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Abstract. Inthis paper we present a technique for visual odometry on the ground
plane, based on a single, uncalibrated fixed camera mounted on a mobile robot.
The odometric estimate is based on the observation of features (e.g., salient points)
on the floor by means of the camera mounted on the mobile robot.

The presented odometric technique produces an estimate of the transformation
between the ground plane prior to a displacement and the ground plane after
the displacement. In addition, the technique estimates the homographic transfor-
mation between ground plane and image plane: this allows to determine the 2D
structure of the observed features on the ground. A method to estimate both trans-
formations from the extracted points of two images is presented.

Preliminary experimental activities show the effectiveness and the accuracy of the
proposed method which is able to handle both relatively large and small rotational
displacements.

1 Introduction

Robot localization is a fundamental process in mobile robotics application. One way
to determine the displacements and measure the movement of a mobile robot is dead
reckoning systems. However these systems are not reliable since they provide noisy
measurements, due to the slippage of the wheel. Localization methods based only on
dead reckoning have been proved to diverge after few steps [1]. Visual odometry, i.e.
methods based on visual estimation of the motion through images capture by one or
more cameras, is exploited to obtain more reliable estimates. Cameras are mounted on
the robot and the images are processed in order to recover the structure of the sur-
rounding environment and estimate the motion among images captured from different
viewpoints.

Usually, 3D reconstruction from images taken by a moving uncalibrated camera go
through auto-calibration. Autocalibration from planar scenes requires either nonplanar
motion [2], or several planar motions with different attitudes of the camera wrt the
ground plane [3].

In a mobile robotics framework, however, changing camera attitude requires addi-
tional devices as, e.g., pan-tilt heads, not directly connected to the robot functionality.
In particular, mounting a fixed monocular camera on a mobile robot does not allow to
change the camera attitude wrt to the ground plane, making auto-calibration impossible
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without additional information. A similar scenario is thrdta fixed camera mounted on
a moving vehicle (such as, e.g., aroad car).

However, in this paper we will present a technique for visodbmetry on the
ground plane, based on a single, uncalibrated fixed cameunatexbon a mobile robot.
The mobile robot is supposed to move on a planar floor, calledrgl plane. No map of
the environment is needed. The odometric estimate is bas#teambservation of fea-
tures (e.g., salient points) on the floor by means of the cammerunted on the mobile
robot.

The presented odometric technique produces an estimate trfansformation be-
tween the ground plane prior to a displacement and the grplame after the displace-
ment. In addition, the technique estimates the homograpaitsformation between
ground plane and image plane: this allows to determine thet@@ture of the observed
features on the ground, as a side effect. The presenteddeetioes not determine the
camera calibration parameters.

However, it is argued that any further step towards autition is not needed in
the context of mobile robot odometry. In fact, auto-caltlmawould only allow to de-
termine the spatial transformation between ground pladecamera: auto-calibration
alone does not allow to determine the robot-to-camerafoamstion. Therefore, de-
termining the transformation between the robot and the mpfqulane should require
further extrinsic calibration steps: these steps couldisbim e.g., acquiring visual data
while the robot is executing self-referred displacemestlf as, a self-rotation and a
forward translation).

On the other hand, the presented technique for visual odgmstimates the trans-
formation between ground prior to a displacement and graified the displacement.
If needed, the robot-to-ground calibration can be accahplil by the same additional
step, namely visual observation of self-referred robopldisements, required when
starting with auto-calibration.

The technique works for generic planar displacements, tbdbeés not work for
translational displacements. However, once the homogragtween ground plane and
image plane has been determined as a side effect, furtipadinents, including pure
translations, can be analyzed directly by using the (ire)diemography.

1.1 Related Works

In the last years methods to estimate the robot motion (egiem) based on visual
information provided by cameras have gained attention angesapproaches have been
presented. Early methods were based on estimation of theabfiow from image
sequence in order to retrieve ego-motion. McCarthy and &aj#] presented a review
and a comparison between the most promising methods.

