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Abstract: We present a practical implementation of a cell projection algorithm for interactive visualization of large
volumetric data sets using programmable graphics cards. By taking advantage of the data regularity, we can
avoid computing some steps of the original algorithm with no quality loss. Furthermore, performance is
increased since more than half the processing time is dedicated only for rendering. We also provide two tools
for better user interactivity, one for transfer function editing and another for volume clipping. Our algorithm
generates high quality images at a rendering speed of over 5.0 M Tet/s on current graphics hardware.

1 INTRODUCTION

A challenging problem in medical and scientific visu-
alization is the interactive rendering of large 3D data
sets. In medical imaging, for example, most data sets
are regular (or structured) grids, usually ranging be-
tween 2563 and 5123 voxels. An interactive visualiza-
tion system is very important when analysing these
data sets. Efficiency is crucial for time-critical diag-
nostics, as well interactive manipulation of the vol-
ume data.

On the other hand, irregular (or unstructured)
grids are typically used in scientific visualization such
as geological inspection, fluid simulation, among oth-
ers applications. Nevertheless, by applying a pre-
processing step, irregular data can be adapted to a reg-
ular grid. This process, known as voxelization (Kauf-
man and Shimony, 1986) (Prakash and Manohar,
1995), typically undersamples or oversamples some
portions of the volume. Better sampling strategies
have been proposed by (LaMar et al., 1999) (I. Boada,
2001) to improve the quality of the output grid.

Conversely, approaches capable of handling irreg-
ular grids, such as the Projected Tetrahedra (PT) algo-
rithm, can be easily applied to structured data, since
uniformly sized voxels may be regarded a special case
of the more general irregular grids. This, however, is
generally a bad idea since much of the computation in

such algorithms is dedicated to classifying and orga-
nizing voxels.

We present an implementation of the PT algorithm
proposed by (Shirley and Tuchman, 1990) in a spe-
cific context, where projection and sorting computa-
tions costs are virtually eliminated. More than 60% of
the time is dedicated only to the rendering pipeline.

The remainder of this paper is organized as fol-
lows: we discuss previous work in Section 2, followed
by a quick overview of the PT algorithm in Section 3.
We then describe our approach in Section 4. In Sec-
tion 5 we present two tools for interactive manipu-
lation of the volume data. Results are given in Sec-
tion 6, and some conclusions are drawn in Section 7.

2 PREVIOUS WORK

There are many different approaches for direct
volume rendering in the literature (Kaufman and
Mueller, 2005): cell projection, ray casting and splat-
ting. With the availability of programmable cards,
new algorithms were proposed in order to exploit
Graphics Processing Units (GPUs) for interactive vol-
ume rendering.

Many cell projection algorithms have been pro-
posed for volume rendering on the GPU. Our ap-

312
Maximo A., Marroquim R., Farias R. and Esperança C. (2007).
GPU-BASED CELL PROJECTION FOR LARGE STRUCTURED DATA SETS.
In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - GM/R, pages 312-319
DOI: 10.5220/0002082503120319
Copyright c© SciTePress



proach is a variation of the GPU-based implemen-
tation of the Projected Tetrahedra technique (Marro-
quim et al., 2006).

The first PT implementation on GPU, called
GATOR, was proposed by (Wylie et al., 2002). The
GATOR algorithm is fast yet redundant, since for
every vertex computation on the GPU all other tetra-
hedron’s vertices must be made available.

One major drawback of the PT-based algorithms is
the need of a visibility sorting of the cells. This prob-
lem has been specifically addressed on many works,
e.g. (Williams, 1992) (Stein et al., 1994) (Comba
et al., 1999), but it is not focused in this paper since
sorting voxels of a regular grid is straightforward.

The Hardware-Based Ray Casting (HARC) algo-
rithm (Weiler et al., 2003a) achieves high quality and
fast volume rendering using the GPU. However, the
memory consumption of the HARC algorithm is high
compared to other cell projection algorithms. A hy-
brid solution between cell projection and ray cast-
ing is the View Independent Cell Projection (VICP)
(Weiler et al., 2003b). By performing ray casting
only inside each projected cell, the VICP achieves
high quality image while consuming less memory
than HARC.

