
SECURE COMPUTATION OF COMMON DATA
AMONG MALICIOUS PARTNERS

Sebastian Obermeier and Stefan Böttcher
University of Paderborn, F̈urstenallee 11, 33102 Paderborn, Germany

Keywords: Multiparty Computation, Intersection, Malicious Behavior.

Abstract: A secure calculation of common data(D1∩ . . .∩Dn) of different participants without disclosingDi is useful for
many applications and has been studied as the Secure Multiparty Computation problem. However, proposed
solutions assume all participants act “semi-honest”, which means participants may neither alter the protocol
execution nor fake database content. In this contribution, we focus on malicious participant behavior and
prove that an atomic exchange of common data is not possible under the assumption of malicious participants.
We propose a mechanism to calculate the intersection of multiple participants, which does not only reduce the
disclosure in case participants cheat by altering the protocol to a negligible amount, it is also resistant against
malicious participants that cooperate in order to cheat others. Furthermore, it impedes database content faking,
which could be done when using other protocols by participants in order to check if data is contained in the
other’s databases. Last, we show experimentally the practical usability of our protocol and how the level of
trust has an impact on the exchange speed of the intersection.

1 INTRODUCTION

Companies that store their enterprise information
within a database often consider these information
confidential. But there are also situations, in which
n companies want to know if they have common data,
and which data this is. However, the parties are not
willing to disclose any other data than the intersec-
tion. The problem of securely computing the data all
parties have in common is called thesovereign infor-
mation sharingproblem.

In this contribution, we address the problem of
computing the intersection of multiple parties without
trusting a third party, when one or more participants
may act malicious. This means, we address the prob-
lem that participants may get an advantage by chang-
ing the exchange protocol in such a way, that the party
that receives and fully decrypts the common data first
can suppress the sending of the corresponding infor-
mation that is necessary for the other party.

Whenever enterprises have need for an exchange
of common data, but do not want to reveal other in-
formation, these data is often stored within database
tables, say within database tablesD1 toDn of the com-
paniesN1 to Nn. A protocol is needed that returns the
intersection(D1∩ . . .∩Dn), but does not reveal any
other information; it even should not disclose size in-
formation like|Di |.

For example, let us look at an enterpriseN1 and its
rivals N2 andN3, which do business in the service in-
dustry. All enterprises want to know whether all three
have common customers in order to check whether
these customers play the companies off against each
other. Another use would be to detect customers of
all three companies in order to start special marketing
actions on these customers.

For this reason,N1, N2, andN3 want to examine
their customer databases for addresses of customers
that are common to all three parties. However, no
party is willing to disclose information about cus-
tomers that the other parties do not have, and they do
not want to disclose information about their number
of customers, i.e. about the sizes|Di |.

Existing approaches and proposals that also ad-
dress the sovereign information sharing problem
(Naor and Pinkas, 1999; Huberman et al., 1999;
Freedman et al., ; Kissner and Song,) focus on so-
lutions for two participants and either disclose the
intersection to asingle party only, or they assume
an “honest-but-curious” behavior for all participants,
which means they will follow the protocol strictly and
send – as the protocol’s last step – the information that
the other parties needs to calculate the intersection.
However, there might be situations in which partic-
ipants that learned of the intersection suppresses the
sending of information that is required for the other

345
Obermeier S. and Böttcher S. (2007).
SECURE COMPUTATION OF COMMON DATA AMONG MALICIOUS PARTNERS.
In Proceedings of the Second International Conference on Security and Cryptography, pages 345-354
DOI: 10.5220/0002117903450354
Copyright c© SciTePress

participants to decrypt the intersection information as
well.

In addition, (Naor and Pinkas, 1999; Huberman
et al., 1999) require that the database sizes|Di | are re-
vealed. However, a sharing of size information may
be not acceptable for companies, e.g. if|Di | repre-
sents the number of a company’s customers.

There are business settings in which the partners
do not want to rely on a trusted third party that per-
forms a significant part of an intersection computa-
tion for a variety of reasons, e.g. a trusted third party
may be too difficult or too time-consuming to find, it
may be too expensive or simply not wanted for polit-
ical reasons. Therefore, we do not assume to have a
trusted third party and focus on the problem that each
participant may stop the protocol execution whenever
there is an advantage for him. In the following, we
prove that when no trustworthy third party is avail-
able, an atomic exchange of common data is not pos-
sible if some participants may cheat in terms of alter-
ing the protocol. Second, we provide a mechanism
that allows participants to exchange a bunch of infor-
mation units like customer data or supplier informa-
tion without having the risk of being cheated by more
than one information unit.

Unfortunately, when data faking is considered as a
possibility, participants could invent a lot of customer
data in order to get the complete customer data set of
another party as intersection. The only possibility to
achieve that stored data complies with reality, i.e., to
prevent participants from faking data, is a third-party
auditing device that punishes participants for cheating
(Agrawal and Terzi, 2006). Contrary to this approach,
we present a mechanism appropriate especially for
practical applications that makes it extremely hard to
create faked data that will not be identified as such.
Our approach bases on unique information, which is
visible only to the real owners of the data item.

