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Abstract: This paper gives a model of customer choice behavior modeling based on a combination of decision-making
processes by applying latent class model based on EM algorithm. This model can apply for the choice prob-
lems of multi services and multi brands under various decision-making processes. In addition to the model
based on EM algorithm, we tried some conventional models and compared them. The model based on EM
algorithm enables us to know what kinds of customers are classified into a certain class. Moreover, we could
construct more accuracy model than conventional model and found the existence of two decision-making
processes.

1 INTRODUCTION more accuracy traffic estimation and service demand
estimation.

The amount of the traffic flowing in the network de- For this purpose, we use a latent class model using
pends on the number of customers. Therefore the th® EM algorithm. We regard a decision-making pro-
estimation of the number of customers is very im- cess as one latent class of EM algorithm. One class

portant factor in the network design. Generally cus- model is expressed by the hierarchy structure. In this

tomer choice behavior modeling is very complicated. PaPer, we explain our model and present results that
These days, customers are faced with a wide range ofV€"fy it.

choice for telecommunications services. This arises

from the rapid progress of information and communi-

cation technology and the competitive environment. 2 RELATED WORK

Therefore, customers use various different decision-

making processes to select a service that providesThe telephone service market is fiercely competitive.
the features they want. Here, the decision-making Both the telephone service and Internet service mar-
process means the order of selection when the cus-kets are changing rapidly as technology progresses.
tomer chooses the service. However, we generally Therefore, it is not always appropriate to forecast ser-
cannot know what kind of decision-making process vice demand by using conventional time series anal-
they are using. In such a situation, we cannot fully ysis based on measurement data obtained in network
express customer choice behavior by using model management systems. Some researchers have studied
whose structure is based on a single decision-makingmarkets such as Internet service (Savage and Wald-
process. Therefore, a model that takes into consider-man, 2004; Loomis and Taylor, 2001) and telephone
ation a customer’s complicated decision-making pro- services (Fildes and Kumar, 2002; Loomis and Tay-
cesses is needed. Main purpose of this paper is tolor, 1999). These described to only one service model.
give customer choice behavior modeling under sev-  We have proposed the techniqueSafenario Sim-
eral decision-making processes because the accuracylation (Inoue et al., 2003a; Inoue et al., 2003b;
of the customer choice behavior modeling gives us Nishimatsu et al., 2004; Takahashi et al., 2004; Nishi-
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matsu et al., 2005; Nishimatsu et al., 2006), which 3 CHOICE MODEL UNDER

uls_es ((:gstomer choic%pegalv)iqr mod:lting. 'trhistm?rc]i- VARIOUSDECISION-MAKING

eling (See the appendix A.1) is used to estimate the

demand for a service and the amount of traffic that PROCESSES

will flow through the network. Therefore, enhancing

the accuracy of customer choice behavior modelingis "'~ h h ¢ del

the most important factor in Scenario Simulation. ~ 9°rthm.  There are two types of model. _ As-
Usually, we useDiscrete Choice AnalysiéBen- sume thatS de_C|S|on-m_aI_<|ng processes exist. There-

Akiva and Lerman, 1985; Train, 2003)(DCA) to con- fore, we conside6 decision-making process models

struct a customer choice behavior model. DCA (See PL(i[C; By;X). .. 7.'.35(”(:; Ps; ).().' These models repre-
the appendix A.2) is the technique derived from the sent the probability of servideébeing chosen from the

field of traffic engineering and it is applied in vari- unlve_rsal choice s& under gemsmn-maklngl process
ous fields. Customer choice behavior modeling for S (S.* 1,...,5). Here,x anc [.35 are apfexpignarory
a telecommunications service has been analyzed usYariable vector and a coefficient vector, respectively.
ing DCA (Kurosawa et al., 2005; Kurosawa et al. Suppose that the number of elements in the universal

