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Abstract: Symmetry detection is an important problem with many applications in pattern recognition, computer vision
and computational geometry. In this paper, we propose a novel algorithm for computing a hyperplane of re-
flexive symmetry of a point set in arbitrary dimension with approximate symmetry. The algorithm is based on
the geometric hashing technique. In addition, we consider a relation between the perfect reflective symmetry
and the principal components of shapes, a relation that was already a base of few heuristic approaches that
tackle the symmetry problem in 2D and 3D. From mechanics, it is known thét,sfa plane of reflective
symmetry of the 3D rigid body, then a principal component of the body is orthogol tdere we extend
that result to any point set (continuous or discrete) in arbitrary dimension.

1 INTRODUCTION AND mate symmetry.

RELATED WORK Traditional approaches consider perfect symme-
try in discrete settings as a global feature. Some of
Symmetry is one of the most important features of these methods reduced the symmetry detection prob-
shapes and objects, which is proved to be a power-lem to a detection of symmetries in circular strings
ful concept in solving problems in many areas includ- (Atallah, 1985; Wolter et al., 1985; Highnam, 1986;
ing detection, recognition, classification, reconstruc- Zhang and Huebner, 2002), for which efficient so-
tion and matching of different geometrics shapes, aslutions are known (Knuth et al., 1977). Other effi-
well as compression of their representations. In gen- cient algorithms based on the octree representation
eral, symmetry in Euclidean space can be defined in (Minovic et al., 1993), the extended Gaussian im-
terms of three transformations: translation, rotation age (Sun and Sherrah, 1997) or the singular value
and reflection. A subse® of RY is approximately ~ decomposition of the points of the model (Shah and
symmetricwith respect to transformation T if for a Sorensen, 2005) also have been proposed. Further,
big enough subs&’ of P, thedistancebetweenrT (P') methods for describing local symmetries were devel-
andP' is less then small constanjtwhere the distance  oped. (Blum, 1967) proposed an algorithm based on
is measured using some appropriate metric, for exam-a medial axis transform. An algorithm presented in
ple Hausdorff, RMS (root mean squarey bottleneck (Thrun and Wegbreit, 2005) detects perfect symme-
distance measureas most commonly used metrics. tries in range images, exploiting taxonomy of differ-
If P =P ande =0, thenT(P) =P, and we say that ent types of symmetries and relations between them,
P is perfectly symmetriovith respect toT. In this by explicitly searching an increasing sets of points.
paper we are interested in both approximate and per-A very recent approach, based on generalized mo-
fect symmetry in terms of transformation of reflection ment functions and their spherical harmonics repre-
through a hyperplane. sentation, was introduced by (Martinet et al., 2006).
In what follows, we briefly survey the most rel- However, since the above mentioned methods con-
evant existing algorithms and techniques, we are sider only perfect symmetries, they may be inaccu-

aware of, for identifying both perfect and approxi- rate in detection the symmetry for shapes with added
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noise or missing data. case when the objects are represented as 3D binary
arrays, but a formal proof is missing in their paper
(Banerjee et al., 1994).

The rest of the paper is organized as follows: In
Section 2 we present the algorithm based on geomet-
fined as minimum mean squared distance required to'lC hashing for computing a reflectional symmetry of
transform a shape into a symmetric shape (Zabrodsky@ POint set with approximate symmetry. The behavior
et al., 1993; Zabrodsky et al., 1995). A method of of the algorithm in the 2D case is estimated by prob-
detecting a line of approximate symmetry of 2D im- abilistic analysis and evaluated on real and synthetic
ages considering only the boundary of the image, us- data. In Section 3, we give a proof of the relat|on_ be_-
ing a hierarchy of certain directional codes, was pre- WWeen the perfect reflective symmetry and the princi-

sented in (Parui and Majumder, 1983). Marola in- pal components ofgeometric_:al _objectsin arbitrary di-
troduced a measure of reflective symmetry with re- mensions. Conclusions and indications of future work