Other approaches exploited stereo vision. Nister et apfdposed a method based
on triangulation between stereo pairs and feature tradkinigne-sequence of stereo
pairs, without any prior knowledge or assumption about tldion and the environ-
ment. Takaoka et al. [6] developed a visual odometry systemafhumanoid robot
based on feature tracking and depth estimate using steneso Apgrawal and Konolige
[7] proposed an integrated, real-time system involvinditsiereo estimate in the dis-
parity space and a GPS sensor in a Kalman filter framework-&R8d systems can be
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sufficiently accurate for large areas but it can be not useddaor environments and
require a support framework, which prevent their use, éog.planetary exploration.
For such application, Mars Exploration Rover [8] employef@atures detection in a
stereo image pair that are tracked from one frame to the mektg maximum like-

lihood estimation the change in position and attitude fa tw more pairs of stereo
images is determined.

Davison [9] proposed a real-time framework for ego-motistineation for a single
camera moving through general unknown environments. Theadewvas based on a
Bayesian framework that detect and track a set of featumgal(ly corner, points or
lines). Assuming the rigidity in the scene, the feature imagption allows to estimate
the motion of the camera; therefore the complete camesectay and a 3D map of all
the observed features can be recovered.

Visual odometry system based on catadioptric cameras tee froposed. Bun-
schoten and Krose [10] used a central catadioptric camexstitnated the relative pose
relationship from corresponding points in two panoramiag®s via the epipolar geom-
etry; the scale of the movement is subsequently estimatetheihomography relating
planar perspective images of the ground plane. Corke efL4].developed a visual
odometry system for planetary rover based on a catadiogdritera; they proposed a
method based on robust optical flow estimate from salientaliteatures tracked be-
tween pairs of images, by which they retrieve the displacesef the robot.

Our approach is similar in spirit to the work of Wang et al. [##ho measured
translation and rotation by detecting and tracking featimémage sequences; assum-
ing that the robot is moving on a plane, they computed the lyaphy between the
image sequences by which the computed the motion. SimiBéghimane and Malis
[13] developed a visual servoing framework based on thenasitbn of the homogra-
phy between image sequences to retrieve robot motion asd the control loop. Both
methods require camera calibration. Our work differ froms approaches in that we
do not assume camera calibration.

The paper is structured as it follows. Section 2 introduces @escribes the ad-
dressed problem. Section 3 shows how the robot displacecaarte retrieved by fit-
ting the homography between two images of the ground plaaeich 4 illustrates the
method to estimate the transformation between the growarend the image plane.
Section 5 reports and discussed some preliminary expetaheativities performed
with a rotating camera. Section 6 concludes the paper.

2 Problem Formulation

A mobile robot moves on the floor. A fixed, uncalibrated canisranounted on the
mobile robot: this camera is supposed to be a perspectivereafne., distortion is
neglected). The pose of the camera relative to the robotkieawn. The environment
map is unknown, as well as the structure of the observablartesa(associated to floor
texture) on the ground. This allows extremely easy set4uis: sufficient to mount a
perspective camera on the mobile robot in a fixed but unknaygitipn.

For the rigid body consisting of the robot plus the cameragmund” reference
frame is defined as follows: the backproject@nf a certain image pixel (say, the pixel
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O’ with cartesian coordinatg®,0)) on the ground plane is taken as the origin of the
projected reference frame, while vector connecting thgitotio the backprojectioA

of a second image pixel (say, the pix&lwith cartesian coordinatg400 0)) on the
ground is taken as the unit vector along ¥aaxis.

As usual within the Robotics and Vision communities, hommagris coordinates
are used. LeT be the unknown & 3 matrix representing the projective transformation,
also called “homography”, between the ground plane andtfagé plane, as realized
by the uncalibrated camera. The coordinates on the growartere referred to the
above defined ground reference frame of the robot+cametansy3herefore, the un-
known homograph¥ does not change with robot motion.

As the robot moves on the ground plane, the robot+cameragoe®a planar mo-
tion consisting of a rotation of an unknown anglabout an unknown vertical axis. Let
C be the point where this vertical axis crosses the horizgmntalnd plane. LeR be the
rotation matrix describing the planar displacement. Theim®& is a 3x 3 2D rotation
matrix in homogeneous coordinates, whose third columrectsithe homogeneous co-
ordinates of the center of rotati@relative to the robot+camera ground reference and
whose upper-left % 2 sub-matrix is orthogonal.