2006). One reason for the complexity of the tele- choice seC is G. That is, there ar€& combination

phone market is that a customer can get the featuresOf the services in the market. One decision-making

he/she wants by combining multiple services. For ex- process'corresponds toghs nested_ logit (NL) mpdel
ample, a customer who wants to use IP telephony may_(Ben'Ak'Va and Lerman, 1985; Train;2003) which
make separate contracts with an Internet access lingS @ tyPe of DCA model. This model can capture
provider, an Internet service provider (ISP), and an IP one_deC|5|9n—mak|ng process. Wi's IS explained in de-
telephony provider. This combination of services can (@il iN section 3.2. The other model is a class model
more economical for Internet users than using POTS T(SV;X), wherex andy are the explanatory variable
(plain old telephone service). A nested structure can V&' apd the Coeﬁ'c"?m vecior, respeciively. This
express the priority or the order of selecting. We can modgl gives t_he probgblhty that a customer belqngs to
consider the priority or the order of selecting as a certain deC|S|on-mla}k|ng process (_class). In this way,
decision-making process. To solve the problem, cus- € 9€t the probability of servidebeing chosen from

tomer choice behavior modeling using a nested struc- universal choice se ass

ture was examined (Kurosawa et al., 2006). That ex- ' .

amination showed the existence of a decision-making P(i[C}y. B X) = ;”(S; Y X)Ps(i[C;Bsix). (1)
process with a nested structure. The paper concluded . ] o .
that one decision-making process is more appropri- The structure of our model is shown in Fig. 1. Th]s
ate than other models. The research (Ben-Akiva andflgur_e assumes that there are three types of decision-
Gershenfeld, 1998) focused on the combination of op- Making processes.

tional services. However, customers do not always all
use the same decision-making process. Namely, two
or more decision-making processes may exist. How-
ever, we cannot know which decision-making process
a given customer will use. To handle this characteris-
tic, we focused on the EM algorithm. This algorithm
complements imperfect data by using expected val-
ues obtained through the application of Bayes' the-
ory. That is, posterior probability is used as the ex- Figure 1: Choice Model under Various Decision-Making
pected value. This framework is used for the latent Processes.

class model. Generally, we cannot know which kind

of latent class the customer belongs to. So the EM al-

gorith_m obtains the probability of belongingtoaclass 31 ClassMode

by using an expected value.

In this case study, we verified the accuracy of our |, this section. we define a class Mo y;x) (0 <
model. And we focused on what kinds of customers n(s;y;x) < 1 andyS ,1(s;y;x) = 1) by using MNL

are classified into a certain class (decision-making ;, pca (See the appendix A.2). The probability
process) because the class model has individual van-T[n(S; y) of customem using decision-making process

ables. sis given by

We use DCA models in each step of the EM al-

Decision-Making
process 1
P1(|C; Byi @)

Decision-Making
process 3
P3(i|C; B3 )

Decision-Making
process 2
P>(2|C; Bo; )

Th(SY) = T(S Y, Xn), )
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ALGORITHM
where x, mean attribute values of customer. %\
We need the systematic term of utility functions R
Run, ...,Rsn (corresponding tovi, in the appendix o o) i
A.2). By using these utility functions, we get A\ o ”\
ox AR A
h(sy) = PKRsn) (3) o), ), 2

-
271 €XPp(HRn) AN
SinceRgy include individual attributes, we can deter- .

mine what kind of customers belong to what kind of ¢
decision-making process. Figure 3: Nested logit model (depth=3).

3.2 Decision-Making Process
1 2

This section shows how to construct decision-making Wherevk(ls)tn: fkl In Zieclgl)smeXp(Usklvién)w) 1<k <
process models. We use customer choice results top,).  Here, the nestiﬁg coefficientss and iy,
construct them. That is, customechooses a service  gre unknown parameters which are greater than O.
from choice seGn, t (1<t <T,) times. Then, we  These nesting coefficients represent the relationship
defined these explanatory dataxgs (t = 1,...,Tn). between a high-level nest and a low-level nest. It is
Here, the probabilitysin(i|Cin; Bs) Of servicei being  desirable for the relationship between the nesting co-
chosen by customer through decision-making pro-  efficient and the top nesting coefficiguto be like
cesssis defined as

