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Abstract: In this paper, we demonstrate the interest of the multifractal analysis for removing the ambiguities due to 
the intensity overlap, and we propose a brain tissue segmentation method from Magnetic Resonance 
Imaging (MRI) images, which is based on Markov Random Field (MRF) models. The brain tissue 
segmentation consists in separating the encephalon into the three main brain tissues: grey matter, white 
matter and cerebrospinal fluid (CSF). The classical MRF model uses the intensity and the neighbourhood 
information, which is not robust enough to solve problems, such as partial volume effects. Therefore, we 
propose to use the multifractal analysis, which can provide information on the intensity variations of brain 
tissues. This knowledge is modelled and then incorporated into a MRF model. This technique has been 
successfully applied to real MRI images. The contribution of the multifractal analysis is proved by 
comparison with a classical MRF segmentation using simulated data. 

1 INTRODUCTION 

Image segmentation is a classical problem in 
computer vision and of paramount importance to 
medical imaging. Proper tissue classification 
enables: a) quantitative volumetric analysis on 
various brain structures; b) morphological analysis 
to assess intracranial deformation caused by brain 
tumours; c) visualisation for surgical planning and 
guidance.  

In this paper, we deal with tissue segmentation of 
Magnetic Resonance Imaging (MRI) brain images. 
Numerous semi-automatic and automatic 
segmentation techniques have already been 
developed to replace manual segmentation which is 
a labour-intensive, subjective and thereby non 
reproducible procedure. Actually, the main 
techniques are based on: texture analysis 
(Schad,1993), histogram threshold determination 
(Suzuki, 1991), cluster analysis (Simmons, 1994) 
and fuzzy cluster analysis (Pham, 1999), a priori 
information about anatomy (Joliot, 1993), or MRF 
segmentation (Held, 1997)(Choi, 1997). Although 

there exists many image classification algorithms, 
the methods usually suffer from the fact that in 
practice there is a significant overlap in intensity 
values between tissue types, owing to magnetic field 
inhomogeneity, susceptibility artefacts and partial 
volume effects (one pixel mixed of two or more than 
two classes). Our idea, about this issue, is to 
describe the brain tissue using the relative intensity 
variations, rather than using only absolute intensity 
values. The multifractal analysis is adopted here to 
this objective. It was first introduced in the context 
of turbulence, and then studied as a mathematical 
tool as well as in many applications such as image 
processing (Sarkar,1995) (Levy-Véhel, 1996) 
(Grazzini, 2005). Due to the presence of noise in 
MRI images, it is important to take into account 
contextual information. This can be done a priori 
using MRF models which are appropriate to specify 
spatial dependencies by a priori label field 
distribution (Geman, 1984) (Choi,1997). 

In this paper, we demonstrate the interest of the 
multifractal analysis to remove the ambiguities due 
to the intensity overlap and propose a tissue 
segmentation method based on Markov Random 
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Field (MRF) models. The brain segmentation 
consists in separating the encephalon into the three 
main brain tissues: grey matter, white matter and 
CSF. The classical MRF model uses the intensity 
and the neighbourhood information, but it is not 
robust enough to solve the problems such as partial 
volume effects. Therefore, we propose to 
supplement the multifractal analysis to the classical 
MRF model, which can provide the information 
about intensity variations of the brain tissues.  

2 MULTIFRACTAL ANALYSIS OF 
IMAGES 

It is well known that the geometrical complexity of a 
“fractal” set may be described, in a global way, by 
giving its dimension. In order to describe the local 
singular behaviour of measures or signals, the 
multifractal analysis is proposed to give either 
geometrical or probabilistic information about the 
distribution of points having the same singularity 
(Levy-Véhel, 1996, 2000). The value of Hölder 
exponent α is usually used to obtain a local 
information about the pointwise regularity. The so-
called “multifractal spectrum” f(α) gives the 
geometrical or probabilistic information. Some 
spectra, such as Hausdorff spectrum fh and large 
deviation spectrum fg, have been defined and studied 
(Levy-Véhel,1998). The multifractal analysis of 
images usually consists in computing values of 
Hölder exponentα and its multifractal spectrum, 
then classifying each point according both to the 
value of Hölder exponent α and to the corresponding 
spectrum f(α). In this paper, we are only interested 
in the local information provided by the Hölder 
exponent α. 

