
A NOVEL DYNAMIC GREEDYDUAL-SIZE REPLACEMENT
STRATEGY TO MAKE TIME-CRITICAL WEB APPLICATIONS

SUCCESSFUL

Allan K. Y. Wong, Jackei H. K.Wong, Wilfred W. K. Lin
Department of Computing, Hong Kong Polytechnic University, Hong Kong SAR

Tharam S. Dillon
Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology, Australia

Keywords: Dynamic GreedyDual-Size, dynamic cache size tuning, hit ratio, time-critical web applications.

Abstract: The GreedyDual-Size (GD-Size) replacement algorithm is a static-cache-size approach that yields a higher
hit ratio than the basic LRU replacement algorithm. Yet, maintaining a given hit ratio needs dynamic cache
size tuning, and this can only be achieved by the MACSC (model for adaptive cache size control) model so
far. Since the GD-Size yields a higher hit ratio than the basic LRU, it is proposed in this paper to replace the
LRU unit in MACSC with the GD-Size algorithm. The replacement creates a new and more efficient
dynamic cache size tuner, Dynamic GreedyDual-Size (DGD-Size).

1 INTRODUCTION

In this paper mobile business (m-business) is used as
an example to show how caching is related to time-
critical web application success. M-businesses
involve e-shops operating on the mobile Internet,
and the key issue is how to galvanize customers
quickly within their short attention spans (Venkatesh
2003). In fact, the galvanization power depends on
consistent short client/server service roundtrip time
(RTT). This power can be magnified by techniques.

Caching performance generally ties in with the
cache hit ratio, higher the better. Although
conventional caching strategies (Podlipnig 2003)
may produce high hit ratios, they cannot maintain
them because they work with a fixed-size cache. In
contrast, the novel dynamic GreedyDual-Size
(DGD-Size) replacement strategy proposed in this
paper works with a variable cache size, which is
adjusted adaptively on the fly. The DGD-Size
strategy normally maintains a hit ratio higher than
the given one. For this reason it is tremendously
suitable for time-critical web applications such as m-
businesses and telemedicine setups.

A higher hit ratio (i.e. higher chance of finding
the requested object in the proxy cache) means a

shorter RTT because it reduces the need for cyber
foraging (Garlan 2002). If the proxy server cannot
find the requested object in its local cache, it has to
enlist help from other remote data sources (e.g.
collaborating nodes, proxies, or web servers over the
Internet). This enlisting process is cyber foraging,
which involves the Internet domain name server
(DNS) and thus a longer delay. Let us visualize this
delay in terms of a m-business setup, which normally
has two phases: mobile commerce (m-commerce)
and electronic commerce (e-commerce).

a) M-commerce focuses on how to galvanize
customers effectively with attractive promotional
material. Via mobile devices (i.e. small-form-factor
(SFF) devices such as PDA and mobile phone) the
customers browse promotions to window-shop
electronically. Some customers may end up buying
goods from different e-shops and have their
transactions handled by the e-commerce phase. In m-
business, service RTT has two meanings: M-
commerce service RTT for promotional purposes:
This occurs between the customer and the “m-
commerce hub”, which is modeled as a proxy server
in Figure 1. This service RTT is the “first-leg” delay
in m-business.

17
K. Y. Wong A., H. K.Wong J., W. K. Lin W. and S. Dillon T. (2007).
A NOVEL DYNAMIC GREEDYDUAL-SIZE REPLACEMENT STRATEGY TO MAKE TIME-CRITICAL WEB APPLICATIONS SUCCESSFUL.
In Proceedings of the Second International Conference on e-Business, pages 17-22
DOI: 10.5220/0002106800170022
Copyright c© SciTePress

Figure 1: The two legs in the service RTT of a caching system.

b) E-commerce service RTT for transactional
purpose: This is the delay between the proxy server
and the e-shop, modeled as the remote e-shop in
Figure 1. This is the transaction-oriented “second-
leg” interaction in m-business.

To summarize, a complete m-business venture
should have two “legs” of service delays. If the
customer only window-shops electronically, solely
the first leg is involved. If an e-shop is involved (e.g.
checking details of the goods or paying
electronically), the second leg is also needed.