Puni[Cini Bo) = P(ilC: Bsxn).  (4) it~ i
To express a decision-making process, we need a hierfor 1 < ki < Ma). Generally, it is required that +
archal structure like a decision tree because a decisionts < Psig <+ < Ksig-kpe 1 (1 < kg <Mg,1<d <
tree can capture the selection order and the correlationPs — 1) At the second layer, the probability that al-
among alternatives. Since this NL model has a hierar- ternativei is chosen from subséﬂfsm is given by
chical structure representing the decision-making pro- @

cess, it is possible to express the model according to = (i|C(1> )= exp(Hsm Vistn) )
the sequence of selections. I be the depth of the NI mystn S exp(uan,(Zt))'
layered structure. A decision-making structure with a J€Cmystn IS
depth of 2 is shown in Fig. 2 as an example. Therefore, the probability that alternativés chosen
from all alternative set€;,, is expressed as
. J~(1 1
. . . Pstn(i|Ctn; Bs) = Pstn('\Cr(rwl)stn)Pstn(Cr(nl)stn|Qn)7 8)
cf o). o) ik whereB is an unknown parameter vector that appears
ﬁ\ in all utility functions in the decision-making process
i~ A s. All nesting coefficients are also contained in un-
4 known parameter vect@,. Moreover, equation (8) is

. ; generalized to
Figure 2: Nested logit model (depth=2).

Pstn(i|Cin; Bs) = Petn(i |Cr<nll)stn)
A structure with a depth of 3 is shown in Fig. 3. D 2
The servicel is included in a certain alternative Py (C(d) | (d+1) )| Py (C(Dsfl) Cin)-
subsets sequende= Cr(nll)stn C--C C,(T%Ziﬂtn C Cin. <J:|1 Sl Cmgstn .. 5tn) | Pl Gorp, ol
The systematic terms of utility functioln(k(dds?tn of ©)
Céggm (1< kg < Mg) is defined. For example, as seen In this way, we can substitute (8) or (9) into (4).

in Fig. 2, when the depth of the decision-making A .
structure is 2 level hierarchy and the error term is 3.3 Likelihood Function
EV1, the probability of subse!tﬁ,}l)sm being chosen

from all alternative set€y, is given by We can getty(s; y) andPstn(i|Cin; Bs) from (3) and (9),

respectively. Therefore, after determining the follow-
exp(usvé]?sm) ing probability

., )
S i1, M1 EXP(HVicokr) Rin(i[Cin: ¥; B) = 51 T(;Y)Pot(i[Cen: Bs), - (10)

1
PStn(Cr(nl)stn|Ctn) =

341



ICE-B 2007 - International Conference on e-Business

we can get equation (1) by using (2) and (4). Then, 3.5 M-Step
the maximum likelihood function is defined by
For given log-likelihood function (13), we find val-
ues ofy andf that maximize it. From equation (13),
L(v,B:y.2) |_|1 l_l (fanlyni B (sy)) ™, (11) the log-likelihood function is composed 6f+ 1 log-
likelihood functions. Since unknown parameters in

where y and 3 are separated for each log-likelihood func-
T ‘ tion, we may maximize thes8+ 1 log-likelihood

fon(Yn: Bs) = r! |—| Pstn(i|Cen; BV, functions independently. In this way, we find the

=1ieCn maximum solution of the log-likelihood function

Here,z,s is a dummy variable that takes the value 1 E-[logL(y,B;y,2)]. Letp andybe the maximum solu-
or 0. Itis 1 when customar belongs to a given class tions of the log-likelihood function. When we substi-
sand 0 when he/she does not. This value is not an tuting the obtaine andy into (12), the flow returns
observable variable because we cannot know which {© the E-step. In this way, the E-step and M-step are
kind of decision-making process a customer will use executed repeatedly until the log-likelihood function
to choose a service. Hence, we solve this problem by CONVETrges.

using the EM algorithm method. The probability of

belonging to this class (decision-making process) is

given in section 3.4. 4 CASE STUDY

34 E-Step 4.1 Menu and Sample

Since we do not know what kind of decision-making To verify our model, we tested the model with choice

process a customer uses when he/she selects a servicdata. We used an online questionnaire system to col-
we replacez,s by an expectation value obtained using lect choice data, which were related to the choice
Bayes’ theory in this E-step (expectation-step). The of telephone company. In February 2005, we asked

posterior probabilityQn(s) is defined by people which company they would choose and what
kind of optional telephone services they would like

