
DYNAMIC RESOURCE PROVISIONING FOR SELF-ADAPTIVE
HETEROGENEOUS WORKLOADS IN SMP HOSTING PLATFORMS

Ramon Nou, Ferran Julià, Jordi Guitart and Jordi Torres
Barcelona Supercomputing Center(BSC), Technical University of Catalonia (UPC), Barcelona, Spain

Keywords: Autonomic Computing, resource provisioning, heterogeneous workloads.

Abstract: We introduce a novel approach that allows heterogeneous applications run together on a shared hosting plat-
form, dynamically sharing the platform’s resources. The proposed approach has been validated by a proof-
of-concept prototype which uses a global processor manager to distribute the platform’s processors among
two (or more) heterogeneous applications, i.e. a Tomcat application server and a Globus grid middleware.
Our evaluation demonstrates the benefit of including bidirectional communication between applications and
the OS for efficiently managing the resources and preventing the degradation of an applications performance,
especially when the hosting platform is fully overloaded. For the sake of simplicity, we have modified the
applications so that they communicate with the resource manager, although other techniques can be applied
to avoid these modifications. Running different applications in a shared platform and being able to assign
priorities between them provides important benefits.

1 INTRODUCTION

The consolidation of distributed and grid computing
has been accompanied with the appearance of new
computing models oriented to these environments.
One of them is the utility computing model, in which
applications run on hosting platforms that rent their
resources to them. Application owners pay for plat-
form resources, and in return, the application is pro-
vided with guarantees of resource availability and
quality of service (QoS), which can be expressed in
the form of a service level agreement (SLA). The
hosting platform is responsible for providing suffi-
cient resources to each application to meet its work-
load, or at least to satisfy the agreed QoS. These host-
ing platforms must be able to provide resources to a
heterogeneous set of applications, which range from
web applications (e.g. an application server attend-
ing a transactional workload) to traditional scientific
computations in the grid community. The traditional
approach used by hosting platforms for provision of
resources to heterogeneous applications is to consider
a separate set of the cluster nodes for each applica-
tion (dedicated model) (Appleby et al., 2001). In

this model, resource allocation is performed with the
granularity of a full cluster node and the provision-
ing technique must determine how many nodes to al-
locate to each application. However, economic rea-
sons of space, power, cooling and cost can encourage
the use of the shared model (Chandra et al., 2003a),
in which node resources can be shared among multi-
ple applications and the provisioning technique needs
to determine how to partition resources on each node
among competing applications. We introduce a novel
approach to allow heterogeneous applications to run
together in a shared hosting platform, dynamically
sharing the platform’s resources (we focus on CPUs
in this proof-of-concept prototype) while maintaining
good performance. This paper extends the work per-
formed in (Guitart et al., 2006). The previous paper
proposed a global strategy for preventing the over-
loading of web applications and efficiently utilizing
a platform’s resources in a shared hosting platform
running homogeneous web applications. The pro-
posed strategy exploits the benefits of dynamically re-
allocating resources among hosted applications based
on the variations in their workloads. These benefits
have been described in recent studies (Appleby et al.,

39
Nou R., Julià F., Guitart J. and Torres J. (2007).
DYNAMIC RESOURCE PROVISIONING FOR SELF-ADAPTIVE HETEROGENEOUS WORKLOADS IN SMP HOSTING PLATFORMS.
In Proceedings of the Second International Conference on e-Business, pages 39-44
DOI: 10.5220/0002110900390044
Copyright c© SciTePress



2001; Chandra et al., 2003a; Chandra et al., 2003b).
The goal is to meet the applications requirements on
demand and adapt to their changing resource needs.
This requires an accurate collaboration between dy-
namic resource provisioning and admission control
mechanisms. The paper is structured as follows: Sec-
tion 2 shows our prototype and how it works. Sec-
tion 3 describes the experimental environment used in
our evaluation. Section 4 evaluates the results we ob-
tained. Section 5 explores some work done in the area
of dynamic resource provisioning for variable work-
loads. Finally, section 6 presents our conclusions and
future work.

2 RESOURCE PROVISIONING
STRATEGY

In this section, we present a summary of the ba-
sic guidelines of our resource provisioning strategy.
Our proposal is based on a global processor man-
ager, called eDragon CPU Manager (ECM), respon-
sible for periodically (configurable) distributing the
available processors among the different applications
running in a hosting platform. Further details can be
found in (Guitart et al., 2006). We manage only pro-
cessors because are the more limited resource in the
scenario we are studying. The ECM cooperates with
the applications to efficiently manage the processors
and prevent applications getting overloaded using bi-
directional communication. On one side, the applica-
tions periodically request from the ECM the number
of processors needed to handle their incoming load
while avoiding degradation in the QoS. We define the
number of processors requested by an application i
as Ri. On the other side, the ECM can be requested
at any time by the applications to inform them about
their processor assignments. We define the number of
processors allocated to application i as Ai. With this
information, the applications can adapt their behavior
to the allocated processors, avoiding in this way the
degradation of their QoS. Figure 1 shows a diagram
describing our resource provisioning strategy.