2.1 The Hölder Exponent α 

Let μ be a Borel probability measure laid upon a 
compact set P. For each point x in P, the Hölder 
exponent α can be defined as follows (Levy-Véhel, 
1996)(Canus 1996) (more rigorous and complete 
definitions are given in (Brown, 1992) (Levy-
Véhel,1998)): 
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where )(xBδ  is an open-ball of diameter σ centred 
on the point x. It reflects the local behaviour of the 
measure μ around x. In image analysis, the points in 
the equation (1) are naturally associated to the pixels 

of the image, the open-balls to windows in 2D and 
balls in 3D centred on each pixel, the measures to 
functions of grey level intensities. In our case, the 
measure μ is defined as the sum of the grey level 
intensities of pixels within a neighbourhood V(δ) 
defined by a ball of diameters σ The Hölder 
exponent α can be assessed as the slope of 
log[μ(V(δ))] versus log δ. δ changes linearly from 1 
to the maximum value with unity step. If the 
maximum diameter of the neighbourhood is chosen 
small, α reacts to localize singularities. If the 
maximum diameter is large, α reacts to more 
widespread singularities. Thanks to the choice of the 
measure function μ (V(δ)), we can obtain the 
following local information via the Hölder exponent: 
let us note α0 the Hölder exponent within a intensity 
uniform (homogeneous) region. If the value of α for 
the current pixel is higher than α0, it is surely within 
a intensity concave region (valley), while in the 
inverse case, the current voxel is in a intensity 
convex region (hill). The illustration of the different 
values of α is shown in Figure 1. In fact, μ(V(δ)) in a 
concave region increases more rapidly in function of 
V(δ) than that in a convex region. The value α0 lies 
between them. 

 

0αα =          0αα >          0αα <  

Figure 1: Illustration of α for different spatial variations of 
intensity. 

2.2 MRI Images 

The local image information provided by α is very 
helpful in the situation of low contrast, since it can 
discriminate the three situations described above. As 
known, the cortex of the brain has many 
circumvolutions. Thus, it leads to intensity 
variations in image, which can be easily described 
by the multifractal analysis. In MRI images, the 
sulcus can be considered as a valley in term of 
intensity, and the CSF is generally at the bottom of 
the valley. On the contrary, the gyrus can be 
considered as a hill, and the white matter, 
surrounded by the grey matter, is at the top of the 
hill. The problems of the partial volume effects and 
of the low contrast are essentially present in these 
two types of regions. Most of the homogeneous 
regions can be found within the white matter (in the 
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center of the brain) and a few others within the grey 
matter. The Figure 2 shows one axial MRI slice in 
which examples of the three types of region are 
pointed out.  
 
 

 
 
 
 
 
 
 
 

 
 

Figure 2: Three regions in MRI data: convex, concave and 
homogeneous region.  

The difficulties of the segmentation are mainly 
founded in the regions of the gyri and sulci due to 
the partial volume effects. The a priori knowledge 
about these two regions described by the Hölder 
exponent α can help us to cope with this problem. 
The histogram of αobtained from a T1-wheighted 
MRI data set (256×256×124 pixels, with a resolution 
of 0.9375×0.9375×1.2mm³) is shown in Figure 3. Its 
form is always concave for the MRI data, because of 
the brain morphology. In fact, the area of the 
homogeneous region, usually in white matter, is 
larger than that of the others regions (concave and 
convex regions). Therefore, α0 describing an 
homogeneous region, can be easily found by 
detecting the peak of the histogram. Since we are 
just interested in three types of region (concave, 
homogeneous and convex), and do not pay attention 
to the degree of concavity or convexity, we can 
define a function f(α) as follows to obtain the three 
types of region : 
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Figure 4 shows one α slice (the original image is 
shown in Figure 2) and the three types of region 
obtained using (2) : concave, convex and 
homogeneous regions. The measure region is a cube 
of 3×3×3 pixels. The value of α0, found from the 
peak of the histogram of α is 2.29. Comparing to the 
original image, it can be observed that the 
homogeneous regions correspond mainly to the 
white matter, and the values of α correctly reflect 
the hills and valleys in the image. 
 

 
 
 
 

 

 
Figure 3: Histogram of α calculated from a 3D MRI 
volume. The measure region is 3x3x3 voxels. 