_ Ti(s;Y) fsn(yn; Bs) 12 to use The choices included some basic service at-

y _ tributes such as the monthly telephone service charge,

Th(J;Y) fin(yn: Bj) the charge for local calls, and five optional services

=1

such as a multiple number service. Optional ser-

Namely,T,(j; V) is given as a prior probability while ~ Vicé charges were presented for each company, and
Qn(s) is given as a posterior probability. In the first optional services could be selected independently of
step, sincey and B are unknown parameter vectors, Company choice. Moreover, the choices included two
Qn(s), which is randomly assigned a value between 0 kinds of discounts (Bundle 1 and 2) for combined op-
an lsinceitis a probab"'ty, is g|ven to every user t|0na| SerV|Ces There were four representatlve com-

likelihood function as services (OP1, ..., OP5). We classified the types of
optional services as follows.
E-[logL(y, B:y;2)] Type 1 No optional services included
N S . . .
A4 . Type 2 Non bundling with at least one optional ser-
= log f ; S
z ZQn( 9 fsn(yn; Bs) vice included
Type 3 Bundle 1 discount included
Z 1 & s)logTh(sy) Type 4 Bundle 2 discount included
S /N T, Type 5 Bundle 1 and 2 discounts included
= > ( > Z |09 Pstn(' [Cin; Bs)" > Thus, there were 4 brands and 5 types of optional ser-
s=1\n=1 vice. That is, a customer had a choice of 8+ 1 =
N S 21 different alternatives. Here;1 means not using
Z Z s)logm(s;y) any telephone service. This alternative was named 50.
n=1 For example, alternative 31 means company C (brand
= 351 Ls(Bs) +LH(Y). (13)  3) and option type 1 (see Fig. 4). Our questionnaire
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survey received responses frdin= 3450 people. Be-

cause they answered the questionnaire 2 or 3times for

different conditions, we gog\_; T, = 7971 observa-

tions. Table 1 shows how many users selected each

brand and option type. ‘None’ means that the cus-
tomer doesn'’t select a telephone service.

Table 1: Customer choice distribution.

] [ Brandi] 2 | 3 [4 ] Sum |
Typel 666 | 399 | 232 122 [ 1419
Type2 1000 | 592 | 417 | 223 | 2232
Type3 98 60 31| 27 216
Typed 1318 | 748 | 527 | 271 | 2864
Type5 435| 253 174|109 971
Sum 3517 | 2052 | 1381 | 752 | 7702
None || - - - - 269

7971

4.2 Implementation

We performed three types of modeling: MNL, NL,
and our EM-algorithm-based model. NL captures a

ALGORITHM

User

//]1_1\

Typel Type2 Type3 Type4 Type5 NON
1

7 A A

11213141 12223242 13233343 14243444 15253545
(Non-Option) (Discount 1) (Discount 2) NON-TEL
(Non-Bundle) (Discount 1&2)

21 Alternatives

Figure 5: NL model 1.

3. NL model 2: choosing a company first

User

AL

Brandl BrandZ Brand3 Brand4 NON TEL
1112131415 2122232425 3132333435 41 42 434445
—a

21 Alternatives

decision-making process such as a sequence of choos-

ing alternatives and a choice criterion by expressing a
hierarchical structure. In our case study, we simulated
two kinds of NL models. Therefore, we regarded the
total number of models as being 4.

1. MNL model

User

1112131415
Brand1

2122232425
Brand2

3132333435 4142434445 50

Brand3 Brand4  NON-TEL

21 alternatives

Figure 4. MNL model.

In the MNL model, the alternatives are at the same
level in the hierarchy. That is, there are 21 alter-
natives at the same level (see Fig. 4).

2. NL model 1: choosing optional services first

Figure 6: NL model 2.

In this choice model, we assume that a customer
chooses a company at level 1 and then chooses
the type of optional services at level 2. We call
this model NL2.

4. Model based on the EM algorithm

Class Model

(i) | m(2;v;®) i

Yo =1 =1

I AT A AT

mmmmmmmm (mu..uu; 35 a1 030485 50

Figure 7: Model based on the EM algorithm.

This model is based on the EM algorithm. There
are two decision-making processes, that is, this
model includes the two above-mentioned nested
logit models NL1 and NL2.

