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Abstract: We present an approach for tracking human body parts with prelearned motion models in 3D using multiple 
cameras.  We use an annealed particle filter to track the body parts and a Gaussian Process Dynamical 
Model in order to reduce the dimensionality of the problem, increase the tracker's stability and learn the 
motion models. We also present an improvement for the weighting function that helps to its use in occluded 
scenes. We compare our results to the results achieved by a regular annealed particle filter based tracker and 
show that our algorithm can track well even for low frame rate sequences. 

1 INTRODUCTION 

This paper presents an approach to 3D people 
tracking that enables reduction in the complexity of 
this model. We propose a novel algorithm, Gaussian 
Process Annealed Particle Filter (GPAPF). In this 
algorithm we use nonlinear dimensionality reduction 
with the help a Gaussian Process Dynamical Model 
(GPDM), (Lawrence (2004), Wang et al. (2005)), 
and an annealed particle filter proposed by 
Deutscher and Reid (2004). The annealed particle 
filter has good performance when working on videos 
which were shot with a high frame rate (60 fps, as 
reported by Balan et al. (2005)), but performance 
drops when the frame rate is lower (30fps).  We 
show that our approach provides good results even 
for the low frame rate (30fps). An additional 
advantage of our tracking algorithm is the capability 
to recover after temporal loss of the target. 

2 RELATED WORKS 

One of the common approaches for tracking is using 
a Particle Filtering. Particle Filtering uses multiple 
predictions, obtained by drawing samples of the 
pose and location prior and then propagating them 
using the dynamic model, which are refined by 
comparing them with the local image data (the 
likelihood) (see, for example Isard (1998) or Bregler 
et al. (1998)). The prior is typically quite diffused 
(because motion can be fast) but the likelihood 

function may be very peaky, containing multiple 
local maxima which are hard to account for in detail. 
For example, if an arm swings past an “arm-like” 
pole, the correct local maximum must be found to 
prevent the track from drifting  (Sidenbladh  (2000)). 
Annealed particle filter (Deutscher and Reid (2004)) 
or local searches are ways to attack this difficulty.  

There exist several possible strategies for 
reducing the dimensionality of the configuration 
space. Firstly it is possible to restrict the range of 
movement of the subject. This approach has been 
pursued by Rohr et al. (1997). The assumption is 
that the subject is performing a specific action. 
Agarwal et al. (2004) assume a constant angle of 
view of the subject. Because of the restricting 
assumptions the resulting trackers are not capable of 
tracking general human poses. 

Another way to cope with high-dimensional data 
is to learn low-dimensional latent variable models. 
Urtasun et al. (2006) uses a form of probabilistic 
dimensionality reduction by Gaussian Process 
Dynamical Model (GPDM) (Lawrence (2004), and 
Wang et al. (2005)) formulate the tracking as a 
nonlinear least-squares optimization problem.  

Our approach is similar in spirit to the one 
proposed by Urtasun et al. (2006), but we perform a 
two stage process. The first stage is annealed particle 
filtering in a latent space of low dimension. The 
particles obtained after this step are transformed into 
the data space by GPDM mapping. The second stage 
is annealed particle filtering with these particles in 
the data space.  
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The article is organized as follows. In Section 3 
and Section 4 we give short descriptions of particle 
filtering and Gaussian fields. In Section 5, we 
describe our algorithm. Section 6 contains our 
results. The conclusions are in Section 7. 

3 FILTERING 

The particle filter algorithm was developed for 
tracking objects, using the Bayesian inference 
framework. Let us denote nx  as a hidden state 

vector and ny  as a measurement in time n . The 
algorithm builds an approximation of maximum a 
posterior estimate of the filtering distribution: 

( )n 1:np x |y  where ( )1:n 1 ny y ,...,y  is the 
history of the observation. This distribution is 

represented by a set of pairs ( ) ( ){ } pNi i
n n i=1

x ,π , 

where ( ) ( )( )i i
n n nπ p y |x∝ . The main problem is that 

the distribution ( )n np y |x  may be very picky. 

