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Abstract: Motivated by fault detection and isolation problems, we present an approach to the design of unknown param-
eters and disturbances estimators for linear time-variant stochastic systems. The main features of the proposed
method are: (a) the joint estimation of parameters and disturbances can be carried out; (b) it is a full-stochastic
approach: the unknown parameters and disturbances are random quantities and prior information, in terms
of means and covariances, can be easily taken into account; (c) the estimator structure is not fixeda priori,
rather derived from the optimal infinite dimensional one by means of a sliding window approximation. The
advantages with respect to the widely usedparity spaceapproach are presented.

1 INTRODUCTION

The following discrete time linear stochastic system
is considered in this brief paper:

xk+1 = Akxk +Bkuk +Ψkp+Ekdk +wk (1a)

yk = Ckxk +vk (1b)

for k ≥ 0, with Ak ∈ R
n×n, Bk ∈ R

n×m, Ψk ∈ R
n×q,

Ek ∈ R
n× f andCk ∈ R

l×n known time-variant matri-
ces. The vector sequences{xk}, {uk} and{yk} de-
note respectively the state, input and output stochas-
tic processes. The sequences{wk} and{vk} are as-
sumed to be zero mean, white and uncorrelated wide-
sense stochastic processes, withE[wkwT

k ] = Qk and
E[vkvT

k ] = Rk ≻ O (positive definite), whereE[·] de-
notes the mathematical expectation operator. The ini-
tial condition x0 has known meanE[x0] = µ0 and co-
varianceE[(x0−µ0)(x0−µ0)

T ] = P0. Both the initial
condition x0 and the input process{uk} are assumed
uncorrelated with the noise sequences.
The termEkdk accounts for unknown disturbances
acting on the system or faults, whence the sequence
{dk} is an unknown (and uncontrolled) input mod-
eled as a wide-sense stochastic process, not necessar-
ily stationary. The disturbances are further assumed
uncorrelated with the initial state, the noise and the in-
put processes, respectively x0, {wk}, {vk} and{uk}.

Finally, the termΨkp can account for the occurrence
of parametric faults in the system (for instance with
the meaning that when p is zero no faults are present)
or for constant parameters that need to be estimated
on-line. Here p is a random variable uncorrelated with
the noise, input and disturbance processes.

The problem to be solved is the following: find
for eachN ≥ 0 theminimum variance unbiased lin-
ear estimatorsof the disturbances sequence dN−1

0 =
{dk : 0 ≤ k ≤ N−1} and of the parameters p, given
the input and output sequences uN−1

0 and yN0 , and the
conditions guaranteeing the uniqueness of the corre-
sponding estimates. These estimators will be denoted
respectively bŷdk|N andp̂|N (since p does not depend
on time).

The following two related problems will also be
discussed in this paper. First, how to weaken the
uniqueness conditions by considering the quantities
d̂k|N+D for 0≤ k≤ N−1 and some appropriate delay
D > 0, which will be called, with an abuse of terms,
“delayed estimators”. Second, how torecursivelyand
reliably compute the estimates ˆp|N+D andd̂k|N+D once

sample paths (measurements)uN+D−1
0 and yN+D

0 of
the input and output processes are becoming available
(by convention, italic characters will denote samples
from the corresponding random variables which, in-
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stead, will be denoted by roman characters).
The solution proposed in this work shares many

similarities with the so calledparity spacemethod
(Chow and Willsky, 1984; Gustafsson, 2001) which
finds wide application in fault detection problems.
However it has some advantageous features that will
be presented at the end of the exposition.

Once the disturbances and parameters estimates
have been computed, state estimation becomes
straightforward and can also be easily performedon
demand. This topic is discussed in (Perabò and
Zhang, 2007).

2 BASIC EQUATIONS FOR
ESTIMATION

Pretend for a while that the parameters and the distur-
bances sequence are known quantities, i.e. as if they
were inputs of the system described by (1), and as-
sume the following:

Assumption 1. (Ak,Ck) is uniformly completely

observableand (Ak,Q
1/2
k ) is uniformly completely

reachable.

Assumption 2. The parameters p and the disturbance
sequence{dk} are uncorrelated from the initial state
x0 and the noise sequences{wk} and{vk}.