The main idea of the splatting algorithms, intro-
duced by (Westover, 1990), relies on the image area
influenced by each 3D data set voxel. This area,
know asfootprint, is a 2D map of 3D reconstruction
kernels of the volume. The extension of Elliptical
Weighted Average (EWA) volume splatting (Zwicker
et al., 2001) proposed by (Chen et al., 2004), accel-
erates the rendering by storing the splat and volume
data on the GPU memory. The main drawbacks of
this method are the aliasing and blurring effects in the
final image.

Level-of-Detail (LOD) techniques may also be
used in conjunction with volume rendering algo-
rithms. The idea is to undersample the 3D data set in
order to reach a specific frame rate. For instance, in
the work of (Callahan et al., 2005), interactive frame
rates are achieved by lowering the quality of the im-
age.

The work of (Roettger et al., 2003) combines ray
casting and the exploit of spatial coherence. Based
on the idea of (Danskin and Hanrahan, 1992), perfor-
mance is improved by early ray termination and space
leaping. Pre-integration techniques are used to obtain
high quality images.

In this paper, we use the partial pre-integration
technique proposed by (Moreland and Angel, 2004)
to obtain high quality images while allowing interac-
tive transfer function editing. Additionally, we adapt
the concept of footprint from splatting. In particu-

lar, we consider one unit of the volume data, i.e. a
hexahedron, as a footprint. This means that the cell
projection is only computed for one hexahedron and
replicated to the rest of the volume. With this, the
computational cost is concentrated on the actual ren-
dering of the triangles.

3 PROJECTED TETRAHEDRA
ALGORITHM

Figure 1: The different classifications of the projected tetra-
hedra.

The projection in our approach is based on the PT al-
gorithm of (Shirley and Tuchman, 1990), where the
tetrahedra are projected to screen space and composed
in visibility order. The tetrahedra’s projected shapes
are classified depending on the different number of
generated triangles (see Figure 1). With this classi-
fication, the colors and opacity values of the trian-
gle vertices are evaluated. An approximation of the
ray integral is then used to compute the color of each
triangle fragment. The final pixel color is computed
by summing all the fragment contributions in back-
to-front order.

For each projection, thethick vertex is defined as
the point of the ray segment that traverses the maxi-
mum distance through the tetrahedron. All other pro-
jected vertices are calledthin vertices, as no distance
is covered. For class 2 projections (see Figure 1), the
thick vertex is computed as the intersection between
the front and back edges, while for the other classes
it is one of the projected vertices. The scalar values
of the ray’s entry and exit points are named ass f and
sb (see Figure 2). Thin vertices have the same values
for s f andsb, while for thick vertices these values may
have to be interpolated from those of the thin vertices.
The distance traversed by the ray segment is defined
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as the thicknessl of the cell.

Figure 2: The ray integration parameters inside one tetrahe-
dron.

Three values –s f , sb and l – are interpolated in-
side each triangle of the projected tetrahedron. To
compute the fragment color, the original PT algorithm
computes the average betweens f andsb. The RGB
color andτ are then retrieved from the transfer func-
tion by this average scalar. On the other hand, the
opacity (α) value is evaluated asα = 1− e−τl, where
τ is the extinction coefficient andl is the interpolated
thickness for that fragment.

Finally, the fragments are composed in back-to-
front order. For each new color added to the frame
buffer, the new final color is computed asC f b =
αCnew + (1−α)C f b. C f b is the color already in the
frame buffer, whileCnew andα are the new color and
opacity values computed for the fragment.

4 ALGORITHM OVERVIEW

The main idea of this work is to use the PT algorithm
taking advantage of the volume data regularity. The
algorithm consists of four steps, where the first three
steps take place in the CPU, whereas the last is per-
formed by the GPU (see Figure 3). First, the pro-
jection of a single hexahedron is determined by split-
ting it into five tetrahedra. Then, a traversal order
for the whole volume is determined in constant time.
The remaining step on the CPU consists of allocating
the volume information in a Vertex Array structure.
Lastly, triangles corresponding to the projected tetra-
hedra are rendered and composited in back-to-front
order using the GPU.