2 BASIC ASSUMPTIONS AND
REQUIREMENTS

Besides the requirement to disclose only the intersec-
tion, we also need to guarantee that no party can cheat
within the disclosing process. An attacker that has the
goal to learn data from other participants that the at-
tacker does not own by itself can use different tech-
niques to achieve its goal: the attacker can inspect,
manipulate, invent, or suppress messages; the attacker
can manipulate the protocol, i.e. stop the protocol ex-
ecution at any time or wrongly encrypt/decrypt mes-
sages, and the attacker can fake data, i.e. the attacker
can invent data in order to learn whether other partic-

ipants own this data.
Our protocol does not assume a failure-free net-

work, and distinguishes between message loss and ac-
tive message suppression. Thus, we assume that each
participant acknowledges the received messages and a
sender repeats the sending of non-acknowledged mes-
sages until the network will finally deliver the mes-
sage.

We cannot guarantee that each partyNi provides
all its data for the computation of the intersection
(D1∩ . . .∩Dn). Therefore, we assume that each par-
ticipant contributes only that data to the intersection
computation, which it accepts to disclose if it is in
the intersection. Furthermore, we assume that partic-
ipants agree on a common data format used for the
data in the intersection computation.

An additional requirement is, that size information
|D j | should not be disclosed to any other party.

Protocols that disclose(D1∩ . . .∩Dn) only to one
party (e.g. (Agrawal et al., 2003)) are not suitable
since we cannot guarantee that the other parties will
also receive the intersection. Therefore, we need a
protocol that guarantees atomicity for the exchange
of (D1∩ . . .∩Dn).

Unfortunately, we can prove in Section 3.1 that a
complete atomic exchange of(D1∩ . . .∩Dn) cannot
be guaranteed. Therefore, we need a protocol that at
least reduces the suffered damage in the case that a
company cheats.

3 SOLUTION

We first prove that an atomic exchange of the common
data is not possible if participants may cheat in terms
of message suppression.

3.1 Impossibility of Multiparty Atomic
Data Exchange

Our proof that the atomic exchange of common data
is not possible is based on a proof idea of the two
generals’ problem (Gray, 1978), where two generals
want to agree on an attack time by using an uncertain
medium. We will expand the proof to an information
exchange amongn participants.

Definition 3.1 Let N1 to Nn be the owners of the data
D1 to Dn. A sovereign information sharing protocol
IP is said to bemultiparty intersection safe, if it ful-
fills the following two conditions:

1. IP discloses(D1∩ . . .∩Dn) to Nj exactly if it dis-
closes(D1∩ . . .∩Dn) to all other participantsN1
to Nn.

SECRYPT 2007 - International Conference on Security and Cryptography

346

2. IP discloses no tuple of(Di− (D1∩ . . .∩Dn)) to
any participantNj with j 6= i.

Definition 3.2 A participantNi is called distrustful,
if it will not send the information that is necessary to
completely disclose the intersection(D1∩ . . .∩Dn) to
any other participantNj without having the guarantee
thatNi will also learn of(D1∩ . . .∩Dn).

Lemma 3.3 Let N1, . . . ,Nn be the owners of the data
setsD1, . . . ,Dn. Without a trusted third party, there is
no multiparty intersection safe protocol if all partici-
pants are distrustful.

Proof By contradiction. Assume, there is an inter-
section safe protocol IP that delivers(D1∩ . . .∩Dn)
to all distrustful participantsN1 to Nn.

Then, there also exists a minimal protocol, i.e. a
protocol that does not contain any superfluous mes-
sage, to let all parties learn(D1∩ . . .∩Dn). A minimal
protocol is either the original protocol, or an equiva-
lent protocol in which all superfluous messages are
left out. To let the protocol compute and deliver the
intersection, each participantNi must send at least one
message and must receive at least one message.

Because each successfully delivered message is
received after it has been sent, each minimal proto-
col must contain also at least one last messageMlast ,
i.e. a message which is sent by a participantNj and re-
ceived by a participantNi afterNi has sent its last mes-
sage. Since the protocol is minimal,Mlast is needed
by Ni to learn (D1 ∩ . . .∩Dn). Furthermore, since
the protocol delivers(D1∩ . . .∩Dn) to all partners,
it has used the information provided byNi to compute
(D1∩ . . .∩Dn), i.e. Ni has sent the information that
is necessary to completely disclose the intersection
(D1∩ . . .∩Dn), beforeNi has receivedMlast. There-
fore,Nj could suppress sendingMlast without prevent-
ing Ni from sending its information that is necessary
to completely disclose the intersection(D1∩ . . .∩Dn).
Therefore,Ni had no guarantee to learn about the in-
tersection(D1∩ . . .∩Dn) , i.e., this behavior ofNi is
a contradiction to the assumption that all participants
act distrustful. �

The conclusion of this proof is that all but one par-
ties must take the risk of being cheated and being the
first who sends the information which is necessary to
disclose(D1∩ . . .∩Dn). Otherwise, there would be
no exchange, since at least one party must be the last
who sends a messageMlast that completely discloses
information of(D1∩ . . .∩Dn).

