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Abstract: One of the worst threats present in an enterprise network is the propagation of “scanning malware” (e.g., 
scanning worms and bots). It is important to prevent such scanning malware from spreading within an 
enterprise network. It is especially important to suppress scanning malware infection to less than a few 
infected hosts. We estimated the timing of containment software to block “scanning malware” in a 
homogeneous enterprise network. The “combinatorics proliferation model”, based on discrete mathematics, 
developed in this study derives a threshold that gives the number of the packets sent by a victim that must 
not be exceeded in order to suppress the number of infected hosts to less than a few. This model can 
appropriately express the early state under which an infection started. The result from our model fits very 
well to the result of computer simulation using a typical existing scanning malware and an actual network. 

1 INTRODUCTION 

We aim at achieving a countermeasure against 
“malware” within an enterprise network. In such a 
network, security software such as the anti-virus 
detection and containment is mostly installed in 
every host. There are mainly two kinds of security 
software: signature-based detection software and 
anomaly-based software. In this study we target 
anomaly-based detection software without pattern 
files. This is because the signature-based scheme 
might not be able to detect a new malware for a few 
hours because it takes time to make pattern files for 
each variant. On top of that, there are recently a lot 
of variants of malware (Barford et al., 2006). 

Infection damage by malware has been widely 
reported in the popular press. One of the most 
serious threats in an enterprise network is 
propagation of scanning malware (e.g., scanning 
worms and bots). A recent scanning malware can 
select local addresses. Once a new malware is 
infected within an enterprise network, it propagates 
rapidly and puts a heavy financial burden on the 
enterprise. We therefore consider that it is important 

to prevent such a malware from spreading within an 
enterprise network. It is especially important to 
suppress their occurrence to less than a few infected 
hosts in order to decrease the financial loss to an 
enterprise as much as possible. 

Mainly, two kinds of evaluation model for 
preventing scanning malware from spreading have 
been proposed. One is evaluation models of the 
Internet. These models estimate the number of 
infected hosts and the speed of infection. They are 
either a continuous time model (e.g., SIR model 
(Nikoloski et al., 2006)) or a discrete time model 
(e.g., AAWP model (Chen et al., 2003)). 

Another example is the evaluation model of an 
enterprise network such as the Staniford model 
(Staniford, 2004). This model evaluates the number 
of infected hosts by considering the timing for 
blocking the infection packets sent by a victim. This 
timing is measured using a threshold, namely, the 
number of packets that can be checked until 
detection and containment of an infection and that a 
malware scanner can send out to deal with the 
infection. If a scanning malware is contained in 
quick reaction time after minor infection, the 
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infection damage can be considerably suppressed 
(Moore et al., 2003). 

The Staniford model assumes anomaly-based 
detection. It is thus necessary to discriminate 
between normal traffic and new malware scans. An 
anomaly-based scheme generally has a threshold 
that discriminates between normal traffic and 
malware communications. If the threshold is too 
high, the scanning malware can scan and spread 
through the enterprise network. On the contrary, if 
the threshold is too low, the scheme frequently 
mistakes normal traffic for a communication of the 
scanning malware (A false positive alert is 
frequently generated.) It is therefore important to 
choose the appropriate threshold in the case of an 
anomaly-based detection. 

The Staniford model can estimate the threshold 
according to the number of infected hosts. However, 
it is suitable as long as the number of infected hosts 
is comparatively large. We therefore need to derive 
the threshold that suppresses the number of infected 
hosts to less than a few. 

1.1 Our Contribution 

In an enterprise network, it is important not only to 
prevent the scanning malware from spreading but 
also to suppress the number of infected hosts as 
much as possible. Our model is suitable for 
situations in which there are a small number of 
infected hosts. It uses discrete mathematics known 
as combinatorics. It can also estimate the threshold 
at which the number of infected hosts can be 
suppressed to a small number. 