Figure 3: Algorithm overview.

4.1 Basis Hexahedron Projection

Since the PT algorithm requires a tetrahedral mesh as
input, the volume data must be preprocessed by subdi-
viding each hexahedron into five tetrahedra. We term
each such set of tetrahedra avolume unit or volunit for
short. A key observation is that, by rendering the vol-
ume in orthographic projection, allvolunits are pro-
jected to the screen in exactly the same way. Thus, to
avoid redundant computation, the projection parame-
ters are computed only once for abasis hexahedron.

Eachbasis tetrahedron is projected to screen co-
ordinates and its projection class is determined by
means of four cross-product tests, refer to (Marro-
quim et al., 2006) for more details. Then, the thick
vertex and the front and back scalar values can be
computed with at the most two segment intersections
(depending on the class).

For each of the fivebasis tetrahedra the following
projection values are computed and stored:

• basis projection class,

• basis projected vertices coordinates,

• basis thick vertex coordinates,

• basis intersection parameters for computing the
front and back scalar values,

• basis rendering order.

4.2 Rendering

To render the volume data, each tetrahedron is ren-
dered as a triangle fan. The primitives are drawn in
back-to-front order and the resulting pixel fragments
are composed using a blend function. Thebasis hexa-
hedron is iteratively displaced to the position of each
volunit, and the storedbasis projected vertices are
used to compose the tetrahedra triangles. Each tri-
angle fan is rendered with the number of triangles rel-
ative to itsbasis projection class following the basis
rendering order. The first vertex of the fan, its central
node, is thebasis thick vertex.

Even though the geometry can be resolved by just
displacing thebasis hexahedron, the colors and opac-
ity values are unique for each vertex and must be com-
puted on the fly for eachvolunit. In fact, the final
color is computed only in the GPU’s fragment shader.
The values passed as the vertex color to the render-
ing pipeline are its front and back scalar values and
its thickness.

For every vertex other than the thick vertex, the
scalar front and back values are the same (the orig-
inal scalar of the volume data). Furthermore, their
thickness value is always zero since the ray traverses
no length of the tetrahedron at these vertices. On
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the other hand, the scalar values for the thick ver-
tex are calculated using thebasis intersection para-
meters, while the basis thickness was already com-
puted for eachbasis tetrahedron. Figure 4 illustrates
a rendered triangle with color values.

Figure 4: The color values for a class 1 projection case.

4.2.1 Vertex and Fragment Shaders

Vertex coordinates are computed on the fly by the ver-
tex shader based on the 3 integer indices of the ver-
tex in the lattice. This computation requires several
parameters previously determined for thebasis hexa-
hedron and passed to the shader as global values, or
“uniforms” in GLSL parlance.

Each grid vertex is rendered multiple times, once
for each incident tetrahedron. Thus, along with
the vertex grid coordinates, additional information is
coded in the vertex normal, namely thetetid and the
vertid . The tetid is stored in thex normal coordinate
and identifies which of the five tetrahedra is being ren-
dered. Thevertid is stored in they normal coordinate
and identifies the vertex of the tetrahedron. It should
be noted that this coding scheme shifts most of the
computational load from the CPU to the GPU.

The fragment shader receives trilinearly interpo-
lated vertex colors (s f , sb, l) for each triangle frag-
ment. The interpolated scalar values are used to
lookup the chromaticity and opacity values in a trans-
fer function table. This table is stored in a 1D texture
with 256 positions. For each scalar value the trans-
fer function texture is accessed to determine its corre-
spondent RGBA color.

The Figure 5 summarizes the algorithm pipeline
in the GPU. Each volume hexahedron is sent to the
GPU as five triangle fans, while each fan corresponds
to one tetrahedron projection. The vertex shader uses
the basis hexahedron information, stored globally as

uniform variables, to correctly displace each vertex.
The rasterization process interpolates the color infor-
mation inside each triangle (see Figure 4), and the fi-
nal fragment color is computed.

Figure 5: Algorithm pipeline. The 5 projected basis ver-
tices, including the thick vertex, are read in the vertex
shader. While the fragment shader reads 3 textures: ex-
ponential, transfer function, and partial pre-integration.