In reality, the m-commerce hub is an e-trading
(electronic trading) platform/firm, which charges a
fee for completing electronic transactions. For
effective promotional purposes the firm would
gather adverts of popular goods from different e-
shops and cache them to function like an electronic
catalogue. Then, the customers can browse these
adverts without the need to go directly to the e-
shops. Since only the first-leg delay is present, the
response is much faster. How the adverts are
selected, endorsed and organized is a matter of
business policy. For example, the successful
Japanese NTT DoCoMo i-mode (information mode)
m-business setup, which operates over the mobile
Internet by packet switching, maintains a list of e-
shops endorsed by the company with stringent
criteria.

The lower half (under the boundary) of Figure 1
models the generic 2-leg RTT for web applications.
The upper half describes how the m-business
operations fit into this generic model. The generic
proxy server represents the m-commerce hub, which
caches and manages the popular adverts

(descriptions of the goods including places of origin,
prices, and functions) as data objects. Customers
browse these data objects via mobile or SFF devices
(i.e. the first-leg RTT). When a customer buys goods
from the e-shops, it is the e-commerce phase (i.e. the
RTT second-leg in Figure 1) that handles the
electronic transactions of legal implications

2 RELATED WORK

Caching provides two main advantages as follows:
a) Shortening the service RTT between the client
and server: This is achieved because the cache hit
ratio υ reduces the involvement of the “second leg”
or leg-2 operation (Figure 1). For illustration
purposes let us assume: 8.0=υ , T as the average
service RTT for the “first leg” or leg-1 operation,
10T as the average service RTT for leg-2 operation
(due to the remoteness of the external data sources
such as web servers), and as the speedup due to
caching. Then, the speedup is

CS

]10*)1([
)10(

TT
TTSC υ−+

+= , where

)1(υ− is the miss ratio. With the assumption

above is equal to CS 7.33
11

)21(
11 ≈=+ T

T

fold. The speedup ratio increases with CS υ and is
independent of T.

ICE-B 2007 - International Conference on e-Business

18

b) Reducing the physical RTT: Since the number
of data objects to be transferred across the network
is reduced by caching, more backbone bandwidth is
automatically freed for public sharing. As a result
less chance of network congestion reduces the T
value above as a fringe benefit.

Our literature search indicates that researchers
are incessantly trying to find effective caching
techniques to achieve the following:

a) Yielding a high υ without deleterious effects:
The solution computation must be optimal in a real-
time sense. That is, this solution should be ready
before the problem has disappeared. Otherwise, the
solution would correct a spurious problem and
inadvertently lead to undesirable side effects (i.e.
deleterious effects) that cause system instability or
failure. The survey in (Wang 1999) presented the
various ways (deployed and experimental) whereby
υ can be enhanced. But, the most researched topic
is replacement algorithms, which decide which
objects in the cache should be evicted first to make
room for the newcomers.
b) Maintaining υ on the fly: This school of thought
is called dynamic cache size tuning (Wu 2004), and
the only published model, which works with a
variable cache size, is the MACSC (Model for
Adaptive Cache Size Control (Wong 2003). In
contrast, other extant dynamic caching techniques
work with a static/fixed cache size; they may yield a
high hit ratio but do not maintain it.

2.1 Replacement Algorithm

Some researchers compared the hit ratios by
different replacement algorithms that work with a
static cache size by trace-driven simulations (Cao
1997, Wasf 1996, Asawf 1995); LRU (least
frequently used), LFU (least frequently used), Size
(Williams 1996), LRU-Threshold, Log(Size)+LRU,
Hyper-G, Pitkow/Recker, Lowest Latency First,
Hybrid (Wooster 1997), and LRV (lowest relative
value). The simulations showed that the following
five consistently produce the highest hit ratios: a)
LRU (least frequently used), b) Size, c) Hybrid, d)
LRV (lowest relative value) and (e) GreedyDual-
Size (or GD-Size). The GD-Size yielded the highest
hit ratio of them all, but its hit ratio can dip suddenly
because of the fixed-size cache, which cannot store
enough data objects to maintain a high hit ratio. So
far, the only known model for dynamic cache size
tuning from the literature is the MACSC [Wong
2003]. All the available MACSC performance data,
however, was produced together with the basic LRU

replacement algorithm as a component. In effect, the
MACSC makes the LRU mechanism adaptive for
MACSC adjusts the cache size on the fly; the cache
size is now a variable. Since the previous experience
(Cao 1997) had confirmed that the GD-Size
algorithm yields a higher hit ratio than LRU, it is
logical to combine MACSC and GD-Size to create
an even more efficient caching framework. This
combination, which is proposed in this paper, creates
the novel dynamic GD-Size (DGD-Size)
replacement strategy. The DGD-Size should be able
to maintain a higher hit ratio than the previous LRU-
based MACSC’s.