However, although atomicity for the complete in-
tersection is not possible, we can reduce the damage
that the one-sided disclosure of the common data in-
volves by an approach outlined in Section 3.4. The
idea is to reveal only a small part of the intersection

(D1∩ . . .∩Dn), and let the next party send the next
part in return. Since our proposed algorithm is able to
detect faked data, the cheating of a party will uncover
only a small part of the intersection, which in many
cases reduces the damage.

However, as we can see in the next section, we
cannot make the disclosed information parts, which
we call information units, arbitrary small.

3.2 Information Units

Definition 3.4 Let Du := (D1∩ . . .∩Dn) describe the
intersection of the data of the companiesN1 to Nn, let
L be the size ofDu in bits, andB : [1,L]→{0,1} be a
bitarray containing the bits representingDu .

When we partition B into several disjointed
smaller parts{d1, . . . ,dk}, such that{d1∪ . . .∪ dk =
B} anddi ∩d j = /0 for i 6= j, we call{d1, . . . ,dk} a set
of information unitsand we call eachdi an informa-
tion unitof the intersectionDu.

The part of the intersection that we want to dis-
close during one protocol exchange step in the second
half of our protocol corresponds to one information
unit. Note that information units are only considered
for exchange purposes, and not for the calculation of
Du, which is based on tuples and not on information
units.

Definition 3.5 Given the setds= {d1, . . . ,dk} of in-
formation units, we calld j ∈ ds independentif the
following holds.

If |Di |> |(D1∩ . . .∩Dn)|, we cannot conclude an
information unitd j if we knowDi and ds\{d j}.

Example 3.6 Let D1 and D2 be customer database
relations with |D1|, |D2| > |D1 ∩ D2|, and let
{d1, . . . ,dk} be a set of information units of the inter-
section(D1∩D2), such that each information unitd j
represents a singlecustomer, and the customers occur
in a randomized order. In this case, the set{d1, ...,dk}
is independent for the following reason. We cannot
conclude a customerd j ∈ (D1∩D2) even if we know
Di and{d1, . . . ,dk}\{d j}, i.e. the complete intersec-
tion except the missing customer, because there are at
least two remaining customers who might bedi due to
|Di |> |(D1∩D2)|.

Note that an independent information unit may
contain more than one customer, but an independent
information unit cannot be made arbitrarily small.
The next example, which focuses on security but not
on efficiency, shows this property.

Example 3.7 Let D1 and D2 be customer database
relations and{d1 . . .dk} information units represent-
ing charactersoccurring in(D1∩D2). This means,

SECURE COMPUTATION OF COMMON DATA AMONG MALICIOUS PARTNERS

347

each customer is represented by several informa-
tion units {di . . .dl}. However, the set{d1 . . .dk}
is not independent for the following reason. If we
can useD1 to identify the customercu that is rep-
resented partially by the characters{di . . .dl} with
cu∈ (D1∩D2), we can conclude the next character
of cu. For example, if{di . . .dl} discloses the sub-
string ”Miller, Flori” of a customer name and
we have only one Miller from Florida in our cus-
tomer databaseD1, we know that this Miller belongs
to (D1∩D2) and that further information unitsdl+1
anddl+2 will disclose ”d” and ”a”. Therefore, if we
use characters as information units, the information
units used during the exchange process are not inde-
pendent.

For this reason, if non-independent information units
are used, a party can sometimes conclude more than
one information unit while the other party may not
necessarily know which data is meant. Therefore, if
e.g. Di knows which data is in the intersection and
cheats by stopping the exchange of non-independent
information units, another partyD j may have no
chance to conclude any missing information unit.

When exchanging only independent information
units, we can reduce the advantage that a cheating
party may get by altering the protocol to one inde-
pendent information unit (c.f. Section 3.4.3).

3.3 Cryptographic Basis

Our solution is based on commutative encryption,
which means that given two cryptographic encryption
keyskeyNi

used byNi andkeyNj
used byNj , the en-

cryption order of applying an encryption functionE
is commutative:

EkeyNi

(

EkeyNj
(d)

)

= EkeyNj

(

EkeyNi
(d)

)

= cd

Since the order of applying the encryption func-
tionsEkeyNi

andEkeyNj
and the corresponding decryp-

tion functions does not matter, we call thiscommuta-
tive encryption.

Cryptographic functions and their implementa-
tion have already been discussed in various cryp-
tographic publications (Diffie and Hellman, 1976;
Gamal, 1985). Therefore, we assume that secure al-
gorithms are used, such that keys cannot be broken
even if plain and ciphered text are known.

3.4 Exchange Algorithm

Given n participants, our algorithm is applied cycli-
cally to each participant. To explain the calculations

of each participant, we start labeling the first partici-
pant withN1 and the last one withNn, where the par-
ticipant’s indices form a ring, i.e. the successor ofn
is 1. We use the bracket notation[X] as a shortcut for
((X−1) mod n)+1.

Definition 3.8 We defineP j
i as the data of the partic-

ipant Ni , where the same hash function was sequen-
tially applied j times to each data tuple ofDi . We
further use the notionPi as a shortcut forPn

i , while P0
i

describes the plain data.

Definition 3.9 We defineC j
Pi

to be the set of tu-
ples that we get if each hashed tuple of participant
Ni is encrypted sequentially by the participantsNi ,
N[i+1] . . .N[i+ j−1], i.e. it has been encryptedj times.