4.2.2 Fragment Color Computation

Given the front and back colors and thickness values,
there are some options for determining the final frag-
ment color. The simplest and fastest way is to com-
pute the chromaticity value as the average between
the front and back colors. The opacity is computed as
α = 1− e−τl, whereτ is the mean alpha value, andl
is the thickness. Instead of computing the exponen-
tial value on the fly, a faster way is to use another 1D
texture, namely exponential texture, as a lookup table
for e−u, with u sampled over interval[0,1].

Another way to compute the final color is by actu-
ally integrating the colors along the ray traversing the
tetrahedron. However, in practical terms, this is in-
feasible. The pre-integration method (Roettger et al.,
2000) is a way to achieve this result by storing the in-
tegral values for different{s f ,sb, l} in a table. A sin-
gle lookup operation returns the final fragment color.
Nevertheless, this table is computed using the trans-
fer function implicitly, and must be recomputed every
time it changes. Since generating the pre-integration
table is an expensive operation, this cannot be done in
interactive times.

To overcome this disadvantage, the partial pre-
integration approach introduced by (Moreland and
Angel, 2004) computes a table independent of the
transfer function. The so-calledψ table does not de-
pend on any attribute of the visualization, therefore it
is pre-compiled within our implementation.

In the fragment shader, the colors associated with
s f andsb are retrieved from the transfer function tex-
ture. TheC f andCb together with the thickness value
l are used to compute the indices of theψ table, stored
in a 2D texture. The value retrieved from this table is
then used to compute the final fragment color.

In contrast with the original PT method, the partial
method is slower than computing the final color using
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the scalar front and back average. Moreover, the use
of partial pre-integration, instead of pre-integration,
allows interactive transfer function editing. Every
time the function is updated, the texture is reloaded
into the GPU memory.

4.2.3 Optimizing with Vertex Arrays

To achieve even higher frame rates, we make use
of the optimized OpenGL functionglMultiDrawEle-
ments. The CPU–GPU transfer load is reduced by
keeping some common data amongvolunits stored in
the GPU memory. For eachvolunit three arrays are
read by this function: a vertex, a color, and a normal
array. Each array has fixed size and contains five ver-
tices for each of the five tetrahedra (4 vertices plus the
thick vertex).

All coordinates, colors and normals are passed ex-
actly the same way as explained in the last section.
However, the vertex and color arrays must be recom-
puted for eachvolunit while the normal array can be
computed only once since it is valid for allvolume
units.

The order of the vertices of the triangle fans must
be passed as an array argument to the function. Again,
five arrays of indices are created once for allvolunits
with thebasis rendering order.

Figure 6: The vertex, color, and normal arrays structure.

Figure 6 illustrates an example of the arrays struc-
ture. In this case the third tetrahedron is of class 2 (six
vertices).

4.3 Sorting

One disadvantage of the PT algorithm is that the
primitives must be rendered in an ordered way, typ-
ically back-to-front. Sorting millions of tetrahedra
can be achieved in at most O(n) using auxiliary
data structures and by performing more costly pre-
processing operations (Williams, 1992) (Stein et al.,
1994) (Comba et al., 1999). However, we can again
profit from the fact that the data is regularly spaced
and thus implicitly sorted as a 3D array. All that
remains is determining a traversal rule for this data,
which can be done in constant and negligible time. In
fact, only 8 possible traversal orders are sufficient to
render the volume from any possible angle.

Let ~v = {vx,vy,vz} be the viewing vector, i.e, a
vector pointing to the observer. Then, a positivevx in-
dicates that thevolunits must be traversed in ascend-
ing order ofx indices, whereas a negativevx would
indicate a descending order. A similar rationale may
be used for the other axes. Note that the relative or-
der in which the axes are traversed does not matter
for regular data, that is, iterating in the orderx, y and
z will produce the same result as iterating inz, y and
x or any other permutation.

5 VOLUME INTERACTION

The interaction with the volume data is improved with
two manipulation features: interactive transfer func-
tion editing and volume clipping.