spect to a given axis where global reflective symmetry 7€ given in Section 4.
is found by roughly estimating the axis location and
then fine tuning the location by minimizing the sym-

metry measure (Marola, 1989). Kazhdan et al. intro- 2 DETECTION OF REFLECTIVE
duced thesymmetry descriptors collection of spher- SYMMETRY: GEOMETRIC

ical functions that describe the measure of a model

symmetry with respect to every axis passing through HASHING APPROACH

the center of gravity (Kazhdan et al., 2003; Kazhdan

et al., 2004). Very recently, Podolak et al. proposed Geometric hashing is a recognition technique based
theplanar reflective symmetry transformhich mea- on matching of transformation-invariant object repre-
sures the symmetry of an object with respect to all sentations stored in a hash table (Wolfson and Rigout-
planes passing through its bounding volume (Podolak sos, 1997; Alt and Guibas, 1999). Here, we assume
et al., 2006). A method of detecting planes of reflec- that the given point sé& C RY is approximately sym-
tive symmetry, by exploiting the topological config- metric, and our goal is to compute the hyperplane of
uration of the edges of a 2D sketch of a 3D objects, symmetryHsym with a geometric hashing technique.
was developed by (Zou and Lee, 2005). Mitra et al. More precisely, hashing is utilized to compute the
proposed a method of finding partial and approximate normal vector ofHsym Additionally, one could use
symmetry in 3D objects (Mitra et al., 2006). Their ap- the fact that the center of gravity &flies onHsymin
proach relies on matching geometry signatures (basedthe case wheR has a perfect symmetry, or with high
on the concept of normal cycles) that are used to ac- probability near tddsymin the case wheR is approx-
cumulate evidence for symmetries in an appropriate imately symmetric. However, to be on the safe side,
transformation space. if some outliers cause that the center of gravity is far
from Hsym we can apply a second phase of geometric
hashing to compute a point dym

As a result to this challenge, several algorithms
for measuring imperfect symmetries have been de-
veloped. For example, Zabrodsky et al. proposed
an algorithm based on measure of symmetryle-

Till now, most of the research was dedicated to
investigation of symmetry in 2D and 3D. Here, we y . .
consider two approaches which lead to algorithms in W‘? start fro.m the hypoth.e3|s thf"‘t each point pair
arbitrary dimension. The contribution of this work is (P;d) is & candidate for a pair of points that are sym-
two-fold. First, we propose a novel algorithm, based Metric with respect tdsym Without loss of gener-
on geometric hashing, for computing the reflectional ality, we assume thaF the first _coordlnatep_)i‘s less
symmetry of point sets with approximate symmetry in than or equal to the first coordinate @fIf pis sym-
arbitrary dimension. Second, we give a proof of the Metric tog, the vectorpq is orthogonal tdHsym We
relation between the perfect reflective symmetry and note that this vector is characterized uniquely by the
the principal components of discrete or continuous {uple of anglegaz, as,...,aq) wherea; is the angle
geometrical objects in arbitrary dimensions. The rela- betweenpg and the-th vector of the standard base of
tion, in the case when rigid objects in 3D are consid- RY.
ered, is known from mechanics and is established by ~ Since we assume at least a weak form of sym-
analyzing a moment of inertia (Symon, 1971). With- metry, we can expect that the number of point pairs
out rigorous proof for other cases than 3D rigid ob- (approximately) symmetric regardirtdsym is bigger
jects, this result was a base as a heuristic in severalthan the number of point pairs (approximately) sym-
symmetry detection algorithms (Minovic et al., 1993; metric regarding any other hyperplaHe For exam-
O’Mara and Owens, 1996; Sun and Sherrah, 1997). ple, if we have a perfect symmetric point set with
Banerjee et al. also tackle this relation in 3D, in the points, then we havé point pairs perfectly symmet-



ric regardingHsym In contrast to that, the hyperplanes
corresponding to remainin(j;) — 3 point pairs are

randomly distributed. See Fig. 1 for illustration in
R?. “

increasing the score of

|
l
|
| v by the shaded area
|
|
|

Vopp

Figure 2: Updating the score for the angle vectoe=
(0g,02).