We evaluated the expected number of infected 
hosts under a certain threshold by using a computer 
simulation. As a result, we confirmed that the result 
obtained with our model precisely corresponds to the 
result of a computer simulation when the number of 
infected hosts can be suppressed to a small number.  

Moreover, we clarified the relation between the 
number of subnets and the upper bound of the 
threshold when the number of hosts is evenly 
distributed within the enterprise network. We 
conclude from this result that the more the number 
of subnets increases, the higher the upper bound of 
threshold can be set. 

2 RELATED WORK 

Various Internet evaluation models of preventing a 
scanning malware from spreading have been 
proposed. These models estimate the number of 

infected hosts and the rate of infection. Such Internet 
evaluation models include the continuous time 
model and the discrete time model. The SIR 
(susceptible-infectious-removed) model (Nikoloski 
et al., 2006) is an “epidemic” continuous time 
model. In this model, an infected host can be 
removed at a certain rate. It can also be used to study 
the effect of software patching and traffic blocking. 
The AAWP (analytical active worm propagation) 
model (Chen et al., 2003) is a discrete time model of 
worm propagation. This model considers the 
patching rate, that is, the reasonable rate at which a 
user can patch the vulnerability on their computer. 
When an infected or vulnerable host is patched, it 
becomes an invulnerable host.  

On the other hand, among the evaluation models 
for preventing the scanning malware from spreading 
within an enterprise network, the Staniford model is 
the most famous. It can calculate the final infection 
density under the condition that the detection and 
containment software is installed in a host or is 
deployed in a network device (e.g., a router or 
switch) within the enterprise network. We describe 
the Staniford model in detail in section 2.1.  

The importance of evaluation in an early stage of 
infection is described in (Zou et al., 2003). That 
work presents a non threshold-based worm-early-
detection system that uses the idea of detecting the 
trend, that is, not the rate, of monitored scan traffic. 
However, this scheme does not evaluate the 
threshold in the early stage of infection. 

Various scan-detection schemes for observing 
packets behavior have been proposed. The scheme 
described in (Williamson, 2002) for rate limiting 
counts the number of connections of a new 
destination address and restricts that number. And 
the DNS-based scheme in (Whyte et al., 2005a) 
looks for non-DNS-based connections that use 
numeric IP addresses. The ARP-based scheme in 
(Whyte et al., 2005b) calculates and checks the total 
anomaly score from three kinds of ARP activity in 
order to detect the scanning malware. The ICMP-
based scheme in (Bakos et al., 2002) looks for ICMP 
destination-unreachable (ICMP-T3) messages. 
These scan-detection schemes check the amount and 
the behavior of plural packets. 

2.1 Staniford Model 

The Staniford model is composed of either the basic 
model (non-cell model) or the extended model (cell 
model). We treat the non-cell model in the present 
study. The Staniford model evaluates the number of 
infected hosts by considering the infection packets 
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sent unwillingly by a victim. This timing is 
measured using threshold T.  

In this section, we outline the Staniford model 
and state its limitations. It is assumed that a 
containment mechanism is installed by every host. 
Since the containment mechanism with threshold T 
blocks the infection packets after detection, a 
malware can send only T infection packets from an 
infected host. The threshold thus means the number 
of packets that can be checked until detection and 
containment of the malware and that the scanning 
malware can send from an infected host. This model 
can calculate the final infection density under a 
certain threshold.  

Final infection density α  (0 < α  < 1) is derived 
by solving Equation (1) below of the Staniford 
model using threshold T, vulnerable density v, and 
probability NP  of targeting a host. 

( ) )1(01ln1
=−+ αα

NTvP
 

 
The value of α  is constant if NTvP  is the same 
because α  is determined by NTvP  in Equation (1).  