2.1 eDragon Cpu Manager

The eDragon CPU Manager (ECM) is responsible for
the distribution of processors among applications in
the hosting platform. The ECM is implemented as a
user-level process that wakes up periodically at a fixed
time quantum, defined as kECM , examines the current
requests of the applications and distributes processors
according to a scheduling policy. With this configu-
ration, direct modification of the native kernel is not

Figure 1: Prototype structure with ECM and two applica-
tions.

required to show the usefulness of the proposed envi-
ronment.

Traditionally, resource allocation policies have
considered conventional performance metrics such as
response time, throughput and availability. However,
the metrics that are of utmost importance to the man-
agement of an e-commerce site are revenue and prof-
its and should be incorporated when designing poli-
cies (Cherkasova and Phaal, 2002). For this reason,
the ECM can implement policies considering conven-
tional performance metrics as well as incorporating e-
business indicators, also policies like the ones in Sec-
tion 5 can also be incorporated to the ECM. Our sam-
ple policy includes priority classes. The priority class
Pi indicates a customer domain’s priority in relation
to other customer domains. It is expected that high
priority customers will receive preferential service re-
spect low priority customers. In our policy, at every
sampling interval kECM , each application i receives
a number of processors (Ai(kECM)) that is propor-
tional to its request (Ri(kECM)) pondered depending
on the application’s priority class (Pi) and the num-
ber of processors in the hosting platform (NCpus),
and inversely proportional to the total workload of the
system (∑Pj ∗R j(kECM)), expressed as the sum of re-
quests of all applications in the system. The schedul-
ing policy should also allow us to achieve the high-
est resource utilization in the hosting platform. Our
proposal to accomplish this with the ECM is based
on sharing processors among the applications under
certain conditions (minimizing the impact on perfor-
mance isolation).

ICE-B 2007 - International Conference on e-Business

40



The ECM not only decides how many processors
to assign to each application, but also which proces-
sors to assign to each application. In order to accom-
plish this, the ECM configures the CPU affinity mask
of each application (using the Linux sched setaffinity
function) so that the processors allocations to the dif-
ferent applications do not overlap (except if one pro-
cessor is shared), in this way minimizing the perfor-
mance interference among applications.

3 EXPERIMENTAL
ENVIRONMENT

We have Tomcat v5.0.19 (Amza et al., 2002) and a
Globus GT 4.0.1 (Sotomayor and Childers, 2005) in
the same node. Tomcat is an open-source servlet con-
tainer developed under the Apache license. Its pri-
mary goal is to serve as a reference implementation
of the Sun Servlet and JSP specifications, and to be a
quality production servlet container too.

The client workload for the experiments was gen-
erated using a workload generator and web perfor-
mance measurement tool called Httperf (Crovella
et al., 1999) using RUBiS (Rice University Bidding
System) (Coarfa et al., 2002) benchmark servlets as
an application. The Tomcat instance has a variable
input load throughout the run time, which is shown in
the top subfigure of Figure 2 which displays the num-
ber of new clients per second that hit the server as a
function of the time. Input load distribution has been
chosen in order to represent the different processor re-
quirement combinations when running with the Grid
workload in the hosting platform.

The Globus server is a standard de facto of Grid
middleware. We didn’t make any modifications of
its parameters (number of ServiceThreads or number
of Runqueues) on the standard tests (with ECM they
can be dynamically modified). The Globus workload
generator is sending jobs that overload or stress the
management code for a job. We assume that the job
will be executed on another node or cluster. From the
Globus workload generator we generate and submit
jobs with an increasing throughput and try to execute
them on the nodes of the cluster (simulated, so CPU
requeriments are only the ones to prepare the job). We
then measure the output throughput. This gives a wide
range of situations that are summarized in Figure 2.
In our case, we selected different submission levels
for Globus and several different levels of arrival rates
for Tomcat to give a wide view of configurations and
situations to show the benefits of our approach. The
hosting platform is a 4-way Intel XEON 1.4 GHz with
2 GB RAM.