Two images are taken: the first one is taken before the displant, while the sec-
ond one is taken after the displacement. The addressedepnabithe following: first,
given the transformation between the first and the secondéetermine the center
of rotation, and the rotation angle of the observed displen®; second, determine the
transformationl between the ground plane and the image plane, and use theanve
transformatiorT —* to measure further displacements. The inverse transfaymat !
can also be used to determine the shape (i.e., the 2D st)ictithe set of the observed
features on the ground.

An interesting problem, which is not addressed in this paigethat of finding a
transformation between the ground robot+camera referigane and a second refer-
ence frame, more significant to the robot kinematics. Thiegformation can be esti-
mated by applying the presented odometric technique tersfdfred robot displace-
ment, as e.g., a “self”-rotation and a “forward” translatio

3 Estimation of Robot Displacement

The transformation relating the two images of the groundeiia still a homography,
and it is represented by the matkik= TRT~1, whereT is the unknown homography
between ground plane and image plane. (In principle, cadistartion can be compen-
sated by imposing that the transformation between the tvemés is a homography.)

The homographid between the two images (before and after the displacemamt) ¢
be computed from a sufficient number of pairs of correspantkatures between the
two images [14].

The eigenvectors of the homography mathxare given byC’' = TC, I’ =TI and
J' = TJ, where the rotation cent€, and the circular points andJ are the invariants
under rotatiorR on the ground plane. In addition, the eigenvalueklafoincide with
the eigenvalues d® (modulo a scale factor).
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The eigenvectdt’ is associated to the real eigenvalugigfvhile I’ andJ’ are asso-
ciated to the complex eigenvaluestdf By the eigendecomposition of the homography
matrix H, the parameters of the planar displacement are determined.

In particular, the imag€’ of the center of rotatio@ is determined as the eigenvector
correspondingto the real eigenvalud-hfThe rotation angl@ is determined as the ratio
between imaginary part and real part of the complex eigeleyah fact the eigenvalue
corresponding té’ = T is given byuet'®, wherep is a real scale factor.

If the displacement is a pure translation, then the imagealdhe points at the
infinity are eigenvectors dfi. Therefore the translation direction can not be determined
Therefore, displacements with small rotation angles mayegee solutions, that are
numerically unstable.

4 Estimation of the Transformation Between the Ground Plane
and the Image Plane

The shape of the observed features is determined by esigntite transformation
matrix T. This matrix can be estimated by four pairs of correspongioigts: these
can be, e.g., the two circular points= [1,i,0]" , J = [1,—i,0]" with their image
projections!’, J', plus the two points defining the robot+camera ground refse
namelyO = [0,0,1]" andA = [1,0,1]7, with their image projection®’ = [0,0,1]"
andA’' =[1000,1]".

The homogeneous (world) coordinatesfvithin the ground reference af@, 0, 1]
while the homogeneous coordinates/fvithin the ground plane argl,0,1]. With
these choices, the transformation maffibetween ground plane and image plane is
fully constrained, and it can be determined, imposing that

I"'=TI
J=TJ
0O=TO
A=TA

Once the transformation matrixhas been estimated, the shape of any configuration
of observed features can be determined by their imégjeis=1..n) by P, = T~1P. The
knowledge ofT allows to determine the coordinates of the rotation ce@ter T—1C’
relative to the (back-projected) robot reference. Theresttd motion parameters con-
stitute an odometric estimate of the robot displacement.

Notice that the shape determination requires that the alisphent is not purely
translational. However, once the transformafiomas been determined by analyzing
a rotational displacement, it can be used also to measuedypuanslational displace-
ments.

5 Preliminary Experimental Results

In order to validate the proposed method we performed sopergrental activities.
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Fig. 1. The distribution of the matching score of the features usegstimatefs ¢ (a) and6s 7

(b).