The value of NTvP , however, is the limitation 
factor on Equation (1) for giving solution α . If 

NTvP  ≤  1, α  does not have a solution except for α  
= 0. However, α  has a solution except for α  = 0 as 
long as NTvP  > 1 is satisfied. This model can 
therefore accurately estimate the value of α  as long 
as 

NTvP  > 1 is satisfied.  
In Equation (1), the value of NTvP  means the 

expected number of hosts that a single victim 
infected. If NTvP  > 1 is satisfied, the infection keeps 
growing rapidly for a while and the scanning 
malware spreads. On the other hand, if NTvP  < 1 is 
satisfied, this means that chances are the first 
infection will infect less than one other site. The 
Staniford model can therefore only estimate the 
value of α  on the condition that the scanning 
malware spreads. 

2.2 Threshold 

Two kinds of threshold are introduced in (Weaver et 
al., 2004): an “epidemic threshold” and a “sustained 
scanning threshold” (SST). An epidemic threshold is 
the upper bound for preventing the scanning 
malware from spreading in an enterprise network. 
Staniford discusses the importance of this epidemic 
threshold from the viewpoint of the worm-
containment problem. The containment software for 

scanning malware necessarily allows some scans 
before the number of scans exceeds the threshold. 
Until the number of scans exceeds the threshold, the 
scanning malware may find one or more vulnerable 
hosts and spread within the enterprise network. The 
more the threshold increases, the higher the 
propagation risk becomes. It is thus important to 
derive such an epidemic threshold.  

We can obtain Equation (2) by transforming 
Equation (1). Staniford’s threshold is calculated as 
follows. 

( ) )2(1ln

NvP
T

⋅
−

−=
α

α  

 
It is accurately derived under the condition T > 
1/ NvP  ( NTvP  > 1).  

In addition to the epidemic threshold, a sustained 
scanning threshold (SST) such as the adaptive 
threshold (Threshold Random Walk) (Weaver et al., 
2004; Jung et al., 2004; Schechter et al., 2004) is 
known well. However, we do not target a SST 
because it does not consider preventing a scanning 
malware from spreading. 

3 CONTAINMENT OF SCANNING 
MALWARE 

Our goal is to detect a scanning malware and prevent 
it from spreading. This study is limited to the 
containment of random scanning malware and does 
not deal with the issue of containing flash and 
topological worms. Furthermore, we target an 
enterprise network in which the containment 
software is widely installed or in which a 
containment device is widely deployed. 

3.1 Characteristics of Scanning 
Malware 

A scanning malware (e.g., a scanning worm or bot) 
performs a random scanning in a network. Since the 
scanning malware tries to communicate with a lot of 
other destination addresses (including non-existent 
addresses) and finds new vulnerable hosts, it 
communicates with a host whom a correct user 
rarely does. The scanning malware chooses a 
random IP address according to several scanning 
rules and then attempts to infect it. Such scanning 
rules include binary search, sequential search, and 
universal random search.  

We experimentally verified that it is difficult to 
distinguish between the scanning malware and the 
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normal traffic by counting the number of packets, 
because the malware scanning is buried in the 
normal traffic (Omote et al., 2003). On the other 
hand, we also experimentally verified that it is 
possible to distinguish between the scanning 
malware and the normal traffic by counting the 
number of destination addresses, because the normal 
traffic is limited to several destinations. 

3.2 A Detection and Containment 
Method for Scanning Malware 

Our scanning malware-detection scheme directly 
observes a scanning malware’s connection. It is 
different from related works such as (Whyte et al., 
2005a; Whyte et al., 2005b; Bakos et al., 2002), 
which do not directly observe the behavior of 
scanning packets. Since our scheme directly 
observes outgoing scanning packets, it can grasp the 
header information of IP packets in the network 
traffic and determine its amount. Note that it is 
assumed that the detection and containment software 
is installed in a host or is deployed in a network 
device (e.g., a router or switch) within the enterprise 
network.  

The scheme counts the number of scans sent by a 
single host. More concretely, the scheme counts at a 
short interval the number of destination IP addresses 
in the first outbound connection packet, such as a 
SYN packet, that has the same source IP address, 
destination port, and protocol. The scheme is also 
very simple for observation of packets because it 
only refers to the header information of IP packets.  