To explain this idea more precisely, we introduce
Figure 1: The anglex betweeny-axis and the line seg- SOme more notations. L&be a grid cell, and a grid
mentsﬂ and%, formed by symmetric points, occurs vertex incident WItI"Q Among the vertices incident
two times. All other angles occurs only once. with Q, there is exactly one, called the opposite ver-
tex Vopp, that differs in alld — 1 coordinates fronv.
If @ = (0g,0s,---,04) is a vote forQ (i.e., a pointin
Q) we denote byQ(d,v) the (axis-parallel) subcube
of Q spanned by the pointsandv. Itis clear that the
closerd is tov the larger is the volume d@®(d, Vopp).

In the standard approach of geometric hashing
a numberK € N is fixed and the interval0, ] is
subdivided intoK subintervals of equal length/K.
Then, the hash function maps a tuple of angles Thus, the unit score ofi will be distributed to all
(Ghz,ag, s ,aq)dto a EUPIthf !ngegerﬁaihas, . b’a‘:) | vertices incident withQ such that each vertexgets
\c/:vori;?n?nag%r?i.e?no es the index of the subinterva the sco_revc_)I(Qs(a),vopp)/voI(Q). dS_ele Figure 2 for

illustration inR>. We remark thakK®~* counters suf-

ai-K fice for (K + 1)"*1 grid vertices because the scoring

m o scheme must be treated as cyclic structure in the sense
h that any vertex of the fornB,,...,1,...,Bq) is iden-
tified with (11— B,...,0,..., 71— Bq).

Equivalently one can describe this approach wit
a so-called voting scheme by subdividing the cube
(0,991 into a grid with K4~ cells. Each cell is
equipped with a counter, collecting votes of all point Outline of the algorithm.
pairs whichs angle tuple is contained in the cell. In the
end one has to search for the cell with the maximum
number of votes. However, this simple idea has some
drawbacks related to the choicetof SinceKd1is a
lower bound for both, time and storage complexity of
the algorithm K should not be too large. Moreover,
if K is large, the noise might cause that the peak of
votes is distributed over a larger cluster of cells. On
the other side, iK is small, the preciseness of the re-
sult is not satisfactory. 2. Install a voting scheme &9~ counters and set

We overcome these problems generalizing anidea  all counters to 0.
from (PleiBner et al., 1999) that combines a rather
coarse grid structure with a quite precise information
about the normal yerior. 1o this end, we use coun- ticesv incident withQ, add to the counter ofthe
ters for the grid’s vertices instead of counters for the votevol(Q(d), Vopp)/vol(Q)
grid’s cells. Any vote(as,as,...,0q) for a grid cell »ropp '
(az,...,aq) will be distributed to the incident vertices 4. Search for the vertex = vnax With the largest
of the cell such that vertices close (o, as,...,0q) scorew. Compute the angle tuple of the approxi-
get a larger portion of the vote than more distant ver- mate normal vector dflsymas the weighted center
tices. of gravity of v and its neighboring vertices with

Input: A set ofn pointsP € RY,d > 2, with approxi-
mate symmetry.
Output: An approximation oHsym

1. Let X be the set of all point pairép,q) from P
such that the first coordinate @fis less than or
equal to the first coordinate @f. Compute for
each pair the angle tupte= (ay,...,0q).

3. For each(p,q) € X with @ = (ag,...,0q) deter-
mine the corresponding grid cel). For all ver-



the following formula:
d d oy
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where vi",vi ;2 < i < d, denote the neighbor-
ing vertices ofv, andw;",w; their corresponding
scores. Lefi be a normal vector iiRY correspond-
ing to the angle tuplé.

