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In this note we shall discuss the heat equation and the eigenvalue problem for digital curves in the 3D

Euclidean space. First, we shall introduce the derivative of a function along a digital curve by the weighted
combination method. Then, we can define the Laplace of a function on a digital curve. The Frenet formulas
for digital curves will also be discussed. Numerical simulations show our method will provide good

estimations for the curvature and torsion.

1 INTRODUCTION

An ordered set of points C={p, e R |i=12, -k}
is called a digital curve in the 3D Euclidean space
R’. The digital curves can be obtained by the
discretization of regular curves or from digital
images. Understanding the geometric and
differential properties of digital curves is an
important topic in CAD or CAGD. In particular, the
curvature or the heat flow on a regular curve C in the
3D Euclidean space are important differential
invariants in the theory of space curves and its
applications to image processing and computer
graphics. The curvature and torsion are determined
by the differential of the tangent vectors and the
binormal vectors of the curve C.

In this paper we shall discuss a differential
theory for digital curves in the 3D Euclidean space.
We shall discuss the derivative of a function along a
digital curve by the weighted combination method.
We shall use the centroid weights in our algorithms.
These weights were first proposed in (Chen and Wu,
2004) to improve Taubin’s method for the estimation
of curvatures on a triangular mesh in the 3D
Euclidean space. Then, we shall investigate the heat
flow and the eigenvalue problem on digital curves.
In section four, we shall discuss the moving frame of
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a digital curve and obtain the discrete Frenet
formulas. This method fits perfectly with the
proposal given in (Rosenfeld and Klette, 2002)
about the field of digital geometry.  Usually, the
accurate estimation of curvatures at vertices of a
digital curve plays as the first step for many
applications such as simplification, smoothing,
subdivision, visualization and image processing, etc.
Our estimation is simple and very accurate as we
shall illustrate them in the numerical simulations.

2 THE LOCAL THEORY FOR
REGULAR CURVES

In this section we first recall some basic notions and
results about the local theory of smooth regular

curves in the 3D Euclidean space R’ . See (do Carmo,
1976) for details. Consider a smooth regular curve
c(s) = (x(s),y(s),z(s)) , s €[0,/]] with arc length
parameter s .

Given a function f(s)onc(s), we can define the

Laplacian Af (s) of f by

Af(s) = ;i £(s). (2-1)
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The eigenvalue problem is given by

A=A (2-2)

The heat equation for the functionu(s,?) is given by

0
Eu =Au. (2-3)
Next we discuss the curvature and torsion of the
regular curve c(s) = (x(s), y(s),z(s)) in R’ with arc
length parameter s . The tangent vector
c'(s) = (x'(s),)'(s),2'(s)), denoted by7(s), is a unit
vector since s is the arc length parameter. The
number"f’(s)” = k() is called the curvature of cats.

At points where x(s) # 0, a unit vectorn(s) in the
well-defined by  the

equation 7'(s) = x(s)n(s) .

direction  #'(s) s
The vector n(s) is
perpendicular to 7 (s) and is called the normal vector
ofcats. The plane determined by the unit tangent
vector 7(s) and normal vectors 7(s) is called the
osculating plane ofcats. At points where x(s)=0,

the normal vector and hence the osculating plane are
not defined. In what follows, we shall restrict
ourselves to curves parametrized by arc length
with x(s)#0 for all s€[0,/]] . The unit

vector b (s) =£(s)x7(s)is normal to the osculating
plane and will be called the binormal vector of cats .

The number“l;’(s)“ measures the rate of change of
the neighboring osculating planes of C ats . That is,
”1;'(S)H measures how rapidly the curves pulled

away from the osculating plane of ¢ at s in a
neighborhood of s . The Frenet formulas are

£'(s) = k(s)ii(s) (2-4)
1n'(s) = —x(s)t (s)— T(s)I;(s) (2-5)
b'(s) = r(s)ii(s) (2-6)

These Frenet formulas form a system of ordinary
differential equations (ODE’s) for the vectors 7(s),

n(s) and I;(s) . We shall call the matrix

0 x(s) 0
F(s)=|-7(s) 0 —x(s) 2-7
0 7(s) 0

the Frenet matrix of the curve ¢ at s.
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3 ADISCRETE HEAT EQUATION
FOR A DIGITAL CURVE

In this section we shall introduce a discrete heat
equation for a digital curve in the 3D Euclidean

space R*. A digital curve C in the 3D Euclidean
space is an ordered set of  points
C={p, eR :i=12;k}. Consider a
function f on the digital curve C . We can define the

discrete derivative of the function f by:

if(p,) = a)lw
dx "pr _pH" a1
+Q2M
||pi+l _p,»"

when the point p,is an interior point. When p,is a

boundary point i.e.,i =0ork, we take the one-side
derivative:

i :f(pz)_f(pl)
P f(p) —"p2 5 P1|| (3-2)
and
d _SWw)-f(p) ]
o f(p) —"pk o (3-3)