For the purpose of this paper, we present a man-
aged middleware prototype that allows the execu-
tion of heterogeneous applications in the same host-
ing platform. We show how the communication be-
tween applications and OS layer can provide great im-
provements in performance terms. For this proof-of-
concept we are considering web and grid applications.
For simplicity in the prototype, we are using Tom-
cat for the web workload and the Globus platform for
the grid workload; all of them are well known plat-
forms and widely used. In this prototype we are mod-
ifying the applications in order to communicate with
ECM, but we could use other mechanism to avoid
these modification (i.e. use a proxy). Further details
of the architecture and modifications done on Tom-
cat and Globus, can be seen on (Guitart et al., 2006)
for Tomcat and (Nou et al., 2007a; Nou et al., 2007b;
IBM-Corporation, 2004) for Globus Toolkit.

4 EVALUATION

Our evaluation will show the benefits of our proposal
for managing the resources efficiently and prevent-
ing server overload on a 4-way multiprocessor Linux
hosting platform. The CPU requeriments to prepare a
globus job are ten times the requeriments to process a
Tomcat request (with SSL handshake) or 100 times a
Tomcat request without SSL handshake.

4.1 Standard Tomcat and Globus

In Figure 2, we can see in grid style how the sys-
tem evolves (bottom two plots) when we are sub-
mitting different workloads (top plot) to Tomcat and
Globus. We have divided the test in order to check
different CPU requirement scenarios in the two mid-
dleware. Globus is submitting the jobs with the in-
creasing workload explained in Section 3, while Tom-
cat is generating several load levels from overloaded
to non-overloaded arrival rates. As we can see in the
top plot, we can divide the test into two parts; one
workload with low load and another workload where
the system is under a heavy load. If we take a closer
view of Tomcat we can see that when the server is
overloaded the reply/rate falls (i.e. around 4000 sec-
onds in grid style). We can find another zone in the
Tomcat plot of similar behaviour: in the 1500 seconds
point the throughput obtained from Tomcat is very
high, however when we look at the 3000 seconds zone
we can see that the throughput obtained is lower with
an higher input workload. Switching to the Globus
plot there are a lot of zones where no jobs are finished
(2800-3600 or 4000-5000). Globus is getting a very

DYNAMIC RESOURCE PROVISIONING FOR SELF-ADAPTIVE HETEROGENEOUS WORKLOADS IN SMP
HOSTING PLATFORMS

41



Figure 2: From top to bottom; workload of Tomcat and Globus, replies/sec of Standard Tomcat compared with the replies/sec
of Tomcat using ECM, throughput in Standard Globus compared with throughput using ECM with Globus. The two applica-
tions are running at once using ECM facilities.

high workload, but as we will show in the next sub-
section we can increase its performance using ECM.
The server needs to share the resources between the
two applications, but such kinds of applications don’t
know in which environment and with what kinds of
resources they are being executed. They are compet-
ing for a set of limited resources and getting worse
performance than if they were divided onto two ma-
chines with the resources divided in half. Giving and
getting information about the resources that the appli-
cation consumes and that the system have available
for it should be necessary in order to avoid this situa-
tions.

4.2 Adaptative Middleware with ECM

If we repeat the last test with ECM (without priori-
ties), we obtain the solid style results in Figure 2. We
can see how the system overall is working better. And
the most important thing is that we didn’t get the low
levels of replies/sec on Tomcat and the low number of
finished jobs on Globus that we obtained in the previ-
ous subsection.

In some zones we can see how Tomcat is working
better than before, as long as ECM receives a request
of processing power from Tomcat, ECM tells Tom-
cat how many CPUs has assigned. Tomcat is able to

overcome these situations and start its admission con-
trol to stabilize itself at the desired level. It is the case
of the zones near 1000 seconds and the ranges from
2200-3500 and 4000-5500 where the system without
ECM is obtaining lower performance than with ECM.
In this zones as long as Tomcat (and Globus) knows
how many resources they have available can adapt his
behaviour to the new scenario. We can notice this
looking at the globus side, where we are getting more
throughput than before also. Getting into these situa-
tions, on 1000 seconds zone Globus is working at the
same level than before but Tomcat as it knows how
many resources it has available can adapt his load to
the new scenario. The reverse situations happens on
2500 seconds zone, Globus is improving its perfor-
mance. When the two applications are overloaded a
communication with the OS to know the available re-
sources can provide an improvement over the two ap-
plications as we can see after 4000 seconds zone. n
the other hand we can modify the fairness of the re-
source assignment using priorities dependending, i.e.
the revenue of the application, using ECM. When the
applications are in the same priority category inside
ECM, they are sharing resources without any prefer-
ence between applications. In an entry node with a
secure connection scenario, like the one we are test-
ing, it’s crucial to provide more fairness to the several

ICE-B 2007 - International Conference on e-Business

42



middleware that share the resources on the node to get
better results as a whole.