Often a weighting function ( )nw y ,x  can be 
constructed in a way that it provides a good 
approximation of ( )n np y |x , and is also easy to 
calculate. The main idea in the annealed particle 
filter is to use a set of weighting functions instead of 

using a single one. A series of ( ){ }M
n n n=0

w y ,x is 

used, where ( )n+1 nw y ,x  represents a smoothed 

version of ( )n nw y ,x . The usual method to 

achieve this is by using ( ) ( ) nβ
n n 0 nw y ,x =w y ,x , 

where ( )0 nw y ,x  is equal to the original weighting 

function and 0 M1=β >...>β . Therefore, each 
iteration of the annealed particle filter algorithm 
consists of M steps, in each of these the appropriate 
weighting function is used and a set of pairs is 

constructed ( ) ( ){ } pNi i
n,m n,m i=1

x ,π . For details see 

Deutscher et al.  (2004) and Raskin et. al (2007). 

4 GAUSSIAN FIELDS 

The Gaussian Process Dynamical Model (GPDM) 
represents a mapping from the latent space to the 
data: ( )y=f x , where d∈x  denotes  a vector in 

a d-dimensional latent space and D∈y is a vector 
that represents the corresponding data in a D-
dimensional space. Gaussian processes stem from 
Bayesian formulation, in which the GPDM is 
obtained by marginalizing out the parameters and 
optimizing the latent coordinates  x  of the trained 
data y . The model that is used to derive the GPDM 
is a mapping with first-order Markov Dynamics:  

( )

( )

x = a φ x + nt x ,ti i t-1i

y = b ψ x + nt y ,tj j tj

∑

∑

 

 
(1) 

where x,tn  and y,tn  are zero-mean Gaussian noise 

processes, [ ]1 2A= a ,a ,... and [ ]1 2B= b ,b ,... are 

weights and iφ  and jψ  are basis functions. 

 For the Bayesian perspective A  and B  should 
be marginalized out through model average with an 
isotropic Gaussian prior on B in closed form to 
yield: 

( )
( )

( )( )
NW -1 2 T1p Y|X,β = exp - tr K YW Yy2DND2π Ky

 

 
(2) 

where Y is a matrix of training vectors, X  contains 
corresponding latent vectors and yK is the kernel 
matrix: 

( )
δx ,x2β i j2K =β exp(- x -x )+y 1 i j2 βi,j 3

 
 
(3) 

W is a scaling diagonal matrix. It is used to account 
for the different variances in different data elements. 
The hyper parameter 1β  represents the scale of the 

output function, 2β  represents the inverse of the 

RBF's and -1
3β represents the variance of y,tn . 

 For the dynamic mapping of the latent 
coordinates X  the joint probability density over the 
latent coordinate system and the dynamics weights 
A are formed with an isotropic Gaussian prior over 
the A , it can be shown (see Wang et al. (2005)) that 
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( ) ( )
( )( )

( )( )p x1 -1 T1p X|α = exp - tr K X Xx out out2dN-1 d2π Kx

 

 
(4) 

where [ ]2 ,..., T
out NX x x= , xK  is a kernel 

constructed from [ ]T1 N-1x ,...,x  and 1x has an 
isotropic Gaussian prior. GPDM uses a 
"linear+RBF" kernel with parameter iα :   

( )
δ2 x ,xα i jT2K =α exp(- x -x )+α x x +1 2 i jx i j2 αi,j 4

 

 
(5) 

Following Wang et al. (2005) 

( ) ( ) ( ) ( ) ( )p X,α,β|Y p Y|X,β p X|α p α p β∝  
 
(6) 

The latent positions and hyper parameters are found 
by maximizing this distribution or minimizing the 
negative log posterior: 

( )

( )

d 1 -1 TΛ= ln K + tr K X X + lnαx X out out i2 2 i
D 1 -1 2 T-Nln W + ln K + tr K YW X + lnβy Y j2 2 j

∑

∑
 

 
 
(7) 

5 GPAPF FILTERING 

5.1 The Model 

In our work we use a model similar to the one 
proposed by Deutscher et al (2004) with some 
differences in the annealed schedule and weighting 
function. The body model is defined by a pair 

{ }M= L,Γ , where L are the limbs lengths and 

Γ are the angles between limbs and the global 
location of the body in 3D. The limbs parameters are 
constant, and represent the actual size of the tracked 
person. The angles represent the body pose and, 
therefore, are dynamic. The state is a vector of 
dimensionality 29: 3 DoF for the global 3D location, 
3 DoF for the global rotation, 4 DoF for each leg, 4 
DoF for the torso, 4 DoF for each arm and 3 DoF for 
the head. The whole tracking process estimates the 
angles in such a way that the resulting body pose 
will match the actual pose. This is done by 
minimizing the weighting function which is 
explained next. 