2.2 The MACSC Concept

Figure 2 shows the popularity profile over time for
the same set of data objects. The A, B and C curves
represent the three instances of the profile changes.
These instances were caused by changes in user
preference towards certain data objects. Any such
change is reflected by the current profile standard
deviation, for example, SDA, SDB and SDB C. From
the perspective of a changeable popularity spread,
any replacement algorithm designed to gain a high
hit ratio with a fixed-size cache C works well only
for CL

S
SS ≤∇ . That is, the cache size

∇L accommodates the given hit ratio equal to L
times the standard deviation ∇ of the data object
popularity profile. If the expected hit ratio is for

S

1=L (i.e. 68.3%), then the cache size is
initialized accordingly. In the MACSC case, CS is
continuously adjusted with respect to the current
relative data object popularity profile on the fly.
Conceptually, CL∇ always holds; t

C is the
adjusted cache size at time t. From two successive
measured standard deviation values the MACSC
computes the popularity ratio (PR) for tuning the
cache size. The PR is also called the standard
deviation ratio (SR) as shown by equation (2.1),
where SR is the new cache size adjustment and
the current SR is inside the brackets.

CS

tSS ≤ S

CS

Figure 2: Spread changes of the relative data object
popularity profile over time.

)1.2...(*_ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇

∇
=

−−

−−

profilepopularityLast

profilepopularityThis
SROldSR CSCS

A NOVEL DYNAMIC GREEDYDUAL-SIZE REPLACEMENT STRATEGY TO MAKE TIME-CRITICAL WEB
APPLICATIONS SUCCESSFUL

19

Conceptually the MACSC should predict the
true/ideal mean μ and the true/ideal standard
deviation δ of the current popularity profile for
equation (2.2). In practice it is rare that the exact
values for μ and δ can be computed statistically.
To differentiate μ and δ from their estimated
values by the MACSC mechanism the following are
defined:
a) Estimated mean (x): This is calculated for a
sample of arbitrary size n, and the minimum value
for n should be greater than 10 or . 10≥n
b) Estimated standard deviation sx: This is
calculated from the same n data points above. In the
MACSC operation the finally settled sx is the ∇
value in equation (2.1) (i.e. accepted measurement
for the specified error tolerance).
If xδ is the measured standard deviation for the
curve plotted with a collection of x values (i.e.
means of different x samples), by the central limit
theorem the relationship (2.2) holds, provided that n
is large enough and there is a sufficient number of x
values. The estimated sx for every sample of size n
usually differs from xδ . Since estimating the
acceptable mean and the standard deviation of an
unknown distribution is a guessing game, it is
necessary to set a reasonable error tolerance. By
assuming the following tolerance parameters the
“ equationN − ” (2.3) can be derived [Chis92]:
a) Error tolerance E: It is the fractional/percentage
error about μ (ideal/true mean) by the estimated
mean x for a sample of n data points (i.e. x
variables) collected on the fly.
b) The tolerance k: It is the number of standard
deviations that x is away from the true mean μ and
still be tolerated (E and k connote same error).

3 THE DYNAMIC
GREEDY-DUAL SIZE
FRAMEWORK

The dynamic GreedyDual-Size (DGD-Size)
conceptual framework has two basic parallel tasks:
a) P1 - the original static GreedyDual-Size (GDS)
mechanism, and b) P2 - the MACSC dynamic cache
size tuner. P1 computes the utility of every newly
cached/accessed data object. If there is not enough
space to cache a new object, the object(s) in the
cache with the lowest utility minU will be evicted
one by one until enough space is made available. In
every eviction cycle the utilities of all the extant
objects are reduced by the current minU , as shown
by “step 2” of P1. The utility of an object is

recomputed when it is accessed. The parallel task P2
samples data points on the fly to capture the current
relative object popularity profile for the cache
[Wong03]. With these data points MACSC
computes the popularity ratio and the current cache
size adjustment SRCS to maintain the given hit ratio.
In fact, P1 works with the current by P2 in a
transparent manner.

