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Abstract: Novel tools for colour image processing are presented. Unlike many magnitudes dealt with in engineering, 
the hue variable of a colour image is circular and requires a special treatment. Special techniques have been 
advanced in statistics for the analysis of data from angular variables; likewise in image processing for the 
processing of the hue variable. We give a definition of the median and of the range of angular data and 
apply their running versions on images to smooth them and to detect hue edges. We also give definitions of 
hue morphology; one based on the topological concept of lifting and on grey level morphology; another 
definition is wholly given in a circular context.  

1 INTRODUCTION 

We consider a specific aspect of colour image 
processing, namely the processing of the H variable 
of the HVS colour system. The H variable is an 
angular variable, i.e. one that lives in the circle 
which is the one dimensional sphere S1, that we 
interpret as the one-point compactification of the 
interval (–π, π]. S1 is orientable; we assume that the 
orientation is positive when it is counterclockwise; 
in this sense, colours are positively sequenced as in 
red, orange, yellow, citrine, green, cyan, blue violet, 
red etc.; see Figure 1. Unless otherwise stated, in the 
examples, we assume V = S = 0.8 (constant value 
and saturation). The tools given here can be 
combined with other tools that process the V and S 
variables. 

The elements of S1 cannot be linearly ordered in 
any way compatible with its topology; thus, a 
circular version of most statistics already defined for 
linearly ordered data is usually not obvious. A 
typical problem for the definition of location 
statistics is that for certain uniformly distributed 
samples it is best to leave them undefined; e.g. the 
average of a sample of equally spaced angles. Also, 
the problem of multiplicity is more ubiquitous than 
in the case of a linearly ordered range space (e.g., in 
the linearly ordered case, the median of an even 
sized sample). We consider four sample statistics: 

the circular average, a circular median, a circular 
range and the circular concentration, and their 
corresponding running versions.  

 Red=0

Yellow=0.5š

Green=š

Blue=-0.5š

 

 
Figure 1: The space S1 of hues. 

A 2D image (i.e. a 2D signal) h:A→B is a 
function whose domain set A is two dimensional; 
the image is discrete if A is countable, it is digital if 
its range set B is finite. In the case of discrete 
images, we use as domain set a product of integer 
intervals. An integer interval /n, m/ is the set of the 
integers less than or equal to m and larger than or 
equal to n. We concentrate here on images whose 
range set is S1; we call them hue images and picture 
them as computer images in the HSV colour system 
with S and V constant. The elements of the domain 
set are called pixels and the elements of the range set 
are the possible values of the pixels. 

Several proposals for doing hue mathematical 
morphology have been advanced e.g. (Peters II, 
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1997), (Comer and Delp, 1999), (Hanbury and Serra, 
2001), (Hanbury and Serra, 2001), (Vejarano, 2002) 
and others. We give one based on the uniqueness of 
the lifting of a map (a map is a continuous function) 
with domain a simply connected space to the 
universal cover of the range space (Christenson and 
Voxman, 1998); another, based on intrinsic aspects 
of the circular relation of angular data.  

2 STATISTICS OF LOCATION 
AND DISPERSION FOR 
DIRECTIONAL DATA 

Most of the time we assume angles (i.e. hues) to be 
either numbers in the interval (-π, π] or numbers in 
the interval [0, 2π); the choice by default is (–π, π]. 
Except in the case of liftings, we do not use multiple 
code representations (equivalent mod-2π) for the 
same angle.  

It is convenient to use the complex number ejφ as 
a representation the angle φ.  Assuming the function 
arctan to have range (-π/2, π/2); the angle arg(z) of  a 
nonzero complex number (arg(z) is not defined if z = 
0+j0) is defined as: 

arg(z)= arctan(Im(z)/Re(z)) if Re(z)>0 
arg(z)= –π + arctan(Im(z)/Re(z)) if Re(z)<0 
arg(z)= π/2 if Re(z)=0 and Im(z)>0 
arg(z)= –π/2 if Re(z)=0 and Im(z)<0  

Let [φ1, … φN] be a sample of N angles; unlike a 
set, in a sample there may be repeated data. Let [z1, 
… zN], with φi=arg(zi), be the N-tuple of the 
corresponding complex numbers on the unit circle. 
We respectively call  

Z := zi
i=1

N

∑    and Φ = ( φi
i=1

N

∑ ) mod-2π 

the complex sum and the angular sum of the angles. 
Clearly, arg(Z) ≠ Φ. For example, consider 3π/4 and 
5π/4. 
 