5 RELATED WORK

Recent studies (Andrzejak et al., 2002; Chandra et al.,
2003b; Chandra and Shenoy, 2003) have reported
the considerable benefit of dynamically adjusting re-
source allocations to handle variable workloads. This
premise has motivated the proposal of several tech-
niques to dynamically provision resources to appli-
cations in on-demand hosting platforms. Depend-
ing on the mechanism used to decide the resource
allocations, these proposals can be classified into:
control theoretic approaches with a feedback ele-
ment (Abdelzaher et al., 2002), open-loop approaches
based on queuing models to achieve resource guar-
antees (Chandra et al., 2003a; Doyle et al., 2003;
Liu et al., 2001) and observation-based approaches
that use runtime measurements to compute the rela-
tionship between resources and a QoS goal (Pradhan
et al., 2002). Control theory solutions require train-
ing the system at different operating points to deter-
mine the control parameters for a given workload.
Queuing models are useful for steady state analysis
but do not handle transients accurately. Observation-
based approaches are most suited for handling vary-
ing workloads and non-linear behaviors. Resource
management in a single machine has been covered
in (Banga et al., 1999), where authors proposed to use
resource containers as an operating system abstrac-
tion to embody a resource. In (Liu et al., 2005) au-
thors proposes the design of online feedback control
algorithms to dynamically adjust entitlement values
for a resource container on a server shared by multiple
applications. The problem of provisioning resources
in cluster architectures has been addressed in (Ap-
pleby et al., 2001; Ranjan et al., 2002) by allocat-
ing entire machines (dedicated model) and in (Chan-
dra et al., 2003a; Pradhan et al., 2002; Uragonkar
and Shenoy, 2004) by sharing node resources among
multiple applications (shared model). Cataclysm (So-
tomayor and Childers, 2005) performs overload con-
trol by bringing together admission control, adaptive
service degradation and dynamic provisioning of plat-
form resources, demonstrating that the most effective
way to handle overloading must consider a combina-
tion of techniques. In this aspect, that work is similar
to our proposal. There are also approaches (Menascé,
2005) that use virtualized environments and analyti-
cal methods to adjust the resources allocated to the
virtualized systems. R-Opus (Cherkasova and Rolia,
2006) works on a different layer and scale of time.

In our approach we focus on a single server machine
which shares different applications and has a low time
scale. Also, giving more processing power to an ap-
plication, such as Tomcat (for example), will not di-
rectly produce better performance. The application
needs to know how many resources it has available.

6 CONCLUSIONS

In this paper we have presented a proof-of-concept
prototype for demonstrating that bidirectional com-
munication between applications and OS can pro-
vide that heterogeneous applications (running in over-
loaded conditions) can run together in a shared host-
ing platform and at the same time maintain their per-
formance. Using a shared hosting platform reduces
important costs like space and power.

Our approach is based on implementing a global
resource manager, responsible for periodically dis-
tributing the available processors between the appli-
cations following a determined policy. The resource
manager can be configured to implement different
policies, and consider traditional indicators (i.e. re-
sponse time) as well as e-business indicators (i.e. cus-
tomer’s priority). In our proposal, the resource man-
ager and the applications cooperate to manage the re-
sources, in a manner totally transparent to the user,
using bi-directional communication. On one side, the
applications request from the resource manager the
number of processors needed to handle their incom-
ing load without QoS degradation. On the other side,
the resource manager can be requested at any time by
the applications to inform them about their processor
assignments. With this information, applications can
adapt their behavior to the allocated processors.

Our evaluation demonstrates the benefit of our ap-
proach for managing resources efficiently and for pre-
venting degradation of an applications performance
on shared hosting platforms. Although our imple-
mentation targets Tomcat and Globus, the proposed
strategy can be applied with any other platform or
application. Further improvements can be made on
this proof-of-concept work: more fine grained assign-
ments of CPU or a fairer Globus self-management ob-
jective. Our future work considers the use of virtual-
ization technologies.

ACKNOWLEDGEMENTS

This work is supported by the Ministry of Science
and Technology of Spain and the European Union

DYNAMIC RESOURCE PROVISIONING FOR SELF-ADAPTIVE HETEROGENEOUS WORKLOADS IN SMP
HOSTING PLATFORMS

43



under contract TIN2004-07739-C02-01 and Commis-
sion of the European Communities under IST contract
034286 (SORMA). Thanks to Mario Macias for his
help.