A detection alert is generated when the count 
value of scans becomes more than the threshold. 
This threshold is corresponding to Staniford’s 
threshold. Although the count value of scans sent by 
a host is cleared after a certain time interval, a 
detection alert is generated as soon as the count 
value reaches the threshold before such an interval 
expires.  

Threshold T used in our previous scheme has the 
following meaning. The scheme blocks the 
connection of worm after the number of outgoing 
packets exceeds T. This means that the scanning 
malware is permitted to scan T times from a victim 
until the alert is generated. If the threshold is too 
high, the scanning malware can scan through the 
enterprise network and propagate. On the contrary, if 
the threshold is too low, the scheme frequently 
mistakes normal traffic for the scanning malware 
(and a false-positive alert is generated). It is 
therefore important to determine the appropriate 
threshold for our scheme. 

4 COMBINATORICS 
PROLIFERATION MODEL 

In an enterprise network, it is important not only to 
prevent scanning malware from spreading but also to 
suppress the number of infected hosts as much as 
possible. It is thus necessary to strictly evaluate the 
infected hosts in the early stages of infection. We 
therefore propose a mathematical model that uses 
combinatorics. This model is suitable for the early 
stages of infection. It can also derive the threshold 
for suppressing the number of infected hosts. 

In the previous section, we stated the importance 
of determining the appropriate threshold to prevent 
both the spreading and mistaking of normal traffic. 
However, we cannot determine the threshold for the 
number of infected hosts to be suppressed from 
previous known works. In regards to the Staniford 
model (Staniford, 2004), although it can derive the 
threshold for preventing a scanning malware from 
spreading, it cannot derive the threshold for 
suppressing the number of infected hosts. 

4.1 Outline 

Our model derives the threshold for suppressing the 
number of infected hosts by using discrete 
mathematics (i.e., combinatorics). This threshold 
means the number of scans that go out from an 
infected host before the host is contained. The 
details about this model are described in the 
remainder of this section. First the model's 
preparation is described, then the design of the 
model is explained, and, lastly, the method for 
deriving the upper bound of the threshold is 
described. 

4.2 Premise 

The premise of combinatorics proliferation model is 
as follows. 
1. To start with, a single node is already infected 

within the enterprise network.  
2. Whenever the infection packet reaches a 

vulnerable node, the node is infected. 
3. A vulnerable node is uniformly distributed 

within the enterprise network. 
4. An infected node sends out the infection packet 

at regular intervals. 
5. Containment software with the same threshold T 

is installed in every node. 
6. Probability p of targeting is constant. 
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7. The time unit (1-tick) advances when one 
infection packet is sent out from an infected 
node. 

8. The processing time from receiving infection to 
the next infection activity is disregarded. 

In premise 2, for simplicity, it is assumed that a 
vulnerable host is infected by one packet, though 
several packets (SYN packet, data packet, and so on) 
are actually necessary for infection. In regards to 
premise 6, refer to section 4.4. In regards to premise 
7, we introduce a time parameter into our model. 

4.3 Parameters 

The parameters used in our model are as follows: 
・ Number of vulnerable nodes (N): the number of 

vulnerable nodes (hosts) within the enterprise 
network. 

・ Vulnerable node density (D): the density of 
vulnerable nodes in the enterprise network. For 
example, when the number of hosts in the 
subnet of class-B is Nb, D is expressed as 

.2)1( 16−bN  
・ Probability of targeting a host (p): the 

probability that a scanning malware picks a 
vulnerable address. Probability p is constant in 
the premise. And p corresponds to the value of 

NvP  in the Staniford model. 
・ Threshold (T): the number of scans that is sent 

out from an infected node before the node is 
contained. T is the epidemic threshold, and the 
value of T is one or more.  

・ Tick (k): A time unit. For example, the time unit 
of 1-tick advances when one infection packet is 
sent out from an infected node. 