In this choice model, we assume that a customer We used BIOGEME to estimate the MNL, NL1, and
chooses an optional service type at level 1 in Fig. NL2 models. This software is an estimator devel-
5. Finally, the customer compares companies. We oped for DCA models(Bierlaire, 2005). It is splen-
call this model NL1. The key feature of this model did software for analyzing DCA models. Moreover,
is the nodes for the six types. we implemented EM algorithm software to verify our
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model. This EM algorithm software uses BIOGEME The nesting coefficients of NL1 were estimated

as a core engine for estimation. to be 1 in Table 3. By the equation (6), we can see
thatpy = Pk, (1 < kg <6). This means NL1 model

4.3 Results does not have the nodes in Fig. 5. That is, the NL1

model is regarded as the MNL model. We can also
The simulation results for the four models are briefly See evidence of this in Table 9 because fifeof
presented below. We mainly used adjusted rho NL1 and MNL are nearly equal. On the other hand,
squaredp? to show the validity of each model (see ke, (1 < ki < 5) are greater than 1. This means the

the appendix A.2) and nesting coefficiepts NL2 has the nesting structure. NL1 and NL2 have in
inverse relationship, so these results are not strange.
431 Resultsfor MNL Model Namely, NL2 is more appropriate than NL1.

In the MNL model, we estimated all 21 alternatives 4-3-3 Resultsfor Model Based on EM Algorithm

simultaneously. Table 2 shows some of the estima- ) . ey
tion results obtained with the MNL model. Here, The iteration stopped the maximization after 84 EM-

steps. The model based on the EM algorithm also

Table 2: Results for MNL model. obtained good sign;, the same as those in Table 2 for
the MNL model. This model includes NL1 and NL2
Value | t-value | Robustt-value as two decision-making processes. Tables 5 and 6 are
b_Bundlel | -42.956| -50.41 -53.51 the nesting coefficients for the EM algorithm model.
b_Bundle2 | -13.403| -51.81 -46.98 Comparing these with the nesting coefficients in Ta-
b_.OP1Ch | -2.4219| -15.50 -12.63 bles 3 and 5, we find that the nesting coefficients of
b.OP2Ch | -4.6167| -10.45 -9.13 NL1 in the EM algorithm model (Table 5) have val-
b_.OP3Ch | -5.8008| -15.56 -11.08 ues exceeding 1. Although these are not always high
b_.OP4Ch | -4.8205| -21.69 -16.95 values, the EM algorithm model could confirm the ex-
b.OP5Ch | -1.6230| -5.51 -4.44 istence of the segment of NL1 type decision-making
b_monthCh| -3.5199| -44.31 -38.22 process.
b_BundlelCh and Bundle2Ch mean the discount Table 5: Nesting coefficient of Table 6: Nesting coeffi-
for bundling optional services. ®P1Ch and so on  NL1in the EMalgorithm. cient of NL2 in the EM
are the charges for optional services, anthénthCh Name| Value algorithm.
is the monthly charge for telephone service. All co- 11 1.3721 Name | Value
efficients of explanatory variables have good signs, H12 1.2128 Mo1 7.5094
where a good sigh means, for example, that the utility P13 1.3068 o2 7.0008
goes down in value when the monthly charge goes up. Haa 1.0000 L3 7.0550
Moreover, these coefficients have higtalues. His 1.0000 Ho4 6.1438
432 Resultsfor NL Models e | 1(FX) bes | 1 (Fx)

NL1 and NL2 obtained good signs, the same as those This table 7 shows the class shares. Thpse class
in Table 2 for the MNL model. The difference be- (deC|S|on making process) shares are obtained from

tween the MNL model and the NL models is the nest- \%/“e %:g‘;](zgé/ m;?:h%agﬂadrgccﬁﬂll_riklgg p;%c;f.s Al-
ing coefficient. Tables 3 and 4 show estimated nesting IS Very

coefficients.
Table 7: Class share.

Table 3: Nesting coeffi- Table 4: Nesting coeffi- ] | NL1 [ NL2 |

cients of NL1. cients of NL2. ’ Class Sharq‘ 7.1%‘ 92_9%‘
Name | Value Name| Value
H11 18888 Ha1 gég% though we could extract NL1, this was not the dom-
H2 10000 Ha2 = o582 inant decision-making process. The reason \ixy
H13 10000 H2s S 5279 of NL1 are close to 1 is derived from same reason.
Hia : Ho4 i Those who belong to NL1 class are married female,
HM15 1'00_00 HM2s 1 (Fix) live in condominium, and under some conditions. In
Hi6 1 (Fix) addition, the table 8 shows the estimated adjusted rho
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squaredp®. We can see thgi® in NL1 (0.4448) is
higher tharp? (0.6145) in the EM model. This is re-

lated to the results in Table 5. Table 9 summarizes the

Table 8: Adjusted rho squared.