5. Approximate a point oHsym selecting all pairs
(p,q) € X that vote forvmax (i.€., d isin a cell in-
cident withvmay). For each selected pair project Figure 3: Point set generation.
the centerc = (p+)/2 onto the line spanned
by the normal vectori and store the position of
the projected point on that line in a 1-dimensional
scoring scheme. Use the maximal score to extrap-
olate the location of a point oHsym analogously
asin 4.

a probabilistic analysis of the reliability of the algo-
rithm.

The model incorporates the following two aspects
of an approximately symmetric point get First, for
o the majority of the pointp € P there is a counter-
Taking into account that we can keep the parameter part i that is located close to the symmetric position
K small, the crucial step of the algorithm is the third ¢ p, where the symmetry, with out loss of generality,
one, because it requires the processin@@F) point s defined with respect to theaxis. Second, there
pairs. However, i_t is possible to reduce this_effort un- is a smaller subset of points Pwithout symmetric
der the assumption that the center of grawit®) is  counterpart. To obtain such a point set, we apply the
close toHsym This holds whenever the points without - fg|lowing procedure (see Fig. 3 for illustration). In
symmetric counterpart are distributed regularly in the {he upper half of the unit baB*, we uniformly gen-
sense that their center of gravity is close to the center arate a random point sBt with n points. In the lower
of gravity of the symmetric point set. In this case it pa1f B~ we reflect the point s&* over thex-axis and
is sufficient to consider votes of paifp,q) of points  perturb it randomly. So, we obtain the set of points
with nearly equal distances &9P). If disaboundfor - _ {(x£8,,—y£8,) | (x,y) € P*}, where By, 3,)
both, the distance af(P) to Hsym and the distortion is random point from the baB((0,0),€). Addition-
of the symmetric counterpart of a point with respect ally, we generate a random point gétin B, with
t0 Hsym the first step of the algorithm can be replaced 1, hgints, which do not have symmetric counterpart.

as follows: Point setM represents an additional noise in the form
e Compute the center of gravig(P). of missing/extra points in the input data set.
e Order the points oP with respect to the distance =~ Most pairs of symmetric points span a line that
to c(P). is nearly parallel to thg-axis. A vote of such pair

will be called agoodvote. Nevertheless, for points
pt € Pt that are close to the-axis the perturbation
of p~ might cause a bigger angte between they-
dist(p;,c(P)) < dist(q,c(P)) + 25 and form X axis anq the Ii.ne spanned lpy andp™. A vote from .
from the pairs{q, pc}, i <K < j. suph point pairs, as well as votes from nonsymmetric

’ ... A ) point pairs, will be calledbad Thus, we introduce a
Altho_ugh this modlflcat|c_>n does not improve the run parameted > 0 defining a stripe of width R along
time in the worst case, it effects a remarkable speedne x.axis such that all symmetric point pairs without
up of the algorithm for real world data. this stripe have good votes.

A . . Our goal is to derive an upper bound forthat

2.1 Probabilistic Analysisand Evaluation makes almost sure, that the given symmetry line cor-
of the Algorithm in 2D Case responds to a maximal peak in the scoring scheme.

We first estimate the width of the interval collecting

The 2D version of the algorithm has been imple- the votes of the majority of the correct point pairs re-
mented and tested on real and synthetic data. Thegarding to the symmetry line. On the other side, we

generation of the synthetic data is based on a prob-will show that the probability, that another interval of
abilistic model, which additionally can be used for the the same width would collect the same order of

e For all points g € P find the first point p
and the last pointp; in the ordered list
such thatdist(p;,c(P)) > dist(g,c(P)) — 26 and