SRCS

 Par (P1 and P2): /* P1 and P2 are 2 parallel
tasks of Dynamic GreedyDual-Size */

 { P1:
 step 1: dzdcpodU)()(+= ;
 /* To computes the utility U(d) of
 every newly cached/accessed object */
 step 2: While (not enough cache space)
 do { /* Evict object of lowest utility
 and the utilities of all cached
 objects minus */ minU
 Evict ();

minUO min)()(UdUdU −= }
 } /* End P1 –DGS mechanism */
 P2:
 {

 } /* End P2 - dynamic cache tuning */
 } /* end of DGD-Size domain*/

Figure 3: DGD-Size pseudo-program.

)2.2...(
nx

δδ =

)3.2)..((
N

kkE x
x

δδμ ==

4 EXPERIMENTAL RESULTS

Many experiments were performed to verify that the
novel DGD-Size framework (also referred to as the
EMCGDS - our research code name for the
“MACSC + GreedyDual-Size” implementation) can
really achieve the following:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇

∇
=

−−

−−

profilepopularityLast

profilepopularityThis
SROldSR L

L
CSCS *_

a) Produce and maintain a hit ratio higher than the
given one.
b) Outperform the conventional static GD-Size (or
simply GDS) approach.
c) Outperform the original dynamic “MACSC +
LRU” implementation (customarily called
EMCLRU).

These experiments were carried out on the IBM
Aglets mobile agent platform. The choice of the
platform was intentional because it is designed for
open Internet applications [Aglets], and this makes
the experimental results scalable. The preliminary

ICE-B 2007 - International Conference on e-Business

20

Caching Comparison

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Sa
sk

BUb1
9

BU27
2

Clar
kn

etS
ep

(5)

Clar
kn

etA
ug

(2)

Clar
kn

etS
ep

(3)

Clar
kn

etA
ug

(4)

Clar
kn

etA
ug

(1)

Clar
kn

etS
ep

(1)

Clar
kn

etS
ep

(4)

Clar
kn

etA
ug

(3)

Clar
kn

etA
ug

(5)

Clar
kn

etS
ep

(2)

Calg
ary

NASA
Aug

95
(5

EMCGDS

results from the experiments collectively indicate
that EMCGDS outperforms EMCLRU even though
the latter never ceased to maintain the given hit ratio
as the minimum. In contrast, the hit ratios produced
by the conventional GDS fluctuated drastically. The
Intel’s VTune Performance Analyzer measures the
execution times of EMCGDS, EMCLRU and GDS
for comparison purposes.

Figure 4 compares the average hit ratios by the
three different caching strategies: EMCDGS,
EMCLRU and GDS. Every point on a curve is the
average hit ratio for the whole data trace or trace
segment. The traces used were downloaded from the
web site [Trace]. A concise explanation of the
different traces marked on the axis is in the sequel:
a) BU-Web-Client: This trace contains records of
the HTTP requests and clients’ behaviour in the
Boston University Computer Science Department.
The time span was from 21 November 1994 to 8
May 1995. Two segments of this trace, namely,
BUb19 and BU272 were used to drive two separate
simulations.
b) Calgary-HTTP: This trace is from the
University of Calgary's Department of Computer
Science WWW server in Alberta, Canada. It covers
the period from 24 October1994 to 11 October 1995.
c) ClarkNet-HTTP: ClarkNet is an Internet service
provider in the Metro Baltimore Washington D.C.
area. This trace was divided into 10 segments as
shown in Figure 6.

d) NASA-HTTP: This trace covers the months of
July and August 1995 and contains the HTTP
requests to the NASA Kennedy Space Center’s
WWW server in Florida. It was divided into 6
segments for different simulations.
e) Saskatchewan-HTTP: This trace contains all
the HTTP requests to thee University of
Saskatchewan's WWW server in Canada.

The conclusion that can be drawn from Figure 4
is that EMCGDS consistently produces and
maintains a higher hit ratio than the given one
standard deviation (i.e. one ∇ or 68.3%). In fact, for
the selected traces (marked on the X-axis) the hit
ratio never fell below 87% for EMCGDS. This is
much better than the EMCLRU for which the hit
ratio oscillates seriously even though it never fell
below 70%. The worst performance is the
conventional static GDS because it works with a
static cache size. In the experiments all the cache

sizes were initialized to 500000 bytes for
comparison purposes.

Time-critical web applications usually need
fast client/server response for success. As indicated
by the results in Figure 4, EMCGDS undoubtedly
shortens the client/server service RTT more
dramatically than EMCLRU. For the same
assumptions made in the “Related Work” section,
the minimum speedup by EMCGDS for the data

.2
11

]10*)9.01([
)10(=−+

+= TT
TTSC

)

NASA
Aug

95
(4)

NASA
Aug

95
(3)

NASA
Aug

95
(2)

NASA
Aug

95
(1)

NASA
Jul

y9
5

Data Set

H
it

Ra
tio

EMCLRU
GDS

Figure 4: Average hit ratios by EMCGDS, EMCLRU and GDS (e.g. reference is 68.3%).