NL model | EM model
NL1 0.4448 | 0.6145
NL2 0.5757 | 0.5954

results for the four models. It confirms that the EM
model is the most appropriate of these models.

Table 9: Nesting coefficient of NL2 in the EM algorithm.

Model | Number of| Rho- Adjusted
parameters | squared | rho-squared
MNL | 26 0.4460 0.4450
NL1 | 31 0.4460 0.4448
NL2 | 30 0.5770 0.5757
EM | 61 0.5895 0.5870

5 CONCLUSION AND FUTURE
WORK

We tested our model and confirmed that there exist
some decision-making processes. As the result, we

were able to confirm the class NL1 by using EM al-

gorithm. The class model was constructed with the

model including individual variables. Therefore we

ALGORITHM
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choice seC differs from person to person. A univer-
sal set means a set of all alternatives. Generally, cus-
tomer decision-making processes are complex. That
is, the decision-making process has a multidimen-
sional structure. The structure is expressed like a de-
cision tree (Fig. 2 and Fig. 3).

The most popular and simplest model of DCA is
the MNL (multinomial logit) model. This model as-
sumes that alternatives are on the same level in a hi-
erarchy. That is, customercompares all the alterna-
tives contained i€, and chooses one alternative (see
gzig. 8). In the case of a simple multinomial choice
problem, if we takeextreme value type (EV1) as a
random error terng,, then the probability,(i|Cy; B)
of alternativel being chosen is expressed by

A.1 Scenario Smulation

Scenario Simulation is a technique for analyzing the
structure of a market. It is a macro model whereas
customer choice behavior modeling is a micro model.
The feature of Scenario Simulation is that it captures
changes in the market by using scenarios. Here, a
scenario means a predetermined future behavior of
the market. By combining some future scenarios,
we can identify the trend of a market depending on
changes to other services, changes in customer taste
and changes in customer circumstances. This tech-
nigue is similar to the scenario planning approach
(van der Heijden, 1996) or the real options approach

(Copeland and Antikarov, 2001). Its objective is to _ exp(HVin)
analyze service demand by simulating scenarios for Pa(iCniB) = ————— > (14)
¥ keCn EXP(HVkn)

an assumed market structure. The market structure \ _ )
is divided into a customer behavior layer, a service Whereplis a scale parameter in EV1 that is usually
layer, and an environment layer. A customer choosesnormalized by 1 an@ is an unknown parameter vec-
a service from many alternatives by considering his tor that appears N, (k € Cy). Then, we determine
or her preferences, the available services, and his/her

circumstances. Each layer requires its own modeling.

The flow of Scenario Simulation is described below.

. 4 A [ N N J
These steps simulate service demand or traffic vol-
ume by scenarios. A more appropriate simulation is i
created by considering the changes in some factors.
1. Definition : In the first step, the conditions related Figure 8: Multinomial logit model.
to the three layers are defined based on predeter-
mined scenarios and collected data. the value off by using maximum likelihood estima-
2. Model construction : In the second step, models tion. This function is defined by
are constructed based on the conditions of each N
Eiyneg This step is customer choice behavior mod- L(By) = I—l Pa(i(Cni B,
. n=1ieCp

3. Aggregation : Simulation evaluations are carried \whereN is the number of samples agig is a dummy
out according to predetermined scenarios. That variable that is 1 when a customechooses alterna-
is, this step estimates demand by aggregating cus-tive i and 0 otherwise. Let vectd be the estimated

tomer choice behaviors. vector value of3. In the DCA modelp? which shows
4. Updating : The scenario is updated based on the goodness of anindex s often used. This is defined
changes in each layer. by p? = 1— (£(B) —K)/£(0), whereL(B) = logL(B)
andK is the number of variables. The value lies be-
A.2 Discrete Choice Analysis(DCA) tween 0 and 1. The model becomes better model if

the value is higher. Generally, the model is googfif
This section gives an overview of DCA. In DCA, each takes the value.@ or so although this value depends
alternative has a utility function. THRUM (random on the data.
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