2.1 Sample Mean or Average 

We give the standard definition of the average of a 
sample of angles; see e.g. (Nicolaidis and Pitas, 
1998) and (www.higp.hawaii.edu, 2006).  

Let [φ1, … φN] be a sample of N angles; if their 
complex sum Z is 0+j0, we leave the average of the 
sample undefined, otherwise, the average of the 

sample is set to be the angle arg(Z) of the complex 
sum. 

For the texture images at the top in Figure 2, 
after the application of the running average (we use 
windows of size 3x3) the images at the bottom 
result. When the average of a window is undefined, 
the central pixel was left unchanged. The textures 
are based on the Von Mises distribution, given by: 

f(φ) = (1/2πI0(κ)) exp(κ cos(φ–α)) 
where I0 is a Bessel function that ensures that the pdf 
integrates to 1, the parameter κ has to do with the 
variance and α is the mean of the distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A Von Mises’ texture images and a noisy image 
(top) and the result after applying a moving average 
(below).  

2.2 Sample Median 

As above, let [φ1, … φN] be a sample of angular 
data. Let dij be the distances between pairs (a pair is 
a set of cardinality two) of consecutive angles φi and 
φj, given by dij = T(|φi – φj|), where: 

T: [0, 2π) → [0, π]  
has the graph indicated in Figure  3.   
To find out which angles are consecutive, order the 
angles in the sample, in their domain of 
representation (-π, π], get the pairs of consecutive 
angles in this ordering, and add an extra pair given 
by the largest and the smallest angles in this interval. 
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                                                                 x 
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Figure 3: The function T, used to define a metric on S1. 

If each component of the sample has the same 
value, let the median be this common value. If the 
sample is not constant, the set of distances {dij} has 
a positive (i.e. larger than zero) maximum; if this 
positive maximum is achieved for a unique pair of 
angles φi and φj, subtract the 0-sphere {φi, φj} from 
the 1-sphere S1; two connected components result 
(Jordan theorem in dimension 1;) of these two 
components, one contains the data; subtract the other 
connected component, which we call the gap; the 
resulting arc contains the data and and may now be 
linearly ordered (see Figure  4); take the median of 
the data in this arc, if the sample has even size, take 
the (angular) average of the two central data. 

 
 

Figure 4: The data determine a gap on S1, which is taken 
off. 

If the maximum of the distances between 
consecutive angles is achieved more than once, the 
definitions must be refined; see Figs. 5a. and 5b. For 
one thing, the sample has several gaps of unique 
length and it still may have a median. Proceed in two 
steps to find it. Initially, for each of the multiple, 
equally maximally sized gaps, obtain a median as 
above. The resulting set of medians may further 
have a median or it may not; it does not if this set of 
preliminary medians determines again a unique 
distance between consecutive points; in such a case 
the sample is said to be uniformly spaced and to 
have no median (nor a mean.) Otherwise, compute 
the median of this set of preliminary medians, as 
above, and call it the median of the sample.  

A rule of thumb to check things is to slightly 
separate repeated data. The definition given of the 
sample median of angular data gives a unique 
answer in cases when the median defined in 
(Nicolaidis and Pitas, 1998) does not; see Figure 5c. 

 
              -a-                        -b-                         -c- 

Figure 5: In a, there are three maximal gaps; in b, four. In 
each case, they are of the same length.  

In Figure 6, we show the result of applying a 3x3 
hue median filter to the texture images at the top of 
Figure 2. 
 
 
 
 
 
 
 
 

Figure 6: The result of applying the median filter to the 
images at the top in Figure 2. 

2.3 Max and Min  

Both the average and the median of a sample of hues 
are hues and so are the max and the min as defined 
below; nevertheless, the length of the gap, the 
concentration and the range are angles but no hues: 
they are differences of hues. Two different pairs of 
hues may have the same difference and a sample 
may have a range but no median. 

Let [φ1, … φN] be a sample of angular data. If 
the sample is uniformly spaced or if there are a 
multiple gaps, the max and the minimum of the 
sample are left undefined; otherwise, for a unique 
gap, the maximum (max) and minimum (min) of the 
sample are defined as follows: take the gap off as 
above and, in the remaining arc, let the point most 
ccw (counterclockwise) be the maximum of the 
sample and the point most cw (clockwise) be the 
minimum. For example, for the sample [orange, red, 
yellow], red is the min and yellow is the max. 