Example 3.10 For n = 7 participants, the notionC3
P6

means that each hash value ofP6 is first encrypted by
N6, the resulting tuples are then encrypted byN7, and
finally encrypted byN1.

The general idea of our algorithm can be summa-
rized within three steps.

3.4.1 Initialization Phase

In this first phase, all participants agree on the data
field(s) that they want to check for common data.
In order to hide the real size information|Di |, they
agree on a common database sizesz to be ex-
changed. sz should be chosen in such a way that
sz> max(|D1|, . . . |Dn|) . After this, each partyNi
adds randomly created data to their databaseDi until
|Di |= sz.

Afterwards, each participant hashes each of its
own data tuplesn times with the same hash algorithm,
such that each participantNi has computedPi := Pn

i
and has stored all of its computed intermediate hash
resultsP j

i for 1 ≤ j ≤ n. The hashing of valuesn
times is used later in the Verification Phase in such a
way that each of the participants has to contribute one
preimage of a hashed value as a proof of ownership.

3.4.2 Intersection Exchange Phase

Ni encrypts each data tuple ofPi , resulting inC1
Pi

.
Then, Ni passes them to the next participantN[i+1],
who encrypts them resulting inC1

Pi
and passes them

to N[i+2], who also encrypts them etc., until each
data tuple is encryptedn times byn different partic-
ipants. Thesen times encrypted data tuplesCn

Pj
are

exchanged, such that each participant stores the set
{Cn

Pj
|1≤ j ≤ n}. The exchange phase is illustrated in

Figure 1, whereN1 starts encrypting its hashed data
P1, and passing it toN2. After one cycle,N1 gets

SECRYPT 2007 - International Conference on Security and Cryptography

348

back its hashed datan times encrypted asCn
P1

from
Nn. This data is cyclically sent to all other partici-
pants, i.e.N2, . . . ,Nn1.

Figure 1: Intersection Exchange Phase.

Due to commutative encryption, the intersection
of the encrypted dataCn

P1
∩Cn

P2
∩ . . .∩Cn

Pn
represents

the intersection of the original dataP1∩P2∩ . . .∩Pn.

Algorithm 1 Intersection Exchange Algorithm forNi .
1: Dact← encrypt(Pi , keyNi)
2: for j := 1 to n do
3: sendWithThread(Dact, N[i+1]) ⊲ Send Dact
4: Dact← receive(N[i−1]) ⊲ Rec. from N[i−1]
5: Dact← shuffle(encrypt(Dact, keyNi))
6: end for
7: Cn

P[i+1]
← Dact ⊲ Store the fully encrypted data

8: for j := 1 to n−1 do
9: sendWithThread(Dact, N[i+1]) ⊲ Send to N[i+1]

10: Dact← receive(N[i−1)]) ⊲ Rec. from N[i−1]

11: Cn
P[i− j]
← Dact ⊲ Store encr. data of N[i− j]

12: end for

Algorithm 1 shows the multiple encryption steps
of a participant’s data. First, each participantNi en-
crypts each of its own tuplesPi with its own key (line
1). Then, this encrypted data is sent to the next partic-
ipantN[i+1], and the data from the previous participant
N[i−1] is received (lines 3-4). Since each participant’s
data has to be encrypted by every participant,Ni en-
crypts the all data with its own key and shuffles the
resulting tuples (line 5). In the next iteration of the
for loop (line 2-6), this data is again sent toN[i+1].
After n iterations,Dact contains the data of partici-
pantN[i+1], which wasn times encrypted, i.e.Cn

P[i+1]

(line 7).
When all participants have exchanged the en-

crypted data, each participant has stored the same en-
crypted data after the execution of the second for-loop
(lines 8-12).

Table 1 shows an example execution of the algo-
rithm for n = 3. After the initial phase, each partic-
ipant Ni has its own encrypted dataC1

Pi
. In the next

round, each participant sends its data to the next par-
ticipant, which encrypts it with its key. Aftern− 1
rounds, each participant holds data that is encryptedn
times. These data are exchanged in the following ex-

Table 1: Example execution of Algorithm 1.

N1 N2 N3

C1
P1

C1
P2

C1
P3

each part. encr. its own data
C2

P3
C2

P1
C2

P2
after lines 2-6,j = 1

C3
P2

C3
P3

C3
P1

after lines 2-7,j = 2
exchange phase (lines 8–11)

C3
P1

C3
P2

C3
P3

after lines 8-11,j = 1
C3

P3
C3

P1
C3

P2
after lines 8-11,j = 2

change phase, until every participant is able to store
all fully encrypted data.

3.4.3 Revealing and Verification Phase

In this phase, participants agree on an order for de-
termining the intersecting information units. The first
participant passes the first information unit to the next
participant, which decrypts it with its key, and passes
it to the next participant, which decrypts with its key,
etc. Finally, the first participant will receive the initial
information unit, which is only encrypted by itself.
Therefore, the first participant can decrypt the infor-
mation unit and learn the hash value. From the hash
value, it can conclude the plain data.