Hence there isno feedbackfrom the output to the pa-
rameters and disturbances (see (Gevers and Ander-
son, 1982) for details) and by applying well known
results of the linear estimation theory (Kailath et al.,
2000), the followinginnovation representationof the
output process{yk} can be derived:

x̂∗k+1|k = Akx̂
∗
k|k−1 +Bkuk +Ψkp+Ekdk +Kke

∗
k (2a)

yk = Ckx̂
∗
k|k−1 +e∗k, (2b)

the recursion being initiated settinĝx∗0|−1 = x0,
where x̂∗k+1|k is the one stepminimum variance
unbiased linear predictorof the state. Each term
of the innovation sequence{e∗k} has zero mean and
covarianceΛk given by the recursive solution of the
same Riccati equation which is solved in the standard
Kalman filter (i.e. with no disturbances and unknown
parameters). With respect to this one, however, the
superscript∗ in (2) emphasizes that the “estimates”
{x̂∗k+1|k} cannot be computed because the realizations
p and{dk}, of p and{dk} respectively, are not really
available. Also the gainsKk are computed exactely
as in the Kalman filter. By defining recursively the
quantities,

ϒ0 = O ϒk+1 = (Ak−KkCk)ϒk +Ψk (3a)

s0 = 0 sk+1 = (Ak−KkCk)sk +Ekdk (3b)

z0 = x0 zk+1 = (Ak−KkCk)zk +Bkuk +Kkyk (3c)

and by using (2b) it is not difficult to check that the
following is true:

Cksk +Ckϒkp+e∗k = yk−Ckzk. (4)

Note that a realization of the sequence{zk} can be
computed from available data only, i.e. system matri-
ces, input and output sequences. As a matter of fact,
(3c) is exactly the Kalman filter equation that would
be obtained if p≡ 0 and dk ≡ 0 for all k.
It is possible to arrange in matrix form the set of equa-
tions obtained from (4) whenk = 1,2, . . . ,N . For ex-
ample forN = 4 one obtains




C4Φ4
1E0 C4Φ4

2E1 C4Φ4
3E2 C4E3 C4ϒ4

C3Φ3
1E0 C3Φ3

2E1 C3E2 O C3ϒ3

C2Φ2
1E0 C2E1 O O C2ϒ2

C1E0 O O O C1ϒ1









d0
d1
d2
d3
p



+

+





e∗4
e∗3
e∗2
e∗1



=

[

y4−C4z4
y3−C3z3
y2−C2z2
y1−C1z1

]

, (5)

where the transition matricesΦk
h are defined by

Φh
h = I , Φk+1

h = (Ak−KkCk)Φk
h. (6)

For an arbitraryN, left multiply the above system by

the block diagonal matrix blkdiag{Λ−1/2
N , . . . ,Λ−1/2

1 }
in such a way that the covariance of the zero mean

vectore∗ = vec[Λ−1/2
N e∗N . . . Λ−1/2

1 e∗1] is equal to the
identity matrix. A system of the form

Ag+ e∗ = r (7)

is thus obtained, where the matrixA∈R
lN×( f N+q) has

the same structure as in (5),g = vec[d0 . . . dN−1 p] is
the unknown term, and the vectorr = vec[rN . . . r1]
contains the computableresiduals

rk = Λ−1/2
k (yk−Ckzk). (8)

If dk ≡ 0 for eachk and p≡ 0, thenr = e∗, i.e. the
vector of residuals has zero mean and its covariance
equals the identity matrix. Any statistical test indicat-
ing a deviation from this condition can be used to de-
tect the presence of non-null disturbances and/or pa-
rameters.