Indeed, when we know how to compute the
derivatives of functions on a digital curve C', we can
also compute their higher order derivatives. From
the experience given in (Chen and Wu, 2004), (Chen
and Wu, 2005) and (Wu, Chen and Chi 2005), we
shall use the centroid weights for the
weights @, and @, . Namely, for the digital

curve C={p, e R :i=12,--k} , we have at the
point p,

_ 1
2
PR lp.— P :
( + )
||pi _pH"z |p,+1 _pi"2
(3-4)
1
w. = |pi+l_pi||2
2 1 1
( -+ )
”pi_pi—l" |pi+1_p"||
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From this we can consider the discrete heat equation
on C for a functionu(p,,?):
0 o’

—u =

u.
ot ox’

(3-5)

If we consider the vectorv(r) = (u(p,,t)) inR", a

direct computation of (3-4) will lead to a system of
ODE’s:

d
Ev(t) = A4,v(1) (3-6)

where 4, =(a,)is a kxk matrix with constanta; .

The constant a,; depends only on the points on C'.

From the theory of differential equations, the
solution for w(¢) = (u(p,,))" will have the form:

v(t) = e"v(0) (3-7)
with the initial value v(0) = (u(p,,0))". The matrix

e"™ can be computed from the formula

, _ « (tAk)n
e —ano—nl (3-8)

When the matrix 4, is symmetric, it is

diagonalizable and one can find an orthogonal
k x k matrix Q and a diagonal kxk matrix D such

that D = Q" 4,0 . Note that the column vectors of the
orthogonal matrix Q are eigenvectors of 4, and the
diagonal matrix D =diag(4,) is given by the
corresponding eigenvalues of 4, . In this case the

solution v(¢) can be obtained from
(1) = Q' diag (e )Qv(0) (3-9)

It can be shown easily that the proposed discrete
heat density converges to the real heat density if a
smooth curve is sampled finer and finer. This is also
true for the curvature and torsion as one can see
from the numerical simulations in section 5.

To illustrate our ideas, we consider the digital
curve to be uniformly distributed and closed.
Namely, the digital curve
C={p,eR :i=0,,-k} has constant distances
h:”p, —p.,| for alli=0,1,--k-1 and p,=p,,
An  easy computation gives the kxk
matrix 4, =—(a,) with a,=-2 , a,=1 when
|i—j| =2 moé(%) ; otherwise, a, =0.

In particular, the matrix 4, is symmetric and

diagonalizable.

Therefore to study the discrete heat equation
(3-5), we are led to the matrix eigenvalue problem

Av=Av. (3-10)

To obtain the eigenvalues and their corresponding

eigenvectors of 4, , we can transform the
matrix 4, into a double stochastic matrix B, by

B, =214, +1, (3-11)

where [, is the kxk identity matrix. This

double

means that the stochastic

matrix B, = (b,) has b, =% when |i - j| =2 mod(k) ;

otherwise, =0.
When k is odd, we can permute the order of the
coordinates by 1,3,---,k,2.4,---,k—1 to obtain a

new double stochastic matrix C, =(c,) with

has ¢, =% when |i = j|:1 mod(k) ; otherwise,

c, =0
if
0 1 0 0 0 1
2 2
J 0 X 0 0 0
) 2
0 l 0 0 0 O
2
C= : I
0 0 0 0 1 0
2
0O 0 O l 0 l
2 2
1 0 0 0 1 0
L2 2 J

We have C,=P'B,QP for some permutation

matrix P . We note that the graph associated with the
double stochastic matrix C, is a k-polygon (see

Figure 1).

Figure 1: k-polygon.

When £k is even, we can permute the order of the
coordinates by 13,---,k—124,---,k and obtain a
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new double stochastic matrix D, . Indeed, the
matrix D, decomposes into two blocks:

c, 0
D=l yg ¢

2

(3-12)

where C, ,

is as above. The graph associated with the
double stochastic matrix D, is two separated
(k/2)-polygons (see Figure 2).