In order to make sure that the participant who just
learned the plain data was not betrayed1, it passes the
hash valuev to the next participant. Only ifv is in the
next participant’s database, the next participant can
conclude the plain data and can use the set of hashed
data that was created in the Initialization Phase to look
up the hash valuev′ that was hashed tov by applying
h(v′) = v. This means, each participant decodes the
hashing that was appliedn times in the Initialization
Phase by one step.After each participant has received all encrypted
dataCn

P1
. . .Cn

Pn
, it can detect the intersecting data tu-

ples. We assume that all participants apply the same
algorithm to agree on a labeling of intersecting tuples,
on a coordinator that starts the revealing of data tuples
for each round, and on the number of tuples per infor-
mation unit.

The revealing and verification algorithm is de-
scribed by Algorithm 2. Each participantNi starts by
adding sequentially the amount of intersecting tuples
that should be in a single information unitj (line 2).
Then, participantNi decides if it is responsible for co-
ordinating the round. If this is the case, is sends the
first information unit2 that is in the intersection of the
encrypted values toN[i+1] (line 4). N[i+1] receives the

1which may be the case ifN[i−1] sends toNi an arbitrary

value of the setC1
Pi

2for simplification, we assume in the following that an
information units contains a single data tuple

SECURE COMPUTATION OF COMMON DATA AMONG MALICIOUS PARTNERS

349

Algorithm 2 Revealing and Verification Algorithm
for Ni .

1: round← 1
2: while (j := getCommonInfUnit()) != null do
3: if coordinatesRound(Ni , round) == true then
4: sendWithThread(j , N[i+1])
5: end if
6: j ← receive(N[i−1]) ⊲ Receive from N[i−1]

7: j ← decrypt(j , keyNi)
8: sendWithThread(j , N[i+1])
9: ⊲ if Ni is coordinator, j is plain hash and the

verification starts
10: if coordinatesRound(Ni , round) == true then
11: originalText← deHash(j))
12: end if
13: h← receive(N[i−1]) ⊲ Rec. hash from N[i−1]

14: plain← deHash(h) ⊲ Lookup plain value
15: if coordinatesRound(Ni , round) == false then
16: verify← deHash1Level(h)
17: sendWithThread(verify, N[i+1])
18: else
19: Check(originalText == deHash1Level(h))
20: NotifyNextCoordinator()
21: end if
22: end while

information unit (line 6), decrypts it, and passes it to
the next participant (lines 7-8). After all participants
exceptNi decrypted the information unit,Ni will re-
ceive it and decrypt it (line 6-7). After this decryp-
tion, j contains the decrypted,n times hashed value
of a single data tuple fromPj . This cyclic decryp-
tion is analogous to Algorithm 1. Then,Ni is able to
lookup the original text that was hashed to this value
(line 11). However, it wants to make sure that no one
cheated, therefore a second cyclic exchange phase is
started. At this time, each participant that receives
a hash valueh is able to lookup the plain data (line
11). Furthermore, it can also lookup the hash value
verify that was hashed toh, i.e. h := hash(verify)
by using the deHash1Level(h) function. This means,
the deHash1Level(h) function searches the intermedi-
ate hash results that each participant generated in the
Initialisation Phase, i.e.P j

i for 1≤ j ≤ n, to look up
the hash value that was hashed toh. A detailed ex-
planation why this step ensures security can be found
in the following Section 3.5. The hash valueverify is
then passed to the next participant, which again de-
Hashes one level. In the end,Ni have to perform a
last deHash1Level step and will then receive the plain
data. This plain data is compared with the plain data
that the coordinator has looked up before the verifica-
tion phase (line 11) started. If this data is equal, no
one cheated since all had the hash values and the data
item stored within their database.

3.5 Correctness

The real database size information of a participantNi
is hidden to all other participants, since in the Initial-
isation phase,Ni adds a bunch of random data to its
database until|Di | ≈ sz. Since the random data tu-
ples will not find corresponding data within the inter-
section, the original database size of a participant is
concealed.

Although each participants receives the encrypted
data of all other participants, it does not know which
of his tuples correspond to the received data tuples
due to encryption. Furthermore, since each encryp-
tion step involves shuffling the encrypted data, a par-
ticipant that receives the encryption of its own data
tuples does not even know which of its own plain text
tuples correspond to a concrete encrypted data tuple.

In addition, message manipulation can be detected
in the verification phase: The coordinator, who is
the first participant who reveals the hash values and
thereby the plain data, demands from each partici-
pant Nj a proof thatNj stores the revealed data in
its database. This proof is done by using one of
the n hash values for each tuple: A participantNj
that receives a hash valueh can only lookup the
value verify that was hashed toh if it owns the
valueverify. This means, the statementverify←
deHash1Level(h) (line 16) can only be evaluated if
Nj stores the data. IfNj cheats,N[j+1] will either not
find the hash value it received fromNj in its hash data
for the actual hash level, or, ifNj simply forwardsh,
the coordinator will detect in the last step that one par-
ticipant cheated and the hash value does not map to
the plain value, but to another hash value instead (line
19). Since each data tuple is hashedn times, each of
thenparticipants must have the original data tuple and
all of its hash values stored to let the last participant
send the hash value of level 1 to the coordinator.