2.4 Concentration and Range  

Let [φ1, … φN] be a sample of angular data; let the 
concentration C of the sample be given by the 
magnitude of the complex sum Z divided by N,  

C: = (1/N)|Z| 
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C ranges between 0 and 1, and clearly is a measure 
of the concentration of the data. If the complex sum 
of the sample is 0, the sample has no average but it 
has (zero) concentration. The name given here to 
this statistic is not standard (mean resultant length, 
in (www.higp.hawaii.edu, 2006)). 
For a constant sample, the range is set to be 2π; 
otherwise, proceed as in Section 2.2 and define the 
range ρ of the sample as: 

ρ = 2π – max{dij} = 2π – length(gap) 

ρ clearly is a measure of the dispersion of the data. 
 The moving range and moving concentration are 
used to get maps of hue edges, from the image at the 
top, left, in Figure 7. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 7: Hue edge maps. 

3 HUE IMAGES 

A continuous 2D image (as opposed to a discrete 
image as defined in Section I) is a function with 
domain set a product I×J of real intervals The 
continuity referred to here is of the domain; thus, a 
continuous image may be a discontinuous function. 
If the range set is S1, the values of the function are 
hues.   

The existence of certain mathematical tools for 
handling continuous functions makes the 
corresponding images important from a theoretical 
viewpoint. For example, the lifting of a continuous 
function to a simply connected cover of the range 
set, is unique. Thus, even though the discontinuities 
of a function carry important information, it may be 
convenient to restrict attention to continuous, and 
even differentiable, functions. After all, the rates of 
change can be arbitrarily large. In fact, the largest 

possible jump of a hue image has value π and it 
corresponds to a change from a hue to its opposing 
hue, which may correspond as well to its 
complementary colour. (Two colours are said to be 
complementary if their additive mixture produces an 
achromatic colour). 

But, perhaps more to the point, in digital image 
processing, one considers discrete images. 
Moreover, in practice, discrete images are digital (as 
defined in Section I); nevertheless, we disregard 
here the discrete nature of the range set. The range 
set of the hue component of an image, in all cases 
will be assumed to be S1. 

Since the basic definitions of mathematical 
morphology are given in terms of the operations of 
taking the maxima and minima of sets, it is assumed 
that the range set has at least the structure of a 
linearly ordered set (and the domain set, that of a 
lattice). This is the case of grey level images, for 
example, but not the case of hue images. We explore 
below two approaches for performing morphology 
on angle-valued functions; one is based on the 
topological concept of the lift of a function while the 
other works in the natural ambient space of the 
graph of the function; both are based on grey level 
morphology. Initially, we consider briefly the 
geometry of the ambient space of the graph of the 
hue function. 

3.1 The Graph of a Function from a 2D 
Interval to the Circle 

Consider 1D continuous hue images. The graph of a 
function f:I →S1 lives on I×S1 which is a cylinder 
and can be also thought of an annulus (the annulus is 
homeomorphic but not isometric); if the function is 
continuous, the graph is connected. See Figure 8. 

RedGreen

Blue

Yellow

 

 

RedGreen

Yellow

Blue

 
Figure 8: Two pictures of the graph of the function 
f:I→S1, corresponding to the coloured line, shown 
discontinuous above. 

The graph of a function f : I×J →S1 lives on 
I×J×S1 which can be thought of a solid cylinder; if 
the function is continuous, the graph is connected.  
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Figure 9: The product I2×S1. 

For each s ∈ S1 the intersection Ks of the graph of 
f with the plane {(x, s) : x�I×J} � I×J×S1 has as 
connected components points, arcs, Jordan curves 
and unions of these. We may give a partial order to 
the set of the simple closed curves in  

Ts := Ks ∗ ∂(I×J) 
      = {(x, s) : x�I×J, f(x) = s} ∗ ∂(I×J)  

A simple closed curve C1 bounds a region on its 
interior (i.e. the region farthest from ∂(I×J)); if 
another Jordan curve C2 in Ts lies in this region, we 
write C2 < C1. This is a partial order. 

3.2 Lifting Angular Maps 

R1 is the universal covering space of S1 (Christenson 
and Voxman, 1998), as projection map we have 
p(x):= [x]2π where [x]2π is the only number in [0, 2π) 
equivalent to x, mod-2π. See Figure 10. 
 
                                          R1 
                     F                            p 
 
  I×J         f                S1 

Figure 10: R1 is the universal cover of S1.            

Now to lift a continuous function f:I×J→S1 is to 
find a continuous function F:I×J→R1 such that 
p(F(x)) = f(x). If we specify F(0, 0) = f(0, 0), F is 
unique. 