Table 1: Empirical probability of finding correct line of reflective symmdor different values of the "noise” parameters

andk.
k\ €| 0.01]| 0.005| 0.004 | 0.003| 0.002 | 0.001| 0.0
0.9 0.90| 092 | 093 | 094 | 0.94 | 0.95 | 0.95
0.8 091]| 093 | 094 | 095 | 0.95 | 0.96 | 0.96
0.7 091] 093 | 094 | 094 | 0.95 | 0.96 | 0.97
0.6 0.94| 093 | 096 | 0.96 | 0.97 | 0.99 | 0.99
0.5 0.96| 0.99 | 0.96 | 0.99 1.0 1.0 1.0
0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

votes, is very small for bounded

i.e., Xg doesn't count any good vote. The expectation

Since the scoring scheme is a cyclic structure, it of X3 is
also makes sense to speak about negative angles: es-

pecially, anglesx € (3, 1) will be identified with the
negative anglea — e (—7,0). According to Fig. 3,
for a symmetric point pair outside thestripe we have
the following bound on the angte which defines the
vote of the pair: s < £, or [a| < arcsing;. Since
arcsw < "8 < 5[28)\ we have

T
”ﬁ San @)
We sety(e,A) := 7% and introduce for any ang[ethe
random variablé/g counting all votes of the random
point setP that fall into the interval3 — y(e,A),B +
y(&, ).

Let A; = 1t/2 denote the area of the upper half
of the unit ball andA, = 2\ denote the area of
the rectangle over the horizontal diameter of the
unit ball with heightA. Thus, the probability that
a point p € PT generates a good pair is at least
q=22 — (1-%). SinceVy is at least the surs
of nindependent variables

=

|| < arcsi

1 with probabilityq;
0 with probability 1— q,

we have
E(Mo) > E(S) =nq, (2)
and
PrMo <t] < Pr[S<t],t >0. (3)
Combining (3) with the Chernoff inequality

PriS<E[g—t] <eZ*/" for t = E[§/2 = ng/2,
we obtain the following est|mat|on

Pr(Vo < ng/2) < e "2, (4)
2n4+m

LetN < (“;™) be the number of points pairs with bad
votes, and consider an angiewhere|B| > 2y(g,A),

G 2Y(EAN) €
E(XB)—NiT[ _Nﬂ' (5)
Applying the Markov inequalityPr[Xg > t] < w
fort = ng/2, we obtain
PriXg > ng/2] < (6)

_)\qn

We would like to note that in the case X, we can-
not apply any of the Chernoff’s inequalities, which in
general give better bounds than the Markov inequal-
ity, becauseXs is not a sum of independent random
variables.

Now, we come to the ultimate goal of this analysis
- to estimatéPr[Vz > Vo] and to study when it is small,
i.e., when the algorithm gives a correct answer with
high probability. From

Pr[Vg > Vo] <PrVg > t]+PrlVo <t[,t >0, (7)
(4) and (6), we obtain
Ne
q n/2
PriVg >Vo] <€~ )\nq' (8)

The first term of the right side of (8) is signifi-
cantly smaller then the second term. This can be ex-
plained by the fact that the first term was obtained by
the Chernoff inequality, and the second term by the
weaker Markov inequality. However, fer=o(%) the
second term will be also small, and then the algorithm
will work well with high probability.

As described above, we randomly generated 100
point sets with same parameterandk, wherek is
the ratio between the number of additional points and
the number of good point pairk & m/n). Table 1
shows the empirical probability of finding the correct
angle of the symmetry line. We present here only



those combination of andk for which the empiri-
cal probability was at least.®. The results indicate
that the algorithms is less sensitive to noise, due to
missing/extra data, then to noise that comes from im-
perfect symmetry of the points. This conclusion is
consistent with the theoretical analysis we have ob-
tained. Namelyg andN occur at the same place in
the last term of the relation (8). The number of addi-
tional pointsm occurs in the relation (8) through.
The other variable which determindsis n, and its
contribution to the value d¥ is bigger than that af.

Therefore m has smaller influence to the expression Figyre 4: Left side: illustrations of dlfferent types of cope-
thane. pods. Right side: a pore pattern of a copepod.

