin are 
replaced with uminst(t), umaxst(t). In the following, if is 
necessary, the next relations are used: 

 
( ) ( ) ( )( )11 minminstminst −−+−= tuuktutu ststst                 (25) 
( ) ( ) ( )( )ststst utuktutu −−−−= 11 maxmaxstmaxst                (26) 

 
where kst is a weight parameter and ust is the 
estimated value of control signal in steady state. But 
in some circumstancing (perturbations, inaccurate 
model) the limits of control signal must increase. 
Also, it is necessary to limit the minimum value of 
umaxst(t)-uminst(t)>dust>0, where dust is a parameter of 
the control algorithm. 

 

-using the “variable setpoint“ (Balan, 2001): 
 

        yr1(t)=yr(t)+kref[y(t)-yr(t)]                          (27) 
 

where kref is a weight factor 
 

-using a filter to compute control signal 
(especially in steady state regime). 

This paper will be tackled only the case when the 
main aim is to control the temperature of outlet cold 
fluid. To do this, it is used the flow rate of hot fluid 
(controller’s output). There are possible other 
objectives for example to maximize the heat transfer 
between fluids. First, there was used an adaptive-
predictive algorithm based on on-line simulation and 
a linear model (Balan, 2001). The parameters of 
model were identified on-line using least square 
algorithm. This method could be applied, with poor 
results, only for counter flow heat exchanger. It is 
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necessary to consider the non-linear features of heat 
exchanger and to use a model of the heat exchanger 
based on the finite difference method. It is supposed 
that initially the heat transfer coefficients are 
unknown and than they are identified on-line. In 
simulations, there are used three sets of finite 
difference equations: process equations, model 
equations, on line simulation equations. 

The behaviour of heat exchanger depends by 
some types of parameters: 

1. Construction parameters: length of tube, 
surface of heat transfer, diameters of tubes, etc. 
These parameters can be considered constants. 

2. Fluids parameters: density, specific heat etc. 
These parameters depend by temperature and other 
conditions. 

3. Parameters that determine the quality of heat 
exchange, especially the heat transfer coefficients. 
These parameters depend by temperatures, 
accumulation of   deposits of one kind or another on 
heat transfer surface, shape of tube, etc.  

At every sample period, it is possible to compute 
Δh, Δc, Δw1, Δw2, the temperature prediction errors of 
outlet hot fluid, outlet cold fluid, wall (fig. 2).  

These predictions can be used to correct the 
temperature distributions inside the model of heat 
exchanger, using translations and rotations of 
distributions. Also, prediction errors can be used to 
modify the parameters of the model using an 
algorithm based on rules. The control scheme is 
presented in fig. 8. 

 
Figure 8: Control scheme. 

4 APPLICATIONS WITH HEAT 
EXCHANGERS 

The next applications show the main features of the 
algorithm applied to heat exchanger. The set point 
has a variable shape (42°C, 47°C, 52°C, 47°C, 
42°C..). The limits of u(t) (hot fluid flow rate) are:  
0.05≤u(t)≤  0.5  [kg/s]. The flow rate of cold fluid is 

constant (0.08 kg/s). The temperatures of cold fluid 
( °20 ) and hot fluid ( °80 ) are constant.  Some 
experiments with variable flow rate or/and variable 
temperature of cold fluid are presented in (Balan, 
2001). 

First, it is used an accurate model (Fig. 9, fig. 
10). If the algorithm uses only 1..6 rules, the 
variance of u(t) will be large. To reduce this 
variance, a solution is to use a funnel zone for 
control signal, based on inequality (22).  

In steady-state regime, control signal is 
computed using average of past and new values. The 
algorithm do not use directly an integral component. 
In figure 9, steps 50..80, the algorithm tries to reduce 
the error as fast as possible. As a result, a damped 
oscillation appears. To avoid this behavior, a 
solution is to use a reference trajectory.  

 
Figure 9: Setpoint, output (accurate model). 

 
Figure 10: Controller output (accurate model). 

In figure 11, 12 it is presented an adaptive case; 
the heat transfer coefficients depend by temperature: 

 

( )200/10 θ+= kk    (28) 
 

 
Figure 11: Setpoint, output (adaptive case). 
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Figure 12: Controller output (adaptive case). 

Initial the temperature of cold and hot fluids 
is °20 . The evolution of the estimations of heat 
transfer coefficients is presented in figure 13. To 
obtain these estimations, both rotations and 
translations of temperature distributions and rule 
based correction of heat transfer coefficients are 
used. In figure 14 it is used the same conditions for 
heat transfer coefficients, but it is not used this 
approach.  

 

 
Figure 13: Parameters identification. 

 
Figure 14: Setpoint, output (adaptive case). 

As a result, the quality of control algorithm 
decreases. 

5 CONCLUSION 

The paper presents a simple and intuitive algorithm 
applied in the case of a non linear process: heat 
exchanger. A non-linear model of the process, based 
on finite difference method, is used. This approach 

is a numerical alternative to usual criteria equations; 
offer a way to ensure the accuracy of a best-fit heat 
exchanger selection, and point out that the fluids 
properties must not be mathematically emphases. 
Using the process model and a reduce number of the 
sequences control, it is simulated the future 
behaviour of the process and based on a set of rules 
it is chosen the signal control considered optimum at 
the actual moment. Of course there are some 
difficulties such as the proof of the stability, the way 
of choosing of the control sequences and the set of 
rules which will lead to a better result, choosing 
some parameters etc. Although, taking into account 
the simplicity of this algorithm the obtained results 
in the case of the presented examples by nonlinear 
systems are remarkable. A demo application that 
implements the proposed algorithm can be 
downloaded (see web link). In the future, starting 
from the proposed algorithm, the work will focus on: 
the optimal chosen of the control parameters, the 
study of other set of control sequences, the study of 
other set of control rules, adaptive case and practical 
implementation.   

REFERENCES 

Camacho E., Bordons C. (1999), “Model Predictive 
Control” Spriger-Verlag 

Radu Balan: “Adaptive control systems applied to 
technological processes”, Ph.D. Thesis 2001, 
Technical University of Cluj-Napoca Romania. 

Dougherty, D., Cooper, D., “A practical multiple model 
adaptive strategy for a single loop”, Control 
Engineering Practice 11 (2003) pp. 141-159 

Fischer M., Nelles O., Fink A., “Adaptive Fuzzy Model 
Based Control” Journal a, 39(3), Pp22-28, 1998 

Fink A., Topfer S., Isermann O., “Neuro and Neuro-Fuzzy 
Identification for Model-based Control”, IFAC 
Workshop on Advanced Fuzzy/Neural Control, 
Valencia, Spain, Pages 111-116, 2001 

Ozisik M. N., “Heat Transfer - A Basic Approach”, 
McGraw-Hill Book Comp. 1985. 

Douglas I.M., “Process dynamics and control”, Prentice 
Hall Inc. 1972 

Bălan, Radu, Vistrian Maties, Olimpiu Hancu, Sergiu 
Stan, A Predictive Control Approach for the Inverse 
Pendulum on a Cart Problem, IEEE-ICMA 2005 pag. 
2026-2031 July 29 - August 1, 2005 Niagara Falls, 
Ontario, Canada. 

Available online, accessed in March, 2007: 
http://zeus.east.utcluj.ro/mec/mmfm/download.htm  

APPLICATIONS OF A MODEL BASED PREDICTIVE CONTROL TO HEAT-EXCHANGERS

301