REFERENCES

Abdelzaher, T., Shin, K., and Bhatti, N. (2002). Per-
formance guarantees for web server end-systems: A
control-theoretical approach. IEEE TPDS, 13(1):80–
96.

Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety,
S., Gil, R., Marguerite, J., Rajamani, K., and
Zwaenepoel, W. (2002). Specification and implemen-
tation of dynamic web site benchmarks. WWC-5,
Austin, Texas, USA.

Andrzejak, A., Arlitt, M., and Rolia., J. (2002). Bound-
ing the resource savings of utility computing models.
HPL-2002-339, HP Labs.

Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kr-
ishnakumar, S., Pazel, D., Pershing, J., and Rochw-
erger, B. (2001). Oceano :SLA-based management of
a computing utility. IM 2001, Seattle, Washington,
USA, pages 855–868.

Banga, G., Druschel, P., and Mogul, J. C. (1999). Resource
containers: A new facility for resource management
in server systems. OSDI’99,New Orleans, Louisiana,
USA., pages 45–58.

Chandra, A., Gong, W., and Shenoy, P. (2003a). Dynamic
resource allocation for shared data centers using on-
line measurements. IWQoS 2003,Berkeley, Califor-
nia, USA., pages 381–400.

Chandra, A., Goyal, P., and Shenoy, P. (2003b). Quantifying
the benefits of resource multiplexing in on-demand
data centers. Self-Manage 2003, San Diego, Califor-
nia, USA.

Chandra, A. and Shenoy, P. (2003). Effectiveness of dy-
namic resource allocation for handling internet flash
crowds. TR03-37, Department of Computer Science,
University of Massachusetts, USA.

Cherkasova, L. and Phaal, P. (2002). Session-based admis-
sion control: A mechanism for peak load management
of commercial web sites. IEEE Transactions on Com-
puters, 51 (6):669–685.

Cherkasova, L. and Rolia, J. (2006). R-Opus: A composite
framework for application performability and qos in
shared resource pools. In DSN’06, pages 526–535,
Washington, DC, USA.

Coarfa, C., Druschel, P., and Wallach, D. (2002). Perfor-
mance analysis of TLS web servers. NDSS’02,San
Diego, California, USA.

Crovella, M., Frangioso, R., and Harchol-Balter, M. (1999).
Connection scheduling in web servers. USITS’99,
Boulder, Colorado, USA.

Doyle, R., Chase, J., Asad, O., Jin, W., and Vahdat, A.
(2003). Model-based resource provisioning in a web
service utility. USITS’03, Seattle, Washington, USA.

Guitart, J., Carrera, D., Beltran, V., Torres, J., and Ayguadè,
E. (2006). Preventing secure web applications over-
load through dynamic resource provisioning and ad-
mission control. UPC-DAC-RR-2006-37.

IBM-Corporation (2004). An architectural blueprint for au-
tonomic computing. http://www.ibm.com/autonomic.

Liu, X., Zhu, X., Singhal, S., and Arlitt, M. (2005).
Adaptive entitlement control to resource containers on
shared servers. IM 2005, Nice, France.

Liu, Z., Squillante, M., and Wolf, J. (2001). On maximiz-
ing service-level-agreement profits. EC 2001, Tampa,
Florida, USA., pages 213–223.

Menascé, D. A. (2005). Virtualization: Concepts, applica-
tions, and performance modeling. Int. CMG Confer-
ence, Orlando, Florida, USA, pages 407–414.

Nou, R., Julià, F., and Torres, J. (2007a). The need for self-
managed access nodes in grid environments. EASe
2007, Tucson, Arizona, USA.

Nou, R., Julià, F., and Torres, J. (2007b). Should the
grid middleware look to self-managing capabilities?
ISADS 2007, Sedona, Arizona, USA.

Pradhan, P., Tewari, R., Sahu, S., Chandra, A., and
Shenoy, P. (2002). An observation-based approach to-
wards self-managing web servers. IWQoS 2002,Mi-
ami Beach, Florida, USA., pages 13–22.

Ranjan, S., Rolia, J., Fu, H., and Knightly, E. (2002).
Qos-driven server migration for internet data centers.
IWQoS 2002, Miami Beach, Florida, USA., pages 3–
12.

Sotomayor, B. and Childers, L. (2005). Globus Toolkit 4 :
Programming Java Services. Morgan Kaufmann.

Uragonkar, B. and Shenoy, P. (2004). Cataclysm: Han-
dling extreme overloads in internet services. TR03-40,
Department of Computer Science, University of Mas-
sachusetts, USA.

ICE-B 2007 - International Conference on e-Business

44