We tested the algorithm also on real data sets. The
tests were performed on pore patterns of copepods - a
group of small crustaceans found in the sea and nearlyynit vectorv € RY, thevariance of P in direction Vs
every freshwater habitat (see Fig. 4). The pores in a
pattern were detected as points by the method based
on a combination of hierarchical watershed transfor-
mation and feature extraction methods presented in

m

;_Zlm —c,v)2.

var(Pv) =

9

(Pleil3ner et al., 1999). The algorithm successfully de-

tected the symmetry line because the extracted point

sets have relatively good reflective symmetry, and ma-
jority of the points (around 90%) have a symmetric
counterpart.

3 DETECTION OF REFLECTIVE
SYMMETRY: PCA APPROACH

Another approach for an efficient detection of the
hyperplane of perfect reflective symmetry in arbi-
trary dimension is that based on principal component
analysis (Jolliffe, 2002). To the best of our knowl-

edge, this approach was used as heuristic without rig-

orous proof (also confirmed in communication with

other researchers in this area (O’Mara and Owens,

2005)). A relation between the principal components
and symmetry of an object, in the case of rigid ob-
jects in 3D, was establish in mechanics by analyzing
a moment of inertia (Symon, 1971). This result, in
the context of detecting the symmetry, was first ex-
ploit by (Minovic et al., 1993). Here we extend that
result to any set of points (continuous or discrete) in
arbitrary dimension. The central idea and motivation
of PCA (also known as the Karhunen-Loeve trans-
form, or the Hotelling transform) is to reduce the di-
mensionality of a data set by identifyiige most sig-
nificant directions (principal components) et P =
{p1, P2;---, Pm}, Wherep; is ad-dimensional vector,
andc = (c1,Cp,...,C4) € RY be the center of gravity
of P. For 1<k <d, we usepjk to denote thek-th
coordinate of the vectagp;. Given two vectorss and

v, we use(u,V) to denote their inner product. For any

The most significant direction corresponds to the unit
vectorv; such thatvar(P,v;) is maximum. In gen-
eral, after identifying thg most significant directions
Bj = {vi,V2,...,v;}, the (j + 1)-th most significant
direction corresponds to the unit vectgr ; such that
var(P,vj4+1) is maximum among all unit vectors per-
pendicular to/g,va, ..., Vj.

It can be verified that for any unit vectere RY,

(Cuv), (10)

whereC is thecovariance matriof P. C is a symmet-
ric d x d matrix where théj-th componentCij,1 <
i,j <d, is defined as

var(Pv) =

G :agl(pik—ci)(pjk_cj)- (11)
The procedure of finding the most significant di-
rections, in the sense mentioned above, can be formu-

lated as an eigenvalue problemAlf> Ao > --- > Ag

are the eigenvalues @, then the unit eigenvectos

for Aj is the j-th most significant direction. Al\;s

are non-negative anklj = var(P,v;). Since the ma-
trix C is symmetric positive definite, its eigenvectors
are orthogonal. If the eigenvalues are not distinct, the
eigenvectors are not unique. In this case, an orthog-
onal basis of eigenvectors is chosen arbitrary. How-
ever, we can achieve distinct eigenvalues by a slight
perturbation of the point set.

In the case wherP is a continuous set ofl-
dimensional vectors, all above expressions have anal-
ogons defined in terms of integrals instead of finite
sums. Due to the space limitation, we omit them here.

Now, we prove the following connection between
hyperplane reflective symmetry and principal compo-
nents.