5.2 The Weighting Function 

In order to evaluate how well the body pose matches 
the actual pose using the particle filter tracker we 
have to define a weighting function ( )w ,ZΓ , 
where Γ is the model's configuration (i.e. angles) 
and Z  stands for visual content (the captured 
images). Our function is based on a function 
suggested by Deutscher et al (2004) with some 
changes made to it. We have experimented with 3 
different features: edges, silhouette and foreground 
histogram. The first feature is the edges. As 
Deutscher proposes this feature is the most 
important one, and provides a good outline for 
visible parts, such as arms and legs. The other 
important property of this feature is that it is 
invariant to the colour and lighting condition. The 
edges maps, in which each pixel is assigned a value 
dependent on its proximity to an edge, are calculated 
for each image plane. Each part is projected on the 
image plane and samples of the eN  hypothesized 
edge are drawn. A squared probability function is 
calculated for these samples: 

( ) ( )( )e

e cv

N Ncv 2e e1 1Ρ ,Z = 1-p ,ZN N j ii=1 j=1
∑Γ Γ∑  

 
(8) 

where  cvN is a number of camera views, iZ  is 

the i -th image . The ( )e
j ip ,ZΓ are the edge maps. 

However, the problem that occurs using this feature 
is that the occluded body parts will produce no 
edges. Even the visible parts, such as the arms, may 
not produce the edges, because of the colour 
similarity between the part and the body. This will 
cause ( )e

j ip ,ZΓ  to be close to zero and thus will 
increase the weighting function. Therefore, a good 
pose which may match the visual context may 
results in a high value of weighting function and 
may be omitted. In order to overcome this problem 
we calculate a weight for each image plane. For each 
sample point on the edge we estimate the probability 
of the point being covered by another body part. Let 

iN  be the number of hypothesized edges that are 

drawn for the part i . The total number of drawn 

sample points can be calculated using 
bpN

e i
i=1

N = N∑ . 

The weight of the part for the j -th image plane can 
be calculated as following: 

( ) ( )
NN Ncvi ifg fgw( ,Z )= p ,Z / p ,Zi j i j i jk kk=1 j=1 k=1

∑ ∑Γ Γ Γ∑  
 
(9) 
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where iΓ  is the model configuration for part i , jZ  

is the j-th image plane and ( )fg
k i jp ,ZΓ  is the 

probability that the k -th sample is covered by 
another body part. The weighting function therefore 
has the following form: 

( )( )

( ) ( )e cv

N 2i eΡ ,Z = 1-p ,Zbp cv k bp cvk=1
NN bpcve 1 1Ρ ,Z = w( ,Z )Ρ ,ZN N j i j ii=1 j=1

⎛ ⎞ ∑Γ Γ⎜ ⎟
⎝ ⎠

∑Γ Γ Γ∑
 

 
 
(10) 

The second feature is the silhouette obtained by 
subtracting the background from the image. The 
foreground pixel map is calculated for each image 
plane with background pixels set to 0 and 
foreground set to 1 and SSD is computed: 

( ) ( )e
N N 2cvfg fg1 1Ρ ,Z = 1-p ,ZN N iji=1 j=1

⎛ ⎞∑Γ Γ∑ ⎜ ⎟
⎝ ⎠e cv  

 
(11) 

where bpN is the number of different body parts in 

the model, ( )fg
j ip ,ZΓ is the value is the foreground 

pixel map values at the sample points. The third 
feature is the foreground histogram. The reference 
histogram is calculated for each body part. It can be 
a grey level histogram or three separated histograms 
for colour images. Then, on each frame a normalized 
histogram is calculated for a hypothesized body part 
location and is compared to the referenced one and 
the Bhattacharya distance is computed: 

( ) ( )