 
 
 
 
 
 
 
 

 
 

Figure 4: One slice of α image (left) and the three types of 
region (right): convex region in deep grey colour, concave 
region in white colour and homogeneous in light grey 
colour. 

3 MARKOVIAN 
SEGMENTATION 

We propose to incorporate a priori information about 
multifractal characterisation into the MRF model. 
Let us consider three random fields: Y={Ys, s∈S} 
represents the field of observations located on a 
lattice S of N sites s, X={Xs, s∈S} the label field and 
A={αs, s∈S} the multifractal field. Each Ys takes its 
value in Λobs={0…,255}, each Xs in {1=CSF, 2=gray 
matter, 3=white matter} and each Αs in {-1,0,1} (see 
equation (2)). We use the Bayes rule to write: 
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Since the two fields Ys and As are independent, (3) 
becomes:  
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We look for the xs that maximises the left-hand side 
of (4). Since ),( ssyP α does not depend on the xs, 
this is equivalent to write: 
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Sulcus : 
Convex region 

White matter : 
homogeneous 
region 

Gyrus:  
concave region 

α α0
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In accordance with the Hammersley and Clifford 
theorem (Geman, 1984), )( sxP  is defined by a 
Gibbs distribution, 

))(exp(1)( 2 ss xU
Z

xP −≡       

(6) 
where U2 stands for the energy function and Z is a 
normalising constant. 
Denoting ))/(exp('
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defined in terms of an energy function that has to be 
minimised:  
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 Let us consider the terms U1. In MRI data, the 
distribution of the grey levels of each tissue has 
a gaussian form, and there is no correlation 
between them. The data energy term is thus 
expressed as : 
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 Let’s consider now U2(xs), the energy term 
corresponding to the a priori model. We adopt a 
3D system of  second-order neighbourhood C, 
consisting of the 18 nearest neighbours. Using 
standard isotropic Potts model, one obtains : 
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where β is a weight coefficient, and is the Kronecker 
delta function. U2 is minimum for a homogeneous 
region. 
 The energy term U3(αs/ xs) is defined in order to 

advantage the choice of the CSF label or white 
matter label for a site whether it is in a convex 
region or a concave region respectively. Since 
only two types of region are interesting in our 
case, U3(αs/ xs) can be defined according to 
f(α). It becomes : 
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where convexconcave κκ  and are constant (>0).  
If one pixel has a grey level near the middle of 

the means of the CSF and the gray matter or the 
middle of the means of the grey matter and the white 
matter, its U1 is not dominant. The classification of 
this pixel depends mainly on the U2 and U3 terms. 

Therefore, the a priori information brought by U3 is 
very useful in this case.  

We use the deterministic relaxation algorithm 
ICM (Besag, 1974) to minimise the global energy 
function U. For the initialisation, we exploit a 
maximum likelihood segmentation depending only 
on U1.  

4 RESULTS  

In order to show the improvement of the 
segmentation by addition of the multifractal term 
U3, simulated MRI data were used, which are 
available on the site BrainWeb (Collins,1998). This 
three-dimensional phantom is made up of ten 
volumetric data sets that define the spatial 
distribution of different tissues (e.g. grey matter, 
white matter, CSF, etc), where the voxel intensity is 
proportional to the fraction of tissue within the 
voxel. A threshold value equal to 50% can be used 
to obtain the voxels belonging to the corresponding 
tissue, which is considered as the gold standard. 
Each volume data consists of 181×217×181 voxels, 
whose size is 1×1×1mm3. The simulated MRI 
volume with a noise level of 7% is used for our 
study. It was firstly segmented by the software 
developed in our laboratory (Moretti, 2000) to 
obtain the encephalon in which there are only the 
three brain tissues (Figure 5). 

 The segmentation results are evaluated by 
measuring the sum, denoted totalξ , of the false 
positive ratio fpξ  and the false negative ratio fnξ . 

fpξ is defined as the number of misclassified voxels 
divided by the number of good voxels taken from 
the gold standard (N). The false negative ratio fnξ is 
defined as the number of lost good voxels divided by 
N.  