Theorem 3.1 Let P be a d-dimensional point set
symmetric with respect to a hyperplanggdand as-
sume that the covariance matrix C has d different
eigenvalues. Then, a principal component of P is or-
thogonal to Hym

Proof. Without loss of generality, we can assume that
the hyperplane of symmetry is spanned by thedast

1 standard base vectors of tdedimensional space
and the center of gravity of the point set coincides
with the origin of thed-dimensional space, i.ec,=
(0,0,...,0). Then, the componen€;; andCj; are 0

for 2 < j <d, and the covariance matrix has the form:

Cu O 0
0 Cx» Cod
C= . . ) (12)
0 Cg Cudd
Its characteristic polynomial is
det(C—Al)=(Ciz—AN)f(A), (13)

wheref(A) is a polynomial of degred — 1, with co-
efficients determined by the elements of fde- 1) x
(d— 1) submatrix ofC. From this it follows thatC;;

is a solution of the characteristic equation, i.e., itis an
eigenvalue ofC and the vector (1, 0, ...,0) is its cor-
responding eigenvector (principal component), which

is orthogonal to the assumed hyperplane of symmetry.

O

As an immediate consequence of Theorem 3.1 we

have:

Corollary 3.2 Let P be a perfectly symmetric point
set in arbitrary dimension. Then, any hyperplane of
reflective symmetry is spanned by n-1 principal axes
of P.

The corollary implies a straightforward algorithm for
finding the hyperplane of reflective symmetry of a
point set in arbitrary dimension.

Outline of thealgorithm.

Input: A set ofn pointsP € RY,d > 2, with approxi-
mate symmetry.
Output: An approximation oHsym

1.
2.

Compute the covariance matfixof P.

Compute the eigenvectors ©fand the candidate
hyperplanes of reflective symmetry.

Reflect the points through every candidate hyper-
plane.

. Find if each reflected point is enough close to a
point in P. The correspondence between reflected
points and points i is bijection.

The first and third step of the algorithm have linear
time complexity in the number of points. Computa-
tion of the eigenvectors, whehis not very large, can

be done irD(d®) time, for example with Jacobi @R
method (Press et al., 1995). Computing the candidate
hyperplanes can be done@td). Therefore, for fixed

d, the time complexity of the second step is constant.
For very larged, the problem of computing eigenval-
ues is non-trivial. In practice, the above mentioned
methods for computing eigenvalues converge rapidly.
In theory, it is unclear how to bound the running time
combinatorially and how to compute the eigenvalues
in decreasing order. In (Cheng et al., 2005) a mod-
ification of thePower methodqParlett, 1998) is pre-
sented, which can give a guaranteed approximation
of the eigenvalues with high probability. However,
for reasonable bigl the most expensive step is the
forth one. Here we can apply an algorithm for nearest
neighbor search, for example the algorithm based on
Voronoi diagram, which together with preprocessing

has run time complexit@(nlogn), d = 2, oro(n%1),

d > 3. If we consider point sets with perfect symme-
try, then in the 4-th step, it suffices to check if the
reflection of a point oP is identical with other point

of P. For this, we will need to sort the points lexi-
cographically, and since this is computationally most
expensive part in the whole algorithm, it follows that
the above algorithm in the case of detecting perfect
symmetry has time complexi®(nlogn) in arbitrary
dimension.

In what follows, we discuss two problems that
may arise in theory, but are relatively uncommon in
practice. The first one considers the case when the
eigenvalues are not distinct, and the other the case
when one or more variables are zero.

Equality of eigenvalues, and hence equality of
variances of PCs, will occur for certain patterned ma-
trices. The effect of this occurrence is that for a group
of g equal eigenvalues, the correspondimgigen-
vectors span a certain uniquedimensional space,
but, within this space, they are, apart from being or-
thogonal to one another, arbitrary. In the context of
our problem, it means that thddimensional point
set will have exactlyd candidates as hyperplanes of
symmetry only when the eigenvalues of the covari-
ance matrix are distinct. For example, if we have 3-
dimensional point set, then if exactly 2 eigenvalues
of the covariance matrix are equal, than the point set
might has rotational and reflective symmetry. If the
all 3 are equal, the point set might have any type of
symmetry, including spherical symmetry. To justify
this geometrically, we can imagine what happens to
the covariance ellipsoid in this cases. For example,
in the case when all 3 eigenvalues are equal it be-
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