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Abstract： In this note we shall discuss the heat equation and the eigenvalue problem for digital curves in the 3D 
Euclidean space. First, we shall introduce the derivative of a function along a digital curve by the weighted 
combination method. Then, we can define the Laplace of a function on a digital curve. The Frenet formulas 
for digital curves will also be discussed. Numerical simulations show our method will provide good 
estimations for the curvature and torsion.

1 INTRODUCTION 

An ordered set of points },,2,1|{ 3 kiRpC i ⋅⋅⋅=∈=  
is called a digital curve in the 3D Euclidean space 

3R . The digital curves can be obtained by the 
discretization of regular curves or from digital 
images. Understanding the geometric and 
differential properties of digital curves is an 
important topic in CAD or CAGD. In particular, the 
curvature or the heat flow on a regular curve C in the 
3D Euclidean space are important differential 
invariants in the theory of space curves and its 
applications to image processing and computer 
graphics. The curvature and torsion are determined 
by the differential of the tangent vectors and the 
binormal vectors of the curve C .  

In this paper we shall discuss a differential 
theory for digital curves in the 3D Euclidean space. 
We shall discuss the derivative of a function along a 
digital curve by the weighted combination method. 
We shall use the centroid weights in our algorithms. 
These weights were first proposed in (Chen and Wu, 
2004) to improve Taubin’s method for the estimation 
of curvatures on a triangular mesh in the 3D 
Euclidean space. Then, we shall investigate the heat 
flow and the eigenvalue problem on digital curves. 
In section four, we shall discuss the moving frame of 

a digital curve and obtain the discrete Frenet 
formulas. This method fits perfectly with the 
proposal given in (Rosenfeld and Klette, 2002) 
about the field of digital geometry.   Usually, the 
accurate estimation of curvatures at vertices of a 
digital curve plays as the first step for many 
applications such as simplification, smoothing, 
subdivision, visualization and image processing, etc. 
Our estimation is simple and very accurate as we 
shall illustrate them in the numerical simulations. 

2 THE LOCAL THEORY FOR 
REGULAR CURVES  

In this section we first recall some basic notions and 
results about the local theory of smooth regular 
curves in the 3D Euclidean space 3R . See (do Carmo, 
1976) for details. Consider a smooth regular curve 

))(),(),(()( szsysxsc = , ],0[ ls∈ with arc length 
parameter s .  

Given a function )(sf on )(sc , we can define the 
Laplacian )(sfΔ of f by 

)()(
2

2

sf
ds
dsf =Δ . (2-1) 
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The eigenvalue problem is given by 

The heat equation for the function ),( tsu is given by 
 

Next we discuss the curvature and torsion of the 
regular curve ))(),(),(()( szsysxsc = in 3R with arc 
length parameter s . The tangent vector 

))('),('),('()(' szsysxsc = , denoted by )(st
r

, is a unit 
vector since s is the arc length parameter. The 
number )()(' sst κ=

r
is called the curvature of c at s . 

At points where 0)( ≠sκ , a unit vector )(sn
r

in the 
direction )(' st

r
is well-defined by the 

equation )()()(' snsst
rr

κ= . The vector )(sn
r

is 
perpendicular to )(st

r
and is called the normal vector 

of c at s . The plane determined by the unit tangent 
vector )(st

r
and normal vectors )(sn

r
is called the 

osculating plane of c at s . At points where 0)( =sκ , 
the normal vector and hence the osculating plane are 
not defined. In what follows, we shall restrict 
ourselves to curves parametrized by arc length 
with 0)( ≠sκ for all ],0[ ls∈ . The unit 

vector )()()( snstsb
rrr

×= is normal to the osculating 
plane and will be called the binormal vector of c at s . 
The number )(' sb

r
measures the rate of change of 

the neighboring osculating planes of C at s . That is, 
)(' sb

r
 measures how rapidly the curves pulled 

away from the osculating plane of c at s in a 
neighborhood of s . The Frenet formulas are 

These Frenet formulas form a system of ordinary 
differential equations (ODE’s) for the vectors )(st

r
, 

)(sn
r

and )(sb
r

. We shall call the matrix  

the Frenet matrix of the curve c at s. 