・ Generation (n): the infection distance from the 
infection source ( Nn ≤ ). For example, the 
number in “3-generation” means the number of 
grandchildren is three.  

・ ),,( TpkEn
 : the expected number of infected n-

generation nodes after k-tick under both 
probability p of targeting and threshold T.  

・ ),,( TpkE  : the expected number of all infected 
nodes after k-tick under probability p of 
targeting and threshold T. 

・ I(p, T): the total expected number of infected 
nodes under probability p of targeting and 
threshold T after enough time passes. 

It is very rare that all vulnerable addresses are 
used within the enterprise network. The address 
space in such a network is usually only partly used. 
Moreover, since the scanning malware selects a 

targeting node probabilistically, an infection packet 
that is sent out from an infected node does not 
always reach the vulnerable node within the 
enterprise network. We therefore get probability p of 
targeting by using both the number of vulnerable 
nodes and the target-selection algorithm of the 
scanning malware operating within the enterprise 
network. 

4.4 Probability of Targeting 

An existing scanning worm mainly uses two kinds 
of target-selection algorithm: (1) the worm selects a 
target node completely randomly or (2) the worm 
selects a target node probabilistically according to 
the local subnet in which the infected node exists. 
For example, a Sasser worm chooses an address 
from the same /8 subnet (the number of vulnerable 
nodes is Na) with probability 1/4, chooses a random 
address from the same /16 subnet (the number of 
vulnerable nodes is Nb) with probability 1/4, and 
chooses a random Internet address with probability 
2/4. Hence probability p of targeting is calculated as 
follows. 

)3(
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⎛ −
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NbNaNp  

Probability p of targeting is obtained according 
to the composition of the vulnerable host. Thus, p is 
constant regardless of the number of infections. 
However, in practice, the more the number of 
infected nodes is, the fewer the number of nodes that 
can be infected. Actually, it is thought that the 
probability of targeting gradually becomes small. 
We therefore think that the probability of targeting 
in our model takes the upper bound because it does 
not become low. We also think that a constant 
probability p is acceptable as long as the number of 
infected nodes within the enterprise network is fewer 
than that in the whole address space. 

4.5 Expected Number of Infected 
Nodes 

Probability p of targeting is used to define the 
number of 0-generation infected nodes (the infection 
source) i as 1),,(0 =TpkE  regardless of the 
parameters k, p and T. 

The 1-generation infected node is the target that 
the infection source will infect directly. The number 
of 1-generation infected nodes after k-tick is the sum 
of nodes that the infection source directly infects 
until k-tick. The expected number of 1-generation 
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infected nodes after k-tick is therefore calculated as 
follows. 

)4(
)()1(
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The number of 2-generation infected nodes does not 
include the number of the 1-generation infected 
nodes because the 1-generation infected nodes can 
not be infected twice. When k is larger than T, the 
number of each-generation infected node is 
calculated from the approximation 

n
n TpTETpkE ),,(),,( 1= . 

The total expected number of infected nodes 
after k-tick is the sum of victims from the infection 
source (0-generation) to the k-generation calculated 
as follows. 
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After enough time passes (k is close to infinity), the 
total expected number of infected nodes under both 
probability p of targeting and threshold T is 
calculated as follows. 
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Note that the value of I(p,T) in the above equation 
diverges when threshold T is much larger. In an 
actual network, the number of infected nodes finally 
approaches N even if threshold T is much larger. 

4.6 Upper Bound of T 

We can get the upper bound of T by using Equation 
(6) in the following steps.  
1. Plural values of I(p,T) are calculated from 

increments of T under probability p.  
2. The upper bound of T to satisfy the following 

equation is obtained. 
)7(),( uTpI ≤  

Parameter u is the upper bound of the expected 
number of infected nodes that is a maximum finite 
value or a definite value. Though a candidate for one 
or more threshold T values is derived, we use the 
upper bound of T that satisfies Equation (7).  