The verification phase also detects as follows
whether in the decryption part someone cheated and
exchanged data: Since any decrypted hash valueh
will only pass the cyclic verification if all participants
own the data,h is either in the intersection, or it will
not pass the last check of the coordinator, since in this
case at least one participant does not have the neces-
sary information for thedeHash1Level(h) function.
If this happens, the participant that is the first to detect
the cheat will stop the protocol and not continue de-
crypting the units. Furthermore, the participant that
cheated can be identified since it does not own the
hash value, and therefore it is expelled from the pro-
tocol.

This means, altering the protocol by suppressing
or manipulating messages may only prevent the par-

SECRYPT 2007 - International Conference on Security and Cryptography

350

ties from learning one information unit of the in-
tersection, but does not disclose the complete set
(D1∩ . . .∩Dn).

A participantNi that is supposed to encrypt data
tuples of another participantNj may delete some or
all of these data. However, missing tuples will not oc-
cur in the intersection, and therefore these tuples will
not be decrypted, soNj will not get any information
about the data it deleted. SinceNi agreed to bring in
only those tuples thatNi is willing to share in case all
others have the same data, there is no incentive forNi
to delete data in Algorithm 1, since it has the same
effect as deleting data of its own data file in the Ini-
tialisation Phase, except that it does not even know
which data will be excluded from the intersection.

3.6 Impeding Tuple Faking

Although cheating in terms of message suppression
and manipulation can be detected by our algorithm
and therefore the damage is reduced, one problem re-
mains, which is faking database tuples. In our exam-
ple, evil participants can add a huge amount of tele-
phone book entries to their customer databases in or-
der to abuse intersection computation to check which
customers the other partners have. To impede this
kind of faking, the parties must agree to addition-
ally supply tuple-specific informationthat all parties
have due to the real existence of the tuple in their
database. This tuple-specific information should not
be of such a kind that it can not be guessed or con-
cluded from information that is available for public.
An address field, for instance, is no tuple-specific in-
formation since it can be easily obtained from public
resources.

Example 3.11 Credit card data, for example, is a
tuple-specific information. If this data is faked, the
generated credit card number belonging to the cus-
tomer will extremely unlikely match with the real
credit card number, i.e. the complete customer record
will differ and thus both customer entries differ in
their hash values. Other examples for tuple specific
information are social security number, income tax
number, student number, etc.

4 EXPERIMENTAL RESULTS

4.1 Exchange Speed Versus Trust

The efficiency of our intersection computation algo-
rithm depends on given parameters like the intersec-
tion size, the connection speed, and on a chooseable

Table 2: Preparation Times.

Desc Time Size

1,3 mill. entries — 200 MB
Hashing, 1-Pass 27s 37 MB
Encrypting, 1-Pass 38s 37 MB
Decrypting, 1-Pass 48s 37 MB

parameter, i.e. the size of exchanged information
units. As the exchange of small information units
needs more communication steps than exchanging
larger information units, we have a trade-off between
trust and speed. When the parties do not expect a
malicious behavior, an information unit may contain
more data than it may contain when malicious behav-
ior is expected.

4.2 Experimental Setup

We have prototypically implemented our protocol, in
order to get information about the exchange speed
when we change the number of exchanged informa-
tion units, i.e. the level of how much the participants
trust each other. For generating the test set, we have
extracted a part of the German telephone book that
contains about 1,3 mill. entries (i.e. data from Berlin),
having the size of about 200MB. Table 2 shows our
measurements using SHA-1 as hash function on an
AMD 64 3700+ with 2 GB RAM.

After applying the hash function, the resulting file
has the size of 37 MB. When applying the algorithm
to n participants, the hashing and encryption times has
to be multiplied withn, while the decryption is only
applied to the information units of the intersection.

Since the exchange of the data is pure data ex-
change plus the time the encryption needs, we show
in the following the results for the tuple exchange of
the Revealing and Verification Phase and compare our
algorithm for 2, 3, 5 and 7 participants exchanging 1,
2, 5, 10, 15 and 100 information units per message. In
this test scenario, the participants are connected via a
100MBit network. In order to get information about
low bandwidth connections as well, we measured the
time for 2 participants, one of which is connected by
“DSL light” that allows only 768kbit/s downstream
and 128kbit/s upstream data transfer rates. The aver-
age ping rate for packets of size 1024 bytes between
these two participants is 144ms.

Figure 2 shows the time needed for the exchange
and verification phase of 10,000 tuples within an
100MBit network. The indicated time on they− axis
is the time that is needed for passing the tuples two
times cyclically to all participants in order to decrypt
the information units and store the hash values to disc.
However, we have omitted the time that is needed for

SECURE COMPUTATION OF COMMON DATA AMONG MALICIOUS PARTNERS

351

0
2
4
6
8

10
12
14
16
18
20
22
24

2 Participants 3 Participants 5 Participants 7 Part. Ti
m

e
fo

r
ex

ch
an

gi
ng

 1
0,

00
0

tu
pl

es
 (s

ec
)

1 2 5 10 15 100 1 2 5 10 15 100 1 2 5 10 15 100 1 2 5 10 15 100
tuples per
message

Figure 2: Algorithm Exchange Phase (LAN).

the hash lookup, since this constant factor highly de-
pends on the number of intersecting tuples, the im-
plementation (e.g. the use of indices or databases)
and the available main memory. In our experiments,
we were able to load all hashed data into main mem-
ory, therefore the time for the hash lookup (which we
did by using hash tables) of 10,000 data values was
around 13 milli seconds. On thex− axis, the number
n corresponds to the number of participants, while di-
rectly underneath each bar the number of tuples that
are exchanged in one message is given, i.e. the num-
ber of tuples within one information unit.