Table 1. The first sequence of 7 images taken with relatively largatianal displacements. The
table reports the ground truth referenc8g{, in degrees) read on the turntable, the rotational

displacements between two consecutive ima@ges (), the estimated rotational angle&’i(_ﬂ)
and the relevant erroef ). The value ofg 7 was obtained with a lower number of features

(N = 10) since many outliers were found.

Step  Ores Biiv1 B €10

107 9 9.37 -0.37
116 8.5 8.09 0.41
124.5 10.5 10.35 0.15
135 8 7.91 0.09
143 11 10.97 0.03
154 10.5 9.70 0.8

OO~ WNPE

In our experimentations we use a standard perspective egmarided with a very
low distortion optics. The camera was placed on a turntaplevbhich we manually
measured the ground truth rotation with an accuracy of ab&it The camera view-
point was placed in a generic position relative to the rotaéixis: therefore the camera
underwent a general planar motion. The camera was pointextds the ground floor,
such that the extraction of salient points exploits the fleature. Then we took some
images with different rotational displacement and appledproposed method in order
to estimate the rotation angle between two images.

We tested the method on two sequences of images. The firgsegwas obtained
considering larger rotational displacements, with a meaesof about 10. The second
sequence is characterized by relatively small rotatioisplldcements between images.
The mean rotational displacement of this set is abSutds discussed in Section 3,
small rotation angles may lead to numerical instability. tba other hand if the robot
rotates slowly, images with small rotational displaceradatve to be taken into account.

Table 1 collects the ground truth values, the estimatedegadind the relevant errors
for the first sequence. For this sequence we employed thenfioly estimation proce-
dure. Given two consecutive images, $agndli;1, we extracted a number of salient
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Table 2. The second sequence of 25 images taken with relatively sotational displacements.
For each step, the table reports the ground truth referéBgasin degrees) read on the turntable,
the relative rotational displacements among the threeemutive images€ ;.1 and®; j,»), the
estimated rotational angleéiﬁ(ﬂ) and the relevant erroeém).

Step  Brer Biir2 Biir1 Bisiv2 Biis2 €i1o

1 321 12 7 5 11.83 0.17
2 314 12 5 7 12.16 -0.16
3 309 8.5 7 15 7.83 0.67
4 302 10 15 8.5 10.81 -0.81
5 300.5 14 8.5 55 7.97 6.03
6 292 10 55 4.5 9.25 0.75
7 286.5 7.5 4.5 3 7.03 0.47
8 282 10 3 7 9.36 0.64
9 279 12 7 5 11.58 0.42
10 272 10.5 5 55 9.93 0.57
11 267 9.5 5.5 4 8.70 0.80
12 261.5 10.5 4 6.5 9.96 0.54
13 257.5 10.5 6.5 4 10.02 0.48
14 251 9 4 5 8.71 0.29
15 247 7 5 2 7.50 -0.50
16 242 8 2 6 7.01 0.99
17 240 10 6 4 9.03 0.97
18 234 10.5 4 6.5 10.78 -0.28
19 230 10 6.5 3.5 9.52 0.48
20 223.5 10 35 6.5 10.91 -0.91
21 220 10 6.5 3.5 10.72 -0.72
22 213.5 7.5 3.5 4 7.21 0.29
23 210 8.5 4 4.5 8.96 -0.46

points from each image using the Harris features extradis}. [Then we found the
correspondences among these points using the normaliassl correlation and we se-
lected a set of points (usuallij = 20) having the best matching score [16]. We used
this set of points to fit the homographii1 using the RANSAC technique [17] pro-
vided by [18]. OnceH; i1 was computed, we estimated the rotation angles from the
complex eigenvalues ¢f; i1, as explained in Section 3.

As Table 1 shows, the estimates are very accurate and the aredess thar’1The
value offs 7 was obtained considering a lower number of salient pbirt,10. Because
of the large rotational displacement (about3E) the matching among features was in
most cases incorrect and the resulting matching score wathécaverage) higher with
respect to the other images of the sequence. Figure 1 cospereistributions of the
matching score values of the first 50 best matches for image psed to compute ¢
andBg 7 respectively: the estimation processfgfs can rely on many reliable match-
ing features (e.g. at least 20 matches have a matching sssréhlan 800) while for the
estimation process & 7 there are only few matches under the same threshold. This in-
troduced many outliers that affected the estimate. Derrgdise number of considered
points allowed to discard many outliers, thus obtaining aemeliable estimate.