Since samples ofr are available but insteade can-
not be observed, the most appealing approach to es-
timateg is to compute its minimum variance linear
estimator ˆg given the random vectorr. Thanks to the
Assumption 2, the following holds:

E[e∗kdT
h ] = O E[e∗kpT ] = O ∀k,h≥ 0. (9)
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As a result,g ande∗ in (7) are in fact uncorrelated.
Provided thatprior information on the random vec-
tor g is given in terms of its meanµg and covari-
anceΣg (assumeΣg invertible and the factorization
Σ−1

g
= BTB), a straightforward application of linear

estimation formulas shows that ˆg and the covariance
of the error ˜g = g− ĝ can be obtained from

(

ATA+BTB
)

(ĝ−µg) = AT(r−Aµg) (10a)

Σg̃ =
(

ATA+BTB
)−1

. (10b)

One could suspect, at this point, that theinforma-
tion about the unknown terms which is available from
knowledge of the input and output sequences, is not
fully exploited if the only quantities that are used for
the estimation of the disturbances and parameters are
the residuals defined in (8). However, as long as lin-
ear estimators are considered, it is possible to prove
that the proposed method isoptimal in the sense that,
by estimatingg from (7) (instead of a different linear
relation with the measurable sequences{uN−1

0 ,yN
0 })

one in fact minimizes the estimation error variance.
When sample paths of the input and output se-

quences, say{uN−1
0 } and{yN

0 }, are available, one is
faced to the problem of computing numerically the es-
timateĝ = vec[d̂0|N . . . d̂N−1|N p̂|N] from the vectorr
denoting the realization ofr. To this end, the availabil-
ity or lack of prior information makes a difference. In
the following the latter case is discussed.

3 NO PRIOR INFORMATION

3.1 Estimability Conditions

The absence of prior information aboutg can be dealt
with by settingµg = 0 and lettingΣg → ∞ (or equiv-
alently Σ−1

g
→ 0) which corresponds to a very large

uncertainty. Formula (10a) becomes
(

ATA
)

ĝ = AT r

which is the system ofnormal equationsfor comput-
ing the uniqueleast squares solutionof

Ag = r. (11)

in the unknowng, provided that the matrixA has
full column rank. From a practical point of view, It
should be noted that the proposed method requires
simply checking the rank of matrices and solving least
squares problems, for which efficient numerical tools
are readily available. But, unfortunately, finding gen-
eral estimability condition in analytic form, is a very
complex task. The following is not difficult to prove:

Proposition 1. For a given N≥ 1, the estimateŝp|N
and d̂k|N for 0 ≤ k ≤ N−1 are unique if and only if

the matrixA in (11) has full column rank. Moreover,
the uniqueness holds only if the following necessary
conditions are satisfied:

(C1) rank





E0 O ··· O Ψ0
O E1 ··· O Ψ1

...
...

...
...

...
O O O EN−1 ΨN−1



= rN +q (12a)

(C2) rank

(

N

∑
k=1

ϒT
k CT

k Ckϒk

)

= q. (12b)

If rank(Ek) = f for all k ≥ 0 and (C1) is true for a
value N= Nmin, then it is satisfied for all values N≥
Nmin. Analogously, if(C2) is true for a value N=
Nmin, then it is satisfied for all values N≥ Nmin.

3.2 Delayed Estimation

Consider first the case when there areno unknown
parameters(q = 0). A sufficient(but not necessary)
condition to ensure thatA has full column rank for all
N ≥ 1, hence the uniqueness of the estimatesd̂k|N for
0≤ k≤ N−1, is the following:

(C3) rank(Ck+1Ek) = f ∀k≥ 0. (13)

However, when (C3) is not satisfied, it could still be
possible to compute, for some delayD > 0, unique
delayed estimateŝdk|N+D for 0 ≤ k ≤ N−1. To ex-
emplify what has been just asserted, consider the case
Ck+1Ek = O and thus (C3) is not satisfied (this situ-
ation may happen typically whenCk+1 andEk have
both some zero entries, for exampleCk+1 = [1 0] and
Ek = [0 1]T ). Then the zero blocks appear in the term
Ag in (7) as shown in the following scheme (suppose,
for example, thatN = 4):

5

N = 4

3

2

1









× × × ∗ O

× × ∗ O O

× ∗ O O O

∗ O O O O

O O O O O

















d0

d1

d2

d3

d4









.