A NOVEL DYNAMIC GREEDYDUAL-SIZE REPLACEMENT STRATEGY TO MAKE TIME-CRITICAL WEB
APPLICATIONS SUCCESSFUL

21

traces used in Figure 4 is 5.5 fold (as shown by the
calculation below) for the minimum hit ratio by
EMCGDS is 90%,

The on-line timing analyses by the Intel’s VTune
Performance Analyzer show the following:

a) The average execution time for the
conventional GDS Java implementation in the
experiments is 980 clock cycles.

b) The intrinsic part of the average execution
time for the MACSC implemented in Java is 23425
clock cycles.

VTune had also confirmed that the average
execution time for the basic LRU’s Java
implementation is 627 clock cycles. For the
EMCGDS and EMCLRU mechanisms the
computation delay mainly comes from MACSC
component, which has to sample the time series for
its operation. The inter-arrival times among data
points in the aggregate determines the delay because
enough data has to be sampled for the current
MSCSC control cycle. The MACSC mechanism
actually runs in parallel with GDS or LRU unit.

5 CONCLUSIONS

The preliminary results in the EMCGDS research
confirm that caching indeed makes time-critical web
applications such as m-business setups successful. In
particular, the dynamic caching size tuning
technique contributes to maintain the given cache hit
ratio as the minimum. This shortens the data
retrieval roundtrip time over the Internet in a
consistent fashion. As a result fast system response
makes m-business customers happy and return for
more business. In this light, the DGD-Size
contribution is significant. The next step in the
research is to validate EMCGDS in more open m-
business environments over the mobile Internet.

ACKNOWLEDGEMENTS

The authors thank the Hong Kong Polytechnic
University for the ZW93 research grant and Mr.
Frank Chan’s help in the data collection process.

REFERENCES

M. Abrams, C.R. Standbridge, G. Abdulla, S. Williams
and E.A. Fox, Caching Proxies: Limitations and

Potentials, www-4 Boston Conference, December
1995

C. Aggarwal, J.L. Wolf and Philip S. Yu, Caching on the
Word Wide Web, IEEE Transactions on Knowledge
and Data Engineering, 11(1), 1999

P. Cao and S. Irani, Cost-Aware WWW Proxy Caching
Algorithms, Proc. of the 1997 USENIX Symposium
on Internet Technology and Systems, 1997

J.A. Chisman, Introduction to Simulation and Modeling
Using GPSS/PC, Prentice Hall, 1992

D. Garlan, D.P. Siewiorek, A. Smailagic and P. Steenkiste,
Project Aura: Toward Distraction-free Pervasive
Computing, IEEE Pervasive Computing, 1(2), April
2002, 22-31

O. Mitsuru and K. Guenter, IBM Aglets Specification,
www.trl.ibm.com/aglets/spec11.htm

[Trace] http://ita.ee.lbl.gov/html/traces.html
V. Venkatesh, V. Ramesh and A.P. Massey,

Understanding Usability in Mobile Commerce,
Communications of the ACM, 46(12), December 2003,
53-56

Wang, A Survey of Web Caching Schemes for the Internet,
ASM SIGCOMM, 29(5), 1999

Richard S. L. Wu, Allan K. Y. Wong and Tharam S.
Dillon, RDCT: A Novel Reconfigurable Dynamic
Cache Tuner to Shorten Information Retrieval Time
over the Internet, International Journal of Computer
Systems Science & Engineering, 19(6), 2004

R. Wooster and M. Abrams, Proxy Caching the Estimates
of Page Load Delays, the 6th International World
Wide Web Conference, 1997

S. Williams, M. Abrams, C.R. Standridge, G. Abdulla and
E.A. Fox, Removal Policies in Network Caches for
World-Wide Web Documents, Proc. of the ACM
Sigcomm96, 1996

Allan K. Y. Wong, May T. W. Ip, Richard S. L. Wu, A
Novel Dynamic Cache Size Adjustment Approach for
Better Data Retrieval Performance over the Internet,
Journal of Computer Communications, 26(14), 2003.

ICE-B 2007 - International Conference on e-Business

22