This gives that the eigenvalues and their
corresponding eigenvectors of D, can be obtained

from those of the double stochastic matrix C . The

k2

double stochastic matrix C, has the eigenvalues

A, =cos(2jr/n), j=0,1,..,n-1. (3-13)

See (Bjorck and Golub, 1997). Every eigenvalue
of the matrix C, has multiplicity 2 except the
eigenvalue 1, and ifn is even alsol. Therefore,
whenk is odd, the number 4 is also the eigenvalue
of the double stochastic matrix B, .In turn, the
matrix 4, has the eigenvalues:

1
A=
J 2h2

(cos(2jz/n)-1), j=0L...k—=1. (3-14)

Every eigenvalue of the matrix 4, has multiplicity 2
except the eigenvalue0 .
When £ is even, the matrix D, has the eigenvalues

A, =cos(djzlk), j=0l..k-1. (3-15)

Figure 2: (k/2)-polygons.

Every

eigenvalue of the matrix D, has

multiplicity 4 except the eigenvaluel, and if %

is even alsol. When % is odd, the eigenvaluel
has multiplicity2. Hence the matrix 4, has the

eigenvalues
A, :thz(cos(4j7z/k)—1),j =01...,k—-1. (3-16)

100

4 DISCRETE FRENET
FORMULAS FOR A DIGITAL
CURVE

In this section we shall propose an algorithm to
develop a discrete Frenet matrix for a digital curve.
Recall that a digital curve C in the 3D Euclidean
space  is an ordered set of points

C={p eR :i=12,-k}. To define the tangent
vector 7, and the normal vector 7,and the binormal

VCCtOfEi of the digital curve C at the point p,is the

first step to develop a geometric theory for digital
curves. To handle this, we need to formulate the
concept of the derivative of a vector field defined on
a digital curve C .

Consider a point p, in the digital curve C. We can

define the tangent vector 7, of C at the point p, by

S T |
- ; — Piy Pin — P
= 4-1
o, Pi— P +o, Py~ P ( )
||pi _pH" |pr+l _p,"

where @, and @, are the centroid weights given in

(3-3). Now the normal vector n,can be computed as

follows : First we compute the derivativez of the
tangent field 7, of C at the point p, by
- At i =1,
t = + o, .
||pi _pH” "pm _pi"

t., —1

i+l i

(4-2)

Note that the vector may not be perpendicular
to the tangent vector, . We can define the curvature
x,and the normal vector 71, of the digital curve C at
p:by

K =[6 @ -0
NG GRAD) *2
-]

As usual, the binormal VectorI;l. of the digital
curve Cat p, can be defined byEi =1 x7n,. Next
we consider the torsion 7, of the digital
curve C at p, via the derivative of the binormal

vector ﬁeldl;l. .
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We have
_'_‘ —w bi _bi—l +w bm _b,
N R0 R TRy

and the torsion 7, can be defined by, :l;,' -n,. The

(4-4)

discrete version of the Frenet formulas will then

have the form :

f| = at + K, (4-5)
ﬁz = asz + aZZﬁi + a235i (4_6)
Eiv = aSlZ‘ + Tﬁi + a3351 (4_7)

where the coefficients @, may not be zero. This is

due to the discrete effect of the digital curve C . We
define the discrete Frenet matrix of the digital
curve Cat p, tobethe 3x3 matrix:

a, a, 0
F=\a, a, a, (4-8)
a a a

31 32 33

where @, is given by equations (4-5), (4-6) and
(4-7).

S NUMERICAL SIMULATIONS

In this section, we will find the Frenet matrices of
the closed curves ( without boundary points ) and the
open curves ( with two boundary points ). For closed

curves, we choose the ellipses and C* Bezier curves.

For open curves, we choose the helix

4 (5-1)

s .
c(t) = (acos—,asin
c & c

witha,b >0and c=+/a’ +b*> . We shall compare
the error between the exact Frenet matrix and our
estimated discrete Frenet matrix by

[ RE—-F |

Error = ———— (5-2)
| RE ||

where RF is the exact Frenet matrix of the given
regular curve and ||0|| is the norm of matrix. We will

digitize these curves by two different kinds of
partitions -- uniform and non-uniform partitions. In
figures 3 to 8, the x-axis presents the number of
points of digital curves and the y-axis gives the
average of errors. We test 1,000 different random
curves in each partition for different size of points
and compute their average.

In figures 3 and 4, we show the numerical results
of closed curves and helix by uniform partitions.
From these results, the discrete Frenet matrix
approximates to the exact Frenet matrix very quickly.
In figures 5 and 8, we test the helix with uniform or
non-uniform partitions at the interior points and the
boundary points. These numerical simulations show
that our discrete method is very stable.
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Figure 3: Closed curves with uniform partitions. Figure 6: Boundary points with uniform partitions.
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Figure 5: Closed curves with non-uniform partitions. ’ . . . .-
Figure 8: Boundary points with non-uniform partitions.
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