The first allows the user to interactively manipu-
late control points of the transfer function. Every time
a change occurs, the transfer function texture is re-
computed and uploaded again to the fragment shader.
The brightness of the image can also be adjusted and
acts as a global opacity factor.

The clipping tool acts directly on the volume im-
age. By selecting rectangular areas, the volume can
be trimmed and smaller features enlarged. The only
limitation is that the clipping must be parallel to one
of the volume’s bounding box sides to ensure that the
regular properties are maintained.

6 RESULTS

In the previous sections, we have described an imple-
mentation of the PT algorithm for regular data using
vertex and fragment shaders. Our prototype was pro-
grammed in C++ using OpenGL 2.0 with GLSL under
Linux. Performance measurements were made on a
Intel Pentium IV 3.6 GHz, 2 GB RAM, with a nVidia
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GeForce 6800 256 MB graphics card and a PCI Ex-
press 16x bus interface.

Some results for different data sets are shown in
Table 1. All timings were taken with a 5122 viewport
and considering that the model is constantly rotat-
ing. The rotation procedure is important to change be-
tween different projection classes, since parallel ren-
dering generates less triangles.

The number of vertices (# Verts) and tetrahedra (#
Tet) depends on the dimension of the original regular
data set. Performance measures are given in frames
per second (fps) and millions of tetrahedra per second
(M tet/s) for each data set. In fact, this last column
contains two values: the first is the nominal number
of tetrahedra per second, including those which do
not contribute to the final image, while the second is
the effective number, i.e., the tetrahedra actually ren-
dered.

Table 1: Average frames and tetrahedra per second.

Data set # Verts # Tet fps M tet/s

Fuel 262 K 1.2 M 70.78 88.5/5.99
ToothC 1 M 5 M 1.22 13.1/6.30
Tooth 10 M 52 M 0.24 12.7/6.61
Foot 16 M 83 M 0.81 67.7/6.23
Skull 16 M 83 M 0.61 51.7/6.25

Aneurism 16 M 83 M 2.42 201/5.35

We use five different data sets to measure our al-
gorithm (VolVis, 2006). The simulation of fuel injec-
tion, computed tomography of a tooth, the x-ray scan
of a human foot, skull and aneurism. The row labeled
ToothC corresponds to the original tooth tomography
clipped with our tool.

The value for tetrahedra per second (tet/s) given
in Table 1 only counts the tetrahedra which were ac-
tually rendered, sincevolunits with zero opacity are
discarded. The models rendered with our algorithm
are shown in Figure 7.

The timing for the vertex array setup and render-
ing are given in Table 2. In our algorithm, the aver-
age time spent in rendering is more than 60% of the
total time. It should be noted that as the time spent
in rendering the volume becomes closer to 100%, the
algorithm times will be bound by the graphics card
performance (Roettger and Ertl, 2003).

7 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented a direct volume ren-
dering algorithm, based on the PT method, that takes

Table 2: Setup and render times.

Data set Setup Render % Total

Fuel 0.005 s 0.009 s 64.28 %
Tooth 1.377 s 6.484 s 82.47 %
Foot 4.556 s 9.074 s 66.57 %
Skull 4.606 s 8.593 s 65.10 %

Aneurism 0.199 s 0.210 s 51.34 %

advantage of the data regularity. The graphics hard-
ware is also explored to increase frame rates up to 6.6
M Tets/s while generating high quality images.

No extra data structures are created other than the
volume data itself. The only limitation is that the
data set must fit in main memory to avoid swapping.
We’ve also created a clipping interface to easily cut
away undesirable parts of the volume, increasing the
frames rates and allowing better visualization and in-
teractivity.

Currently, each hexahedron is divided into five
tetrahedra, each of which is rendered in the worst case
as 4 triangles or a maximum of 20 triangles pervolu-
nit. As future work we are investigating ideas to ren-
der less primitives byvolume units.

Another improvement being considered consists
of enhancing the visualization by mixing in a Phong
lighting model (Max, 1995) where the gradient field
is used to estimate normal vectors.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Data sets : Foot (a), Tooth (clipped) (b), Skull (side view) (c), Skull (Bottom view) (d), Aneurism (e), Fuel injection
(f).
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