3 A DISCRETE HEAT EQUATION 
FOR A DIGITAL CURVE 

In this section we shall introduce a discrete heat 
equation for a digital curve in the 3D Euclidean 
space 3R . A digital curve C  in the 3D Euclidean 
space is an ordered set of points 

}.,,2,1:{ 3 kiRpC i ⋅⋅⋅=∈=  Consider a 
function f on the digital curve C . We can define the 
discrete derivative of the function f by: 

when the point ip is an interior point. When ip is a 
boundary point i.e., 0=i or k , we take the one-side 
derivative:  

and 
 

Indeed, when we know how to compute the 
derivatives of functions on a digital curve C , we can 
also compute their higher order derivatives. From 
the experience given in (Chen and Wu, 2004), (Chen 
and Wu, 2005) and (Wu, Chen and Chi 2005), we 
shall use the centroid weights for the 
weights 1ω and 2ω . Namely, for the digital 
curve },,2,1:{ 3 kiRpC i ⋅⋅⋅=∈= , we have at the 
point ip  
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From this we can consider the discrete heat equation 
on C for a function ),( tpu i : 

If we consider the vector T
i tputv )),(()( = in kR , a 

direct computation of (3-4) will lead to a system of 
ODE’s: 

where )( ijk aA = is a kk × matrix with constant ija . 

The constant ija depends only on the points on C . 
From the theory of differential equations, the 
solution for T

i tputv )),(()( = will have the form: 

)0()( vetv ktA=  (3-7) 
with the initial value T

ipuv ))0,(()0( = . The matrix 
ktAe can be computed from the formula 

∑∞

=
=

0 !
)(

n

n
ktA

n
tAe k  (3-8) 

When the matrix kA is symmetric, it is 
diagonalizable and one can find an orthogonal 

kk × matrix Q and a diagonal kk ×  matrix D such 
that QAQD k

T= . Note that the column vectors of the 
orthogonal matrix Q are eigenvectors of kA and the 
diagonal matrix )( jdiagD λ= is given by the 
corresponding eigenvalues of kA . In this case the 
solution )(tv can be obtained from  

)0()()( QvediagQtv jtT λ=  (3-9) 

It can be shown easily that the proposed discrete 
heat density converges to the real heat density if a 
smooth curve is sampled finer and finer. This is also 
true for the curvature and torsion as one can see 
from the numerical simulations in section 5. 

To illustrate our ideas, we consider the digital 
curve to be uniformly distributed and closed. 
Namely, the digital curve 

},,1,0:{ 3 kiRpC i ⋅⋅⋅=∈= has constant distances 
1+−= ii pph for all 1,,1,0 −⋅⋅⋅= ki  and kpp =0 , 

An easy computation gives the kk ×  
matrix )(

4
1

2 ijk a
h

A = with 2−=iia , 1=ija  when 
2=− ji )mod(k ; otherwise, 0=ija .  

In particular, the matrix kA is symmetric and 
diagonalizable.  

Therefore to study the discrete heat equation 
(3-5), we are led to the matrix eigenvalue problem 

To obtain the eigenvalues and their corresponding 
eigenvectors of kA , we can transform the 
matrix kA into a double stochastic matrix kB by 

where kI is the kk ×  identity matrix. This 
means that the double stochastic 

matrix )( ijk bB = has
2
1

=ijb when 2=− ji )mod(k ; 

otherwise 0=ijb . 
When k is odd, we can permute the order of the 

coordinates by 1,,4,2,,,3,1 −kk LL  to obtain a 
new double stochastic matrix )( ijk cC =  with 

has
2
1

=ijc when 1=− ji )mod(k ; otherwise, 

0=ijc : 
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We have QPBPC k
T

k = for some permutation 
matrix P . We note that the graph associated with the 
double stochastic matrix kC is a k-polygon (see 
Figure 1). 

 
Figure 1: k-polygon. 

When k  is even, we can permute the order of the 
coordinates by kk ,,4,2,1,,3,1 LL − and obtain a 

u
x

u
t 2
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∂
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=
∂
∂ . (3-5) 

)()( tvAtv
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d

k=  (3-6) 

vvAk λ= . (3-10) 

kkk IAhB += 22  (3-11) 
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new double stochastic matrix kD . Indeed, the 
matrix kD decomposes into two blocks: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

2

2

0

0

k

k

k C

C
D  (3-12) 

where 2/kC is as above. The graph associated with the 
double stochastic matrix kD is two separated 
(k/2)-polygons (see Figure 2). 