( ) ( )

hyprefP ,Z = p ,Z p ,Zk bp cv k bp cv bp cvk

NN bpcv binsh
Ρ ,Z = 1- P ,Zk bp cvi=1 j=1 k=1

⎛ ⎞
Γ Γ Γ⎜ ⎟
⎝ ⎠

⎛ ⎞
∑Γ Γ⎜ ⎟∑ ∑⎜ ⎟

⎝ ⎠

 

 
 
(12) 

where ( )orig
j ip ,ZΓ  is the value of bin j  in the 

reference histogram, and the ( )hyp
j ip ,ZΓ is the value 

of the same bin on the current frame using the 
hypothesized body part location. The main drawback 
of that feature is that it is sensitive to changes in the 
light condition and the texture of the tracked object. 
Therefore, the reference histogram has to be 
updated, using the weighted average from the recent 
history. 
In order to calculate the weighting function the 
features are combined together using the following 
formula: 

e fg h
w( ,Z)=exp(-(Ρ ( ,Z)+Ρ ( ,Z) +Ρ ( ,Z)))Γ Γ Γ Γ  

(13) 

As was stated above, the purpose of the tracker is to 
minimize the weighting function. 

5.3 GPAPF Learning 

The drawback in the particle filter tracker is that a 
high dimensionality of the state space causes an 
exponential increase in the number of particles that 
are needed to be generated in order to preserve the 
same density of particles. In our case, the dimension 
of the data is 29. In their work Balan et al. (2005) 
show that the annealed particle filter can track body 
parts with ~125 particles using 60 fps video input. 
However, using a significantly lower frame rate (15 
fps) causes the tracker to produce bad results and 
eventually to lose the target.  
The other problem is that once a target is lost (i.e. 
the body pose was wrongly estimated, which can 
happen for the fast and not smooth movements) it 
becomes highly unlikely that the next pose will be 
estimated correctly in the following frames. In order 
to reduce the dimension of the space we have used 
Gaussian Process Annealed Particle Filter (GPAPF). 
We use a set of poses in order to create a latent 
space with a low dimensionality. The poses are 
taken from different sequences, such as walking, 
running, punching and kicking. We divide our state 
into two independent parts. The first part contains 
the global 3D body rotation and translation, which is 
independent of the actual pose. The second part 
contains only information regarding the pose (26 
DoF). We use GPDM to reduce the dimensionality 
of the second part. This way we construct a latent 
space (Fig. 1). This space has a significantly lower 
dimensionality (for example 2 or 3 DoF).  Unlike 
Urtasun et al. (2006), whose latent state variables 
include translation and rotation information, our 
latent space includes solely pose information and is 
therefore rotation and translation invariant. The 
particles are drawn in the latent space. In order to 
calculate the weighting function we transform the 
data from the latent space to the data space and then 
calculate the weighting function as explained above. 
However, the latent space is not capable of 
producing all the poses; therefore we apply an 
additional iteration of the annealed tracker only for 
the data space in order to make fine adjustments. 
This final iteration is performed using a low 
covariance matrix, which is nearly invariant for all 
frames rates. 
The main difficulty in this approach is that the latent 
space is not uniformly distributed. Therefore we are 
using a dynamic model, as proposed by Wang et al. 
(2005), in order to achieve smoothed transitions 
between sequential poses in the latent space. 
However, as it is shown in Fig. 1, there are still 
some irregularities and discontinuities. Moreover, 
while in a regular space the change in the angles is 
independent on the actual angle value, in a latent 
space this is not the case. Each pose has a certain 
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probability to occur and thus the probability to be 
drawn as a hypothesis should be dependent on it. For 
each particle we can calculate an estimate of the 
variance that can be used for generation the new 
ones. In the left part of Fig. 1 the lighter pixels 
represent lower variance. 
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Figure 1: The latent space that is learned from different 
poses during the walking sequence. Left: the 2D space. 
Right: the 3D space. On the left image: the brighter pixels 
correspond to more precise mapping. 

  

  
Frame 137 Frame 141 

Figure 2: Losing and finding the tracked target despite the 
mis-tracking on the previous frame. Top: camera 1, 
Bottom: camera 4. 