We can obtain the threshold according to the 
expected number of infected nodes by changing 

parameter u. For example, the setting u = 2 in 
Equation (7) means that the total expected number 
of infected nodes is finally less than two (the 
expected number of new infected nodes is less than 
one only). 

5 COMPUTER SIMULATION 

We evaluated the expected number of infected nodes 
under a certain threshold by using a computer 
simulation. We confirmed that the result from our 
model precisely corresponds to the result of the 
computer simulation under the condition ),,(1 TpTE  < 
1. 

Our goal is to evaluate by computer simulation 
whether an actual worm can be prevented from 
spreading in a practical enterprise network. In our 
evaluation, we thus assume the subnet of class-B and 
that an actual scanning worm has damaged the 
enterprise network.  

We simulate the malware spreading by using a 
simple Monte Carlo simulator under the condition 
that the containment software with the threshold is 
installed in each host. Every address is modeled to 
determine whether it is invulnerable, vulnerable or 
infected. A malware selects only T addresses for 
scanning and then stops its activity. To establish 
reliable statistics on malware behavior, the computer 
simulation is repeatedly run with different seeds. 
Since the malware spreading is randomized 
differently on each run, the result of one simulation 
will be different from the next. If the selected 
address is vulnerable, the host is always infected. 
Also, if the selected address is infected or 
invulnerable, the state of the host is unchanged even 
if it receives an infected packet.  

Figure 1 shows that the value of I(p,T) in our 
model fits the result of computer simulation when T 
is less than 70. In the computer simulation, the 
infection of a Sasser worm in the subnet of class-B 
of an enterprise network is considered. The first set 
of experiments we did involved the following 
selected parameters: the size of the subnet of class-
B: 162 , p  

 
(= NvP ) = 0.0125, N = 3277 (vulnerable node 
density: 162/3277  = 0.05). The value of p is 
calculated from Equation (3) with N = Na = Nb = 
3277. We simulated 10,000 runs by varying T from 
1 to 79 in steps of 1, and plotted the average values. 
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Figure 1: The relation between the result of computer 
simulation and the result of I(p,T) in our model using a 
Sasser worm in the subnet of class-B. 

In Figure 1, the value of I(p,T) in our model 
becomes larger than the result of computer 
simulation when the number of infected nodes 
becomes large. The probability of targeting in our 
model is constant for simplicity (refer to section 4.2). 
On the contrary, in our computer simulation, the 
probability of targeting decreases as the number of 
infected hosts increases. 

6 DISCUSSION 

As mentioned in section 2.2, Staniford’s threshold is 
derived under the condition T > NvP/1  (T > 1/p). On 
the other hand, our threshold is derived under the 
condition T < NvP/1  (T < 1/p). Note that T = NvP/1   
is a singularity point in both models. In this section, 
we confirm the coverage of the two above-described 
thresholds is different.  

We compare the results from both the Staniford 
model and our model with the computer-simulation 
results under the same condition as stated in the 
previous section. Figure 2 extends the x-axis of 
Figure 1 and also includes the results from the 
Staniford model. While Staniford’s result is 
calculated using Equation (2), our threshold is 
calculated using Equation (7). For the expected 
number of infected nodes, the Staniford model uses 

N⋅α  but our model uses I(p,T). 
As regards the range for fitting the computer-

simulation results in Figure 2, our model is different 
from Staniford model. In short, while the coverage 
of the Staniford model is T > 80 (1/0.0125), the 
coverage of our model is T < 80. In the Staniford 
model, threshold T can not be calculated when T < 
80. The boundary point between the Staniford model 
and our model is T = 80. The target range of 

threshold T is clearly divided between the Staniford 
model and our model. As shown in Figure 1, 
therefore, our model is suitable for the evaluation of 
the expected number of infected hosts that 
suppresses the number of infected nodes to low 
below the threshold. 
Here, we discuss Equation (6) for the explanation 
about the approximation calculation. Since our 
model considers generation infection, it must 
calculate the number of infected hosts up to the 
number of k-generation infections after k-tick. 
However, our model is approximated to the 
calculation of the 1-generation infection like 
Equation (5). We can therefore easily calculate the 
expected number of whole infected hosts from only 
the number of one-generation infections.  
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Figure 2: The relation between the result of computer 
simulation and the results of both Nα  in the Staniford 
model and I(p,T) in our model. 