If we have more participants, the number of par-
ticipants that must decrypt and dehash the data rises
analogously. This explains the additional amount of
time that is needed for 5 and 7 participants. How-
ever, this additional time rises linearly, since each ad-
ditional participant increases the amount of additional
exchange steps by a constant factor.

Figure 3 shows the time which is needed for ex-
changing 1,000 tuples between two participants con-
nected by a “DSL light” broadband connection. Since
a LAN connection’s response time is much superior
to the DSL connection’s response time, the exchange
speed for the DSL connection is also much slower.
However, the effect that a higher level of trust and
an increased number of tuples bundled within one in-
formation unit have is much greater than in a LAN
environment.

429,344

84,094

33,72

212,406

41,532

5,815
0

50

100

150

200

250

300

350

400

450

500

T
im

e
fo

r
ex

ch
.

1,
00

0
tu

p
le

s
(s

ec
)

 1 2 5 10 15 100 Tuples per
message

Figure 3: Exchange for 2 Participants (DSL).

To summarize, if participants do not trust each
other very much and send only one tuple in advance,
a fast connection highly pays-off, while for partici-

pants whose level of trust is higher and who therefore
agree to send more tuples within an information unit,
a fast connection is not an essential requirement. Due
to the cyclic exchange, the number of (equivalently
connected) participants has only linear impact on the
exchange speed.

5 RELATED WORK

There are two aspects that have been studied widely
within the sovereign information sharing scenario:
the multiparty computationand thefair exchangeof
the data. The multiparty computation concentrates
on the joint computation off (D1, . . . ,Dn) without re-
vealing the actual dataDi . Examples of functionsf
that are computed are cooperative scientific computa-
tions arising in linear programming (Du and Atallah,
2001), or Yao’s Millionaire’s protocol (Yao, 1982), in
which f (a,b) returns the information of whether or
nota > b.

Cryptographic approaches like (Freedman et al.,
) also discuss the multiparty computation problem
with f as the intersection function for two datasets
D1 andD2. However, these solutions guarantee that
only one participant learns of the intersection, and not
the other one. Therefore, the used malicious adver-
sarial model for multi-party computation does not in-
clude the problem that one participant out of many
participants may abort the protocol at every time, and
must not get an information advantage out of this be-
havior compared to other participants. (Kissner and
Song,) proposes a set intersection algorithm for mali-
cious parties, but does neither tackle the problem that
participants can take the “whole world” as customers
in order to get knowledge the other participants com-
plete database, nor gives experimental results for the
algorithm.

When databases are used to store enterprise infor-
mation, multiparty computation often relates to spe-
cial database functions (Agrawal et al., 2003; Clifton
et al., 2003). A secure computation of the join-
operator, for instance, is discussed in (Agrawal et al.,
2003). This solution, proposed forn = 2 parties,
also uses commutative encryption, but reveals the data
to one party only since it assumes an “semi-honest”
behavior (Goldreich, 2000), which means that al-
though a party might analyze messages, it will not
alter the protocol execution. If we take participants
that cheat into consideration, and would try to adapt
our idea of a pair-wise exchange of intersecting tuples
to (Agrawal et al., 2003), participants still may cheat,
as explained in the following: In the first step,N1 re-
ceivesC1

P2
(notation defined as in Definition 3.9),N2

SECRYPT 2007 - International Conference on Security and Cryptography

352

getsC1
P1

. Then both parties encrypt the data a sec-
ond time, and determine the common tuples. The first
party N1 decrypts the first common tuple and sends
it as h to N2. However,N2 has no evidence that the
decrypted data is really in the intersection.N1 may
have cheated and have sent an arbitrary item ofC1

P2
to

N2. N2 would wrongly assume that this item is in the
intersection, decrypt it with its key and send the hash
value back toN1. In this case,N1 does not only know
the hash value but also whether the associated data is
really in the intersection. Furthermore,N1 can store
the hash value in order to check if future customers
are also in the database ofN2. The crux of adapting
this approach to a step-by-step exchange is thatN2 has
no means to determine ifN1 plays fair.

In contrast, our solution is suitable for an arbitrary
number of participants and is not restricted ton = 2
like our previous contribution (B̈ottcher and Ober-
meier, 2006), and focuses on a model where each of
then participants may act malicious and may not only
stop the protocol execution, but may also change mes-
sages or fake data. We introduce the term information
unit and show that no secure exchange protocol ex-
ists that can guarantee an atomic exchange of a single
information unit. Furthermore, we add an additional
verification phase, which will detect any cheating of a
participant.