Table 2 collects the ground truth values, the estimatedegadind the relevant errors
for the second sequence. In order to overcome possible mahiaistability issues we
used three images to robustly estimate the angle. We entptbgdollowing estimation
procedure. Given three consecutive images/say. 1 andl;,», we extracted a number
of salient points from each image, say ¢;1 andc;,» respectively. We found the
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(a) Image 1 (b) Image 2 (c) Image 3

Fig.2. An example of tracked features between three images. Theticsimages (a,b) are
compared in order to find the best matches (depicted in gredrret, respectively). The best
features of (b) are matched with (c) in order to find the bestches (depicted in blue in (c)).
Hence the chain of matches between the images are used taiEmhipe homograph; i ».

(a) Image 5 (b) Image 6 (c) Image 7

Fig. 3. The images (from 5 to 7) of the second sequence for which tti@ated rotation angle
was incorrect. The found corresponding features amongemare depicted: most of the matches
are false matches, which led to an incorrect estimationehtimographys 7.

correspondences among the featwesndc; 1, selecting only those matches having
the best matching score, sayandc_ ;. Then we tracked these matcheslin, by
matchingc, , with the features;, », selecting the best matches and obtairdhg and

¢ 2 (wherecfy, C cfy).

Exploiting ¢, we also obtained’, which are features df that have a matching
feature both irlj; 1 andli . By fitting a homography witlt!” andc’ ,, we computed
the 33 matrixH; j+» with the RANSAC technique, obtaining the relevant rotatngle
6ii+2. Figure 2 shows an example of the tracked features amongribe images.

The reported results proved the effectiveness and the acgwf the proposed
method. The estimation errors are less thanekcept for images 5, 6 and 7. In this
case the errors is greater since the method was not able t@ fawdrect rotational
angle. This is due to the large displacements among imagesverall displacement
between image 5 and 7 is abouf 1vith partial displacements of® and 55° respec-
tively. Figure 3 shows the matching feature that are useceterthine the rotational
displacements: there are many false matching that affélceeestimate 08s ;.

Large displacements may cause such errors since we usedrthealized cross cor-
relation to find the correspondences. Normalized crosslation is not rotationally
invariant, hence large rotation can corrupt the matching@ss. Moreover, large rota-
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tion angles between images reduce the overlapping regithreafmages, thus reducing
the number of corresponding features. In order to overcdmaset issues, rotationally
invariant matching function can be employed such as, ellgT, features extractor [19].

On the other hand, in areal application a proper visual siagphte during robot move-

ment would avoid large displacements between two poses.

6 Conclusionsand Ongoing Activity

In this paper we presented a novel method to estimate the edpif a mobile robot
through a single uncalibrated fixed camera. Assuming thatabot is moving on a
planar floor, images of the floor texture is taken. Salienhfsoare extracted from the
image and are used to estimate the transformation betweegrttund plane before
a displacement and the ground plane after the displacemeatproposed technique
also estimate the homography between the ground plane arichttge plane, which
allows to determine the 2D structure of the observed featuka estimation method
of both transformations was described. Preliminary expenital activities that vali-
date the method for small and large rotational displacesard also presented and
discussed.

Ongoing works are aimed at improving the estimate methodderoto provide
reliable estimate in presence of large rotational disptesgs. Other experimental ac-
tivities will be conducted in order to better stress the rodtim different situations. We
are also planning to implement a real time version of the pseg method on a real ap-
plication in order to use the odometric estimate for loedlan tasks in a mobile robots.
Other possible future research direction are the employoferatadioptric cameras in
order to exploit their large field; however, using catadimptameras the transforma-
tions are not homography, unless central catadioptric casrere used, which are, on
the other hand, difficult to set up.
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