Another advantage of this method is that the tracker 
is capable of recovering after several frames, from 
poor estimations. The reason for this is that particles 
generated in the latent space are representing valid 
poses more authentically. Furthermore because of its 
low dimensionality the latent space can be covered 
with a relatively small number of particles. 
Therefore, most of possible poses will be tested with 
emphasis on the pose that is close to the one that was 
retrieved in the previous frame. So if the pose was 
estimated correctly the tracker will be able to choose 
the most suitable one from the tested poses. 
However, if the pose on the previous frame was 
miscalculated the tracker will still consider the poses 
that are quite different. As these poses are expected 
to get higher value of the weighting function the 
next layers of the annealed will generate many 
particles using these different poses. In this way the 
pose is likely to be estimated correctly, despite the 
mis-tracking on the previous frame (see Fig. 2). 
An additional advantage of our approach is that the 
generated poses are, in most cases, natural. Poses 
generated by the Condensation algorithm or by 

annealed particle filtering, where the large variance 
in the data space, cause a generation of unnatural 
poses. The poses that are produced by the latent 
space that correspond to points with low variance 
are usually natural and therefore the effective 
number of the particles is higher, which enables 
more accurate tracking. The drawback of this 
approach is that it requires more calculation than the 
regular annealed particle filter. The additional 
calculations are the result of transformation from the 
latent space into the data space. 

6 RESULTS 

We have tested out algorithm on the sequences 
provided by L.Sigal, which are available at his site: 
http://www.cs.brown.edu/~ls/Software/index.html.   
The sequences contain different activities, such as 
walking, boxing etc. which were captured by 7 
cameras, however we have used only 4 inputs in our 
evaluation.  The sequences were captured using the 
MoCap system, that provides the correct 3D 
locations of the body parts for evaluation of the 
results and comparison to other tracking algorithms. 
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Figure 3: The errors of the annealed tracker (red crosses) 
and GPAPF tracker (blue circles) for a walking sequence 
captured at 30 fps. 

The first sequence that we have used was a walk 
on a circle. The video was captured at frame rate 120 
fps. We have tested the annealed particle filter based 
body tracker, implemented by A. Balan (Balan et al. 
(2005) ) , and compared the results with the ones 
produced by the GPAPF tracker (see Fig. 3 and 4). 
The error was calculated, based on comparison of 
the tracker's output and  the result of the MoCap 
system. In Fig. 3 we can see the error graphs, 
produced by GPAPF tracker (blue circles) and by 
the annealed particle filter (red crosses) for the 
walking sequence taken at 30 fps. As can be seen, 
the GPAPF tracker produces more accurate 
estimation of the body location. Same results were 
achieved for 15 fps. In Fig. 4 one can see the actual 
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Frame 73 Frame 117 Frame 153 Frame 197 

Figure 4: Visual comparison between annealed particle filter tracker and GPAPF tracker. Sample frames from the walking 
sequence. First row: GPAPF tracker, first camera. Second row: GPAPF tracker, second camera. Third row: annealed 
particle filter tracker, first camera. Forth row: annealed particle filter tracker, second camera. 

pose estimation for this sequence.  The estimation is 
projected to the first and second cameras. The first 2 
rows show the results of the GPAPF tracker. The 3rd 
and 4th rows show the results of the annealed particle 
filter. The second sequence was captured in our lab. 
On that sequence we have filmed similar behaviour, 
produced by a different actor. The frame rate was 15 
fps. The learning was done on the first sequence 
data.  The GPAPF tracker was able to track the 
person and produced results similar to the ones, 
which were produced for the original sequence. 

7 CONCLUSION AND FUTURE 
WORK 

We have presented an approach that uses GPDM in 
order to reduce the dimensionality and in this way to 
improve the ability of the annealed particle filter 
tracker to track the object even in a high dimensional 
space. We have also shown that using GPDM can 
increase the ability to recover from temporal target 
loss.  We have also presented a method to 
approximate the possibility of self occlusion and we 
have suggested a way to adjust the weighed function 
for such cases, in order to be able to produce more 
accurate evaluation of a pose. 

The main problem is that the training process is 
done for a specific action. The ability of the tracker 
to use this data to track an activity that is completely 
different from the one learned, has not been shown 
yet. The other challenging task is to track two or 
more people simultaneously. The main problem here 

is that in this case there is high possibility of 
occlusion. Furthermore, while for a single person 
each body part can be seen from at least one camera 
that is not the case for the crowded scenes. 
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