The max minus the min of the values taken by a 
lift F of a hue function f is said to be the degree of f. 
It is rare that in an image of a common scene, the 
degree of the hue be larger than 2π; it implies more 
than one set of colours as in a rainbow, with the 
same ordering of colours along some path. 

To lift f is, in a sense, to unfold its graph. The 
smallest curves in T0, according to the partial 
ordering defined in Section 3.1, are the starting point 
for an algorithm that finds the lift F. Find these 
smallest simple closed curves and then define F on 
the regions bounded by these components. Initially, 
on these smallest regions set F:=f. Then, depending 

on whether F is positive or negative on a region, for 
the next region, define F as f+2π or f-2π. On a 
region of order n, add or subtract 2nπ. 

4 MATHEMATICAL 
MORPHOLOGY FOR A 
CONTINUOUS ANGULAR 
VALUED FUNCTION 

The (unique) lifting F:I×J→R1 of a hue map 
f:I×J→S1, has as range set R1, which is linearly 
ordered. We define MOP(f) as p(mop(F)); where 
mop is a standard grey level morphological operator 
(Heijmans, 1994), (Serra, 1998) and MOP is the 
corresponding hue, morphological operator being 
defined. 

For example, the hue image in Figure 11 
corresponds to the function with graph (plotted in a 
flat 3D ambient space) as shown in Figure 12; the 
lifting of this function is also shown in Figure 12; 
applying (“grey level”) dilation/erosion and 
opening/closing, with the structuring element in 
Figure 13, and projecting back on S1 with the 
projection p = (mod 2π), we get the image shown in 
Figure 11.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: Hue morphology based on lifting. 

As we see, for the given structuring element, in 
the erosion, reds become violet, in general there is a 
cw shift of hues which, for the given image, gives an 
impression of migration of hues in the (opposite) 
ccw direction (violets migrating toward red regions.) 
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Figure 12: Hue function and lifted version (false colours). 

 
Figure 13: Structuring element. 

4.1 Algorithms for Lifting Discrete 
Images 

For a function f:N×M→S1, where N and M are 
discrete intervals, several algorithms can be 
proposed to obtain functions F:N×M→R1 such that 
p(F(x)) = f(x); however, the difference between two 
such F´s (we chose to call them “lifts”) is not 
necessarily constant. One kind of algorithm is based 
on the idea of sweeping the domain set N×M 
another kind is based on the idea of interpolating the 
discrete image and obtain a continuous image.  

4.1.1 Lifting Along Paths 

Consider initially a coloured line, that is, a function 
with domain set an integer interval /0, N-1/. We start 
at either one of the extrema of the interval, say at 0. 
Initially, we set F(0) = f(0), to compute the 
remaining values of F, we proceed as follows. 
Assume F has been defined up to pixel  i; next, let   
F i+1 = F i + Δ(δi) where δi := f i+1 - f i and Δ is 
defined as  Δ(δ) = δ, if |δ| < π; Δ(δ) = 2π + δ, if δ < –
π; and Δ(δ) = δ – 2π if δ > π. Clearly, f = F (mod-
2π).  The algorithm does not give a unique lift. The 
lift obtained starting from the right may be different. 
Nevertheless, the two lifts are equivalent, i. e. their 
difference is a constant congruent with 0 (mod-2π). 
Then, the operators of grey-level morphology can be 
applied, before projecting back on S1, See Figure 
14. Now consider 2D, discrete, hue images f: /1, N/ 
x /1, M/ → S1; a lift F of f is such that F(i, j) = f(i, j) 
mod-2π. Sweeping the domain set along a simple 

path gives Δs between neighbours that depend on the 
path chosen to do the lift.  

        

        

       
Figure 14: A 1D hue function and its lift, a structuring 
element and the resulting function, the original function 
and the projected processed function. The original 1D 
image and the resulting one on the right. 

For example, consider the image and the two 
sweeping paths below 

0 1.5π       π 
0.5π     0   0.5π 
π      1.5π      0 

the corresponding resulting lifts are 
2π   1.5π       1π                    0    -0.5π      π 
2.5π     0    0.5π                 0.5π      0    0.5π 
3π    3.5π      4π                     π   -0.5π      0 

4.1.2 Interpolating Hue Images 

The (e.g. linear) interpolation of a function defined 
on a rectangular grid ZxZ to a function defined on 
ZxZ is not uniquely defined; consider 4 neighbour 
pixels as in the corners of the square, notice that 
there are several, possibly conflicting, ways of 
interpolating along the diagonals. From an image 
with a very good resolution, that won’t loose much 
from a process of decimation as it is redefined on a 
(non regular) hexagonal grid, discard the pixels (i, j) 
for which i+j is odd, as shown in Figure 15.  