Although the condition that I(p,T) is finite 
becomes ),,(1 TpTE  < 1, we have not gotten the 
condition that satisfies I(p,T) < 2. Here we want to 
get the condition for ),,(1 TpTE  that satisfies I(p,T) 
< 2 (i.e., the number of new infected nodes is less 
than one). As a result, the condition ),,(1 TpTE  < 1/2 
is obtained from Equation (6). This means that the 
expected number of infected nodes from a single 
victim must become less than 1/2 in order that the 
number of infected nodes is suppressed to less than 
two. 

7 CASE STUDY 

The vulnerable-node density changes within an 
enterprise network. It is said that the higher the 
vulnerable-node density in the network becomes, the 
easier infection spreading becomes. Our model can 
determine the relation between the number of 
subnets, the upper bound of T, and I(p,T). Note that 
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the same number of vulnerable hosts is distributed 
within the enterprise network. The relation is 
described concretely as follows. 
Table 1 gives the relation between the number of 
subnets of class-B and the upper bound of T to 
prevent a Sasser worm from spreading when I(p,T) < 
2 is satisfied. We assume that the number of new 
infected nodes is a constant value like 3277 (as 
explained in Section 5). The more the number of 
subnets of class-B increases, the lower the 
vulnerable node density becomes. As a result, the 
upper bound of threshold can be set higher. For 
example, when 3277 hosts with T are distributed 
within the enterprise network, we set T = 39 if there 
is one subnet of class-B, and we set T = 79 if there 
are two subnets of class-B. 

Table 1: The relation between the number of subnets of 
class-B (the number of vulnerable nodes is constant at 
3277) and the upper bound of T to prevent a Sasser worm 
when I(p,T) < 2. 

Number of 
subnets of 

class-B 
N 

Number of 
vulnerable hosts in 

each subnet of 
class-B 

Upper bound 
of T 

1 3277 3277 39 
2 3277 1638 79 
3 3277 1092 118 
4 3277 819 157 
5 3277 655 196 

 
From the viewpoint of preventing infection from 

spreading, it is important to expand the number of 
subnets and to lower the density of the host when the 
same host is put in an enterprise network. We 
quantitatively show how much threshold we should 
be set according to the number of class-B subnets. If 
the upper bound of the threshold can be raised while 
suppressing worm spreading, the times for both 
detection and containment can be increased. 
Accordingly, the accuracy of detection can be 
expected to be improved. It is a big contribution to 
the countermeasure of scanning malware in the 
enterprise network to know how much high the 
threshold we should be set by according to the 
number of subnets. 

8 SUMMARY 

We proposed a “combinatorics proliferation model” 
based on discrete mathematics (combinatorics) and 
derived the threshold T for satisfying I(p,T) < u (u is 
a small number), where I(p,T) is the expected 

number of infected hosts. We confirmed that the 
results from this model precisely correspond to the 
result of computer simulation of malware spreading 
when ),,(1 TpTE  < 1 is satisfied.  

Moreover, we clarified the relation between the 
number of subnets in an enterprise network and the 
upper bound of the threshold when the same number 
of hosts is distributed within the network. For 
example, when 3277 hosts are distributed within the 
network, we set T = 39 if there is one class-B subnet, 
and we set T = 79 if there is two class-B subnets. 

In a practical enterprise network, it is important 
that a suitable countermeasure is executed in the 
early stages of infection. Our model can 
appropriately express the number of infected hosts in 
the early stages of infection, and can derive the 
effective threshold to contain the scanning malware 
in the enterprise network to a few infections only. 
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