Since we reveal the decrypted information units of
the intersection step by step, proposals for guarantee-
ing a fair data exchangeare also relevant. Some of
these proposals rely on atrusted third party(Ajmani
et al., 2001; Jefferies et al., 1995), while other propos-
als do not necessarily need this third party. (Asokan
et al., 1997; Asokan et al., 1998), for example, de-
scribe an approach for a fair exchange of items by
using a third party only if participants cheat. If a third
party is present but not trustable, (Franklin and Re-
iter, 1997) shows an approach to use this third party
for fair data exchange. (Asokan et al., 1997) classifies
the type of the exchanged items, and claims to guar-
antee an atomic exchange for items belonging to the
categories revocable or generatable. However, since
enterprise information is in many cases neither re-
vocable nor generatable, the approach to use a third
party for collecting affidavits and starting law suits
in case of malicious participants is suitable for goods
and items, but cannot be used to revoke the reveal
of sensible enterprise data. In contrast, our approach
does not rely on a certain item category; it is useful
for non-revocable and non-generatable items as well.

6 SUMMARY AND CONCLUSION

In this contribution, we have presented an applica-
tion scenario where multiple parties need a secure
exchange of common information, although they do
not trust each other and assume malicious behavior.
We have shown that atomicity for the exchange of the
common data is not possible if no trusted third party is
used for this purpose. Furthermore, we have proposed
a solution, which reduces the damage that each party
suffers in case that another party alters the exchange
protocol to the disclosure of one additional indepen-
dent information unit. We have shown experimental
results on the trade-off “trust vs. exchange speed”,
and demonstrated that even in an environment with
high message latency our protocol is still feasible.

In the future, we plan to investigate a secure and
secret processing of arbitrary database algebra expres-
sions.

REFERENCES

Agrawal, R., Evfimievski, A. V., and Srikant, R. (2003). In-
formation sharing across private databases. InPro-
ceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, Cal-
ifornia, USA, pages 86–97.

Agrawal, R. and Terzi, E. (2006). On honesty in sovereign
information sharing. In10th International Conference
on Extending Database Technology, pages 240–256,
Munich, Germany.

Ajmani, S., Morris, R., and Liskov, B. (2001). A trusted
third-party computation service. Technical Report
MIT-LCS-TR-847, MIT.

Asokan, N., Schunter, M., and Waidner, M. (1997). Opti-
mistic protocols for fair exchange. InCCS ’97: Pro-
ceedings of the 4th ACM conference on Computer and
communications security, pages 7–17. ACM Press.

Asokan, N., Shoup, V., and Waidner, M. (1998). Asyn-
chronous protocols for optimistic fair exchange. In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 86–99.

Böttcher, S. and Obermeier, S. (2006). Sovereign informa-
tion sharing among malicious partners. InSecure Data
Management, Third VLDB Workshop, Seoul, Korea,
pages 18–29.

Clifton, C., Kantarcioglu, M., Lin, X., Vaidya, J., and Zhu,
M. (2003). Tools for privacy preserving distributed
data mining.

Diffie, W. and Hellman, M. E. (1976). New directions in
cryptography.IEEE Transactions on Information The-
ory, IT-22(6):644–654.

Du, W. and Atallah, M. J. (2001). Secure multi-party com-
putation problems and their applications: A review
and open problems. InNew Security Paradigms Work-
shop, pages 11–20, Cloudcroft, New Mexico, USA.

SECURE COMPUTATION OF COMMON DATA AMONG MALICIOUS PARTNERS

353

Franklin, M. K. and Reiter, M. K. (1997). Fair exchange
with a semi-trusted third party (extended abstract). In
ACM Conference on Computer and Communications
Security, pages 1–5.

Freedman, M., Nissim, K., and Pinkas, B. Efficient private
matching and set intersection. InAdvances in Cryp-
tology — EUROCRYPT 2004.

Gamal, T. E. (1985). A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. InPro-
ceedings of CRYPTO 84 on Advances in cryptology,
pages 10–18, New York, NY, USA. Springer-Verlag
New York, Inc.

Goldreich, O. (2000). Secure multi-party computation.
Working Draft.

Gray, J. (1978). Notes on data base operating systems. In
Operating Systems, An Advanced Course, pages 393–
481, London, UK. Springer-Verlag.

Huberman, B. A., Franklin, M., and Hogg, T. (1999). En-
hancing privacy and trust in electronic communities.
In ACM Conference on Electronic Commerce, pages
78–86.

Jefferies, N., Mitchell, C. J., and Walker, M. (1995). A
proposed architecture for trusted third party services.
In Cryptography: Policy and Algorithms, pages 98–
104.

Kissner, L. and Song, D. X. Privacy-preserving set oper-
ations. InAdvances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference.

Naor, M. and Pinkas, B. (1999). Oblivious transfer and
polynomial evaluation. InSTOC ’99: Proceedings
of the thirty-first annual ACM symposium on Theory
of computing, pages 245–254, New York, NY, USA.
ACM Press.

Yao, A. C. (1982). Protocols for secure computations. In
Proceedings of the 21st Annual IEEE Symposium on
the Foundations of Computer Science, pages 160–164,
Chicago. IEEE.

SECRYPT 2007 - International Conference on Security and Cryptography

354