 
Figure 15: The decimation of a rectangular grid that give a 
hexagonal grid. 

On each triangle linear interpolation is used. 
Once again, there are multiple possible linear 
interpolations, some of them of the same cost. By 
cost we mean the spent arc length on the circle. 
Consider first interpolation along a line. Here there 
are only two possible options: for x and y are angles 
in [0, 2π), assuming x≤y, there are two choices:   
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 (1-α)x+αy and [(1-α)(x+2π)+αy]2π; if |x-y| = T(|x-y|) 
then the first choice is less expensive and if |x-y| > 
T(|x-y|) then the second choice is less expensive. 
The parameter α varies between 0 and 1.  
Let x, y and z be three pixels which are the vertices 
of a triangle and let u=f(x), v=f(y) and w=f(z) be the 
corresponding hues and assume that, as numbers in 
[0, 2π), u≤v≤w. There are three possible linear 
interpolations for the colours of the points in the 
triangle; for each point in the triangle let λ1, λ2, λ3 be 
the (unique) barycentric coordinates of the point; the 
interpolations are given by [λ1(u+2π)+λ2v+λ3w]2π, 
[λ1u+λ2v+λ3w]2π and [λ1u+λ2v+λ3(w–2π)]2π. The 
choice depends on the cost of each interpolation and 
on the choices made for neighbour triangles. 

Once a continuous function is obtained, the 
image has a unique lift. 

 
 
 
 
 
 
 

 
 
 

 

Figure 16: Interpolations of triangles given the vertices red 
red green and violet-orange-green; and of lines given 
extremes red-citrine and red-cyan. 

4.2 Circular Mathematical 
Morphology 

An alternate way of applying morphological 
operators to the hue component of colour images is 
to interpret the max and min operators and the 
addition operation in the context of a circular 
variable, as in Section 2.3. We translate addition as 
counter clockwise rotation, i.e. as addition of real 
numbers followed by the operation of taking modulo 
2π. Then, apply the standard definitions of grey level 
image morphology. Occasionally, the data in, say a 
3x3 window, have multiple gaps and there is not a 
max nor a min, and a special treatment must be 
given to the pixel at hand. For this sort of sample, 
we choose to leave the corresponding pixels 
unchanged. 

As can be observed in Figure 17, in the erosion, 
the blue of the wall became cyan (a negative shift) 
while in the dilation, violet (a positive shift). The red 
arrow in a yellowish background grew larger in the 

erosion and thinner in the dilation. In Figure 18, two 
Von Mises textures are shown; due to the shape of  
the structuring element, the inner square grows and 
becomes bluer with an erosion; with a dilation, it 
shrinks and becomes more yellow; both textures lost 
contrast.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Circular morphological operations. 

 

 

 

 

 

Figure 18: Circular morphological operations. 
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5 CONCLUSIONS 

We have extended the definition and applied circular 
versions of statistics commonly used for linearly 
ordered data; in particular, the sample average, 
median, gap, min, max, concentration and range. We 
applied their running versions as smoothers and edge 
detectors of colour images. As expected, for the 
noises tried, the median filter works better visually 
than the average. We consider that the edge detector 
with best performance is the one given by 1-T(gap). 
As in the case of the phase of complex numbers, 
undeniable useful, in some cases these statistics 
must be left undefined. Two methods to apply 
morphological operators to angle valued signals are 
presented. These novel tools for colour image 
processing are likely to be useful. 
Unlike previous versions of colour morphology, we 
consider only the hue component, leaving the 
components of saturation and value unaltered. Also, 
we respect the circular nature of the hue variable 
while taking advantage of grey level morphology. 
The processing of the hue component alone 
illustrates the effect of the tools which are particular 
due to the circular nature of the hue variable.  

The cases of undefined statistics and 
morphological operators are more common, 
although on a, say 5x5 window, it is probably hard 
to find 25 hues uniformly distributed.  We have 
chosen to leave the corresponding pixels unaltered 
but other choices are possible. 

We have given algorithms for the interpolation 
of hue valued functions on triangular meshes as well 
as on 1D discrete domains. We found an unexpected 
lack of algorithms for the lifting of angle functions, 
this seems to be a fertile field of research.  

The field of color image processing is important 
in computer vision tasks such as the detection of 
malaria in blood films (Ortiz et al., 2005) and also in 
tasks where the aesthetic quality of the processed 
image is important such as in commercial colour 
photography and in digital document restoration. 
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