This gives that the eigenvalues and their 
corresponding eigenvectors of kD can be obtained 
from those of the double stochastic matrix 2/kC . The 
double stochastic matrix nC has the eigenvalues  

)/2cos( njj πλ = , 1,...,1,0 −= nj . (3-13) 

See (Bjorck and Golub, 1997). Every eigenvalue 
of the matrix nC has multiplicity 2 except the 
eigenvalue 1 , and if n is even also 1 . Therefore, 
when k is odd, the number jλ is also the eigenvalue 
of the double stochastic matrix kB .In turn, the 
matrix kA has the eigenvalues: 

)1)/2(cos(
2
1

2
−= nj

hj πλ , 1,...,1,0 −= kj . (3-14) 

Every eigenvalue of the matrix kA has multiplicity 2  
except the eigenvalue 0 . 

When k is even, the matrix kD has the eigenvalues 

)/4cos( kjj πλ = , 1,...,1,0 −= kj . (3-15) 
 

 
Figure 2: (k/2)-polygons. 

Every eigenvalue of the matrix kD has 

multiplicity 4 except the eigenvalue1 , and if 2
k  

is even also1 . When 2
k  is odd, the eigenvalue1  

has multiplicity2. Hence the matrix kA has the 
eigenvalues 

4 DISCRETE FRENET 
FORMULAS FOR A DIGITAL 
CURVE 

In this section we shall propose an algorithm to 
develop a discrete Frenet matrix for a digital curve. 
Recall that a digital curve C in the 3D Euclidean 
space is an ordered set of points 

}.,,2,1:{ 3 kiRpC i ⋅⋅⋅=∈= To define the tangent 
vector it

r
and the normal vector in

r
and the binormal 

vector ib
r

of the digital curve C at the point ip is the 
first step to develop a geometric theory for digital 
curves. To handle this, we need to formulate the 
concept of the derivative of a vector field defined on 
a digital curve C .  
Consider a point ip in the digital curve C . We can 
define the tangent vector it

r
of C at the point ip  by 

 
where 1ω and 2ω are the centroid weights given in 
(3-3). Now the normal vector in

r
can be computed as 

follows： First we compute the derivative '
it
r

of the 
tangent field it

r
of C at the point ip by 
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Note that the vector '
it
r

may not be perpendicular 
to the tangent vector it

r
. We can define the curvature 

iκ and the normal vector in
r

of the digital curve C at 

ip by 

As usual, the binormal vector ib
r

of the digital 

curve C at ip  can be defined by iii ntb
rrr

×= . Next 

we consider the torsion iτ of the digital 
curve C at ip via the derivative of the binormal 

vector field ib
r
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We have 

and the torsion iτ can be defined by iii nb
rr
⋅= 'τ . The 

discrete version of the Frenet formulas will then 
have the form： 

where the coefficients ija may not be zero. This is 
due to the discrete effect of the digital curve C . We 
define the discrete Frenet matrix of the digital 
curve C at ip  to be the 33×  matrix: 

where ija is given by equations (4-5), (4-6) and 
(4-7). 

5 NUMERICAL SIMULATIONS 

In this section, we will find the Frenet matrices of 
the closed curves ( without boundary points ) and the 
open curves ( with two boundary points ). For closed 
curves, we choose the ellipses and 2C Bezier curves. 
For open curves, we choose the helix 

),sin,cos()(
c
b

c
sa

c
satc =  (5-1) 

with 0, >ba and 22 bac += . We shall compare 
the error between the exact Frenet matrix and our 
estimated discrete Frenet matrix by  

||||
||||

RF
FRFError −

=  (5-2) 

where RF is the exact Frenet matrix of the given 
regular curve and • is the norm of matrix. We will 
digitize these curves by two different kinds of 
partitions -- uniform and non-uniform partitions. In 
figures 3 to 8, the x-axis presents the number of 
points of digital curves and the y-axis gives the 
average of errors. We test 1,000 different random 
curves in each partition for different size of points 
and compute their average.  

In figures 3 and 4, we show the numerical results 
of closed curves and helix by uniform partitions. 
From these results, the discrete Frenet matrix 
approximates to the exact Frenet matrix very quickly. 
In figures 5 and 8, we test the helix with uniform or 
non-uniform partitions at the interior points and the 
boundary points. These numerical simulations show 
that our discrete method is very stable.  
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Figure 3: Closed curves with uniform partitions. 
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Figure 4: Interior points with uniform partitions. 
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Figure 5: Closed curves with non-uniform partitions. 
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Figure 6: Boundary points with uniform partitions. 
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Figure 7: Interior points with non-uniform partitions. 
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Figure 8: Boundary points with non-uniform partitions.

 

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

102