It is evident that dN−1 (d3 in the example above) is
not estimable from measurements collected till time
N (in other wordsd̂3|4 is not unique). However, if the

blocks marked with a∗, i.e. the matricesCk+2Φk+2
k+1Ek

in (7), have full column rank, it is sufficient to add
the measurements at timeN+1 (at time 5 to continue
the example) so that the unique estimatesd̂k|N+1 for
k= 0, . . . ,N−1 and, in particular̂dN−1|N+1 (in the ex-
ampled̂3|5), could be computed. The above argument
can be generalized as follows: if for someD > 0 the
conditions

(C4a) rank(Ck+D+1Φk+D+1
k+1 Ek) = f ∀k≥ 0 (14a)

(C4b)





Ck+DΦk+D
k+1 Ek

···
Ck+2Φk+2

k+1Ek
Ck+1Ek



= O (14b)
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are satisfied, then the estimatesd̂k|N+D for 0 ≤ k ≤
N−1 are unique (even ifA has not full rank).

When there are unknown parameters (q > 0), the
conditions in (13) or (14) are no longer sufficient and,
in general, the rank of the matrixA has to be checked
numerically. However note the following result:

Proposition 2. (a) Assuming that condition(C3)
in (13) is satisfied, if the estimateŝp|N and d̂k|N for
0 ≤ k ≤ N−1 are unique (i.e. the matrixA has full
column rank) for a value N= Nmin, then they are
unique also for all N≥ Nmin.
(b) Analogously, assuming that conditions(C4) in
(14) are satisfied, if the delayed estimatesp̂|N+D and

d̂k|N+D for 0 ≤ k ≤ N − 1 are unique for a value
N = Nmin, then they are unique also for all N≥ Nmin.

3.3 Approximate Recursive Estimation

In order to compute the estimates from (11), a grow-
ing size least squares problem as to be solved asN in-
creases. Observe, however, that the upper left blocks
of the matrix A tend to zero asN grows, because
the uniform observability and reachability assump-
tion guarantees that the transition matricesΦk

h de-
fined in (6) tend to the null matrix as the difference
k− h → ∞. Hence, it is natural to consider an ap-
proximate problem by replacingA with A+E, where

E annihilates the blocksΛ−1/2
k CkΦk

hEh−1 such that
k− h ≥ L ≥ Lmin, whereLmin ≥ 1 is the minimum
value guaranteeing that rank(A) = rank(A+E) for all
N, so that the estimability properties of the original
problem are conserved also in the approximate one.
Obviously, the accuracy of the approximate solution
increases asL→∞. The system(A+E)g= r has thus
the bandedstructure shown in the following scheme
(for N = 5 andL = 3):







× × × ×
× × × ×

× × × ×
× × ×
× ×






·













d0

d1

d2

d3

d4

p













=







r5

r4

r3

r2

r1







In the above, also an initial data window has been in-
dicated with a solid line box. Using the numerical
techniques described for example in (Björck, 1996,
Chapter 6.2), this approximate least squares problem
can then be solved recursively using a sliding window
procedure.

3.4 Comparison with the Parity Space
Approach

In the parity space method, the parameters and distur-
bances are estimated from a set of relations which can

be cast in the form̄Ag+w = r̄. The matrixĀ differs
from A in (7) only because the transition matricesΦk

h
defined in (6) are replaced byΓk

h = Ak−1 . . .Ah+1Ah.
Moreover, the covariance of the noise termw does
not equal the identity matrix and the residuals ¯r are
built in a different way.
The approach proposed here is new in that it makes
explicit reference to the innovation representation of
the system (1), with the following advantages:

(a) The components of the noise terme∗ are indepen-
dent and normalized, while an important drawback of
the parity space approach is that the covariance of the
noise termw has to bewhitenedbefore computing
the least squares estimate, thus increasing the compu-
tational load, especially for large scale problems.

(b) If the matricesAk are not stable, as it can hap-
pen typically in control problems, the matrix̄A could
be largely ill-conditioned, thus making numerically
harder the process of computing reliably the estimate,
especially for large window sizes.

(c) The initial condition x0 affects the residualsr
through the sequence{zk}. However the transition
matricesΦk

h are stable. Hence the effect of the initial
condition is asymptotically forgot ask → +∞. As a
consequence, when using the sliding window estima-
tion procedure, one has not to take care of the esti-
mation or rejection of the state at the initial time of
the window as happens for the parity space approach
(Törnqvist and Gustafsson, 2006).
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