In order to obtain the initial values of the means 
and the variances used in U1(ys/xs) to carry out the 
initialisation of the segmentation, we used the 
Davidon-Fletcher-Powell method described in 
(Press, 1992) to fit the intensity histogram of the 
encephalon data set by a sum of three gaussian 
functions. Since the phantom is relatively realistic, 
studies on the choice of the parameters used in the 
models were carried out. The parameters β and κ can 
be chosen in the ranges ]5.0  ,1.0[∈β  and ]5.1 ,5.0[∈κ  
which provide acceptable totalξ  . According to our 
experience, the algorithm ICM is not very sensitive 
to the value βbut rather to the initialisation of the 
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segmentation. To reduce this dependence on the 
initialisation, the means and variances are re-
estimated at each iteration. A comparison of the 
results obtained by the classical Markovian 
segmentation and the proposed segmentation method 
is performed and shown in Table 1 (β =0.2,  κconvex = 
κconcave =1.1). We can observe that the total error  

totalξ  on each tissue is reduced using the function U3 
in addition. As discussed above, the a priori 
information modelled by U3 can ameliorate the 
results in the case of low contrast. These cases are 
usually apparent in the boundaries of tissues or in 
gyri and sulci, which represent a small percentage of 
total volume data. That is why the improvement is 
about 2%. The errors for the CSF segmentation seem 
to be more than those for the others. That is because 
the number of CSF voxel is much lower than those 
of the other tissues, thus it easily results a high 
relative error ratio.  

Real MRI data were also used to evaluate 
visually the results. The corresponding result of the 
image shown in Figure 2 is illustrated in Figure 6. 
Compared to the classical Markovian segmentation, 
the segmentation integrating the multifractal 
information favours the sulci and gyri if the contrast, 
due to the partial volume effects, is low in these 
regions. Two small windows are located in Figure 6 
to show the amelioration in critical regions. The 
discontinuities of the white matter and sulci obtained 
by the classical MRF segmentation are significantly 
repaired by the proposed method. To illustrate more 
clearly this issue, volume-rendered images of the 
white matter are used (Figure 7). As known, the 
white matter of the human is a continuously 
connected structure, thus the volume-rendered image 
using the proposed method depicts more accurately 
the white matter. 

5 CONCLUSION  

We have presented a MRF segmentation method 
incorporating the a priori multifractal information 
model, aiming to segment MRI brain tissues. The 
Hölder exponent α permits to describe locally the 
intensity variations, therefore helping to remove the 
ambiguities due to the low contrast and the partial 
volume effects. Three types of region: concave, 
convex and homogeneous region are used in our 
model. The results obtained on the digital phantom 
and the real MRI data show quantitatively and 
qualitatively improvement of the brain 
segmentation.  

Although the empirical values, chosen for the 
model parameters (β,κconvex and κconcave), give 
satisfying results, adapted values to different volume 
data will be more efficient and make the 
segmentation more accurate. The estimation of these 
hyperparameters is an important issue in the future 
work. 

 

 

 
 
 

 
 
 
 

Figure 5: One slice of gold standard (left) and the 
corresponding slice of the simulated data with a level 
noise of 7% (right). The three tissues are colour-coded as 
follows: white matter =white colour, grey matter =grey 
colour, CSF =black. 

 
 
 
 
 
 
 
 
 

 

Figure 6: Comparison of results of the slice shown in 
Figure 2 with (right) and without (left) use of the 
multifractal analysis. Three tissues are obtained: white 
matter (white colour), grey matter (grey colour) and CSF 
(black). The improvements can be observed in the circle 
windows concerning the white matter and the rectangular 
windows concerning the CSF. 

 
 
 
 
 
 
 
 
 
 

Figure 7: Volume-rendered images of the white matter 
obtained from the classical MRF segmentation (left) and 
the proposed segmentation method (right). Some 
discontinuities of structures (left) and improvements 
(right) are pointed out by arrows. 
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Table 1: Comparison of the results obtained by the 
classical MRF segmentation (Method 1) and by the 
proposed method (Method 2), using the false positive ratio 

fpξ and the false negative ratio fnξ . 

Method 1 (%) Method 1 (%) 
Tissue 

fpξ  fnξ  totalξ %) fpξ  fnξ  totalξ

WM 3.12 8.50 11.62 3.88 5.87 9.7
GM 7.99 5.02 13.01 6.19 5.09 11.2

CSF 13.37 7.78 21.15 10.76 